1
|
Mahlerová K, Alaverdyan J, Vaňková L, Vaněk D. Molecular Tools for Lynx spp. qPCR Identification and STR-Based Individual Identification of Eurasian Lynx ( Lynx lynx) in Forensic Casework. Methods Protoc 2025; 8:47. [PMID: 40407474 PMCID: PMC12101276 DOI: 10.3390/mps8030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/26/2025] Open
Abstract
The Eurasian lynx (Lynx lynx) is listed in CITES Appendix II and is protected under the Bern Convention and the EU Habitats Directive, yet it remains a frequent target of wildlife crime, highlighting the urgent need for reliable identification methods. This study focuses on determination and DNA quantification of the Lynx spp. using quantitative real-time PCR (qPCR). The Llynx Qplex quantification multiplex system effectively distinguishes Lynx spp. from other Feliformia species by targeting mitochondrial and nuclear markers. Additionally, we present the results of the developmental validation of the Llyn STRplex system for individual identification and databasing using six STR loci. This study followed ISFG recommendations for non-human DNA testing and developmental validation guidelines. Both systems demonstrate high sensitivity (5 pg genomic DNA for Llynx Qplex and 30 pg of mtDNA for Llyn STRplex) and high specificity to Lynx spp., confirmed by testing against 16 related Feliformia species. Robustness was evaluated, showing sensitivity to temperature variation, and both repeatability and reproducibility were successfully tested across replicates and conditions. Given that forensic casework often involves degraded and limited biological material, molecular tools must be both sensitive and specific to ensure accurate results. Developing precise and efficient tools is essential for supporting investigations of wildlife crime involving the Eurasian lynx, as well as efforts aimed at conserving the species.
Collapse
Affiliation(s)
- Karolina Mahlerová
- Institute for Environmental Studies, Charles University, 128 01 Prague, Czech Republic; (J.A.); (L.V.)
- Forensic DNA Service, 170 00 Prague, Czech Republic
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Johana Alaverdyan
- Institute for Environmental Studies, Charles University, 128 01 Prague, Czech Republic; (J.A.); (L.V.)
- Forensic DNA Service, 170 00 Prague, Czech Republic
| | - Lenka Vaňková
- Institute for Environmental Studies, Charles University, 128 01 Prague, Czech Republic; (J.A.); (L.V.)
- Forensic DNA Service, 170 00 Prague, Czech Republic
| | - Daniel Vaněk
- Institute for Environmental Studies, Charles University, 128 01 Prague, Czech Republic; (J.A.); (L.V.)
- Forensic DNA Service, 170 00 Prague, Czech Republic
- Department of Legal Forensic Medicine, Bulovka University Hospital, 180 00 Prague, Czech Republic
- Department of Forensic Medicine, Second Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|
2
|
Ruesink-Bueno IL, Drews A, O’Connor EA, Westerdahl H. Expansion of MHC-IIB Has Constrained the Evolution of MHC-IIA in Passerines. Genome Biol Evol 2024; 16:evae236. [PMID: 39462092 PMCID: PMC11562119 DOI: 10.1093/gbe/evae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
The major histocompatibility complex (MHC) is central in adaptive immunity, with the highly polymorphic MHC genes encoding antigen-presenting molecules. Two MHC class II (MHC-II) loci, DA1 and DA2, predate the radiation of extant birds and persist throughout much of the avian phylogeny. Within each locus, the MHC-II molecules are encoded by A-genes (DAA) and B-genes (DAB), which are arranged in A-B dyads. However, in passerines (order Passeriformes), the DA2 locus has been lost, and the ancestral A-B dyad at the DA1 locus has been replaced by a putatively single A-gene (DAA1) and an array of highly polymorphic B-genes (DAB1). In this study, we genotyped the DAA1 gene of 15 passerine species and confirmed that passerines possess just one copy of DAA1. We then compared selection patterns in DAA1 between passerines and nonpasserines and found that exon 2, which encodes the antigen-presenting domain, has been subject to weaker positive selection and stronger negative selection in passerines compared with nonpasserines. Additional comparisons showed that the patterns of selection in the passerine DAA1 gene are unlikely to be related to the loss of the DA2 locus. Instead, our findings suggest that the expansion of DAB1 (MHC-IIB) has imposed an evolutionary constraint on the passerine DAA1 (MHC-IIA) gene. We speculate that this constraint may be the result of each DAA1 chain forming heterodimers with many different DAB1 chains.
Collapse
Affiliation(s)
| | - Anna Drews
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Emily Amelia O’Connor
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Gillingham MAF, Montero BK, Wihelm K, Grudzus K, Sommer S, Santos PSC. A novel workflow to improve genotyping of multigene families in wildlife species: An experimental set-up with a known model system. Mol Ecol Resour 2020; 21:982-998. [PMID: 33113273 DOI: 10.1111/1755-0998.13290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022]
Abstract
Genotyping complex multigene families in novel systems is particularly challenging. Target primers frequently amplify simultaneously multiple loci leading to high PCR and sequencing artefacts such as chimeras and allele amplification bias. Most genotyping pipelines have been validated in nonmodel systems whereby the real genotype is unknown and the generation of artefacts may be highly repeatable. Further hindering accurate genotyping, the relationship between artefacts and genotype complexity (i.e. number of alleles per genotype) within a PCR remains poorly described. Here, we investigated the latter by experimentally combining multiple known major histocompatibility complex (MHC) haplotypes of a model organism (chicken, Gallus gallus, 43 artificial genotypes with 2-13 alleles per amplicon). In addition to well-defined 'optimal' primers, we simulated a nonmodel species situation by designing 'cross-species' primers based on sequence data from closely related Galliform species. We applied a novel open-source genotyping pipeline (ACACIA; https://gitlab.com/psc_santos/ACACIA), and compared its performance with another, previously published pipeline (AmpliSAS). Allele calling accuracy was higher when using ACACIA (98.5% versus 97% and 77.8% versus 75% for the 'optimal' and 'cross-species' data sets, respectively). Systematic allele dropout of three alleles owing to primer mismatch in the 'cross-species' data set explained high allele calling repeatability (100% when using ACACIA) despite low accuracy, demonstrating that repeatability can be misleading when evaluating genotyping workflows. Genotype complexity was positively associated with nonchimeric artefacts, chimeric artefacts (nonlinearly by levelling when amplifying more than 4-6 alleles) and allele amplification bias. Our study exemplifies and demonstrates pitfalls researchers should avoid to reliably genotype complex multigene families.
Collapse
Affiliation(s)
- Mark A F Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - B Karina Montero
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany.,Zoological Institute, Animal Ecology and Conservation, Biocenter Grindel, Universität Hamburg, Hamburg,, Germany
| | - Kerstin Wihelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - Kara Grudzus
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| | - Pablo S C Santos
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm Universität, Ulm, Germany
| |
Collapse
|
4
|
Cruz-López M, Fernández G, Hipperson H, Palacios E, Cavitt J, Galindo-Espinosa D, Gómez Del Angel S, Pruner R, Gonzalez O, Burke T, Küpper C. Allelic diversity and patterns of selection at the major histocompatibility complex class I and II loci in a threatened shorebird, the Snowy Plover (Charadrius nivosus). BMC Evol Biol 2020; 20:114. [PMID: 32912143 PMCID: PMC7488298 DOI: 10.1186/s12862-020-01676-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background Understanding the structure and variability of adaptive loci such as the major histocompatibility complex (MHC) genes is a primary research goal for evolutionary and conservation genetics. Typically, classical MHC genes show high polymorphism and are under strong balancing selection, as their products trigger the adaptive immune response in vertebrates. Here, we assess the allelic diversity and patterns of selection for MHC class I and class II loci in a threatened shorebird with highly flexible mating and parental care behaviour, the Snowy Plover (Charadrius nivosus) across its broad geographic range. Results We determined the allelic and nucleotide diversity for MHC class I and class II genes using samples of 250 individuals from eight breeding population of Snowy Plovers. We found 40 alleles at MHC class I and six alleles at MHC class II, with individuals carrying two to seven different alleles (mean 3.70) at MHC class I and up to two alleles (mean 1.45) at MHC class II. Diversity was higher in the peptide-binding region, which suggests balancing selection. The MHC class I locus showed stronger signatures of both positive and negative selection than the MHC class II locus. Most alleles were present in more than one population. If present, private alleles generally occurred at very low frequencies in each population, except for the private alleles of MHC class I in one island population (Puerto Rico, lineage tenuirostris). Conclusion Snowy Plovers exhibited an intermediate level of diversity at the MHC, similar to that reported in other Charadriiformes. The differences found in the patterns of selection between the class I and II loci are consistent with the hypothesis that different mechanisms shape the sequence evolution of MHC class I and class II genes. The rarity of private alleles across populations is consistent with high natal and breeding dispersal and the low genetic structure previously observed at neutral genetic markers in this species.
Collapse
Affiliation(s)
- Medardo Cruz-López
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, Mexico.
| | - Guillermo Fernández
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 811, 82040, Mazatlán, Sinaloa, Mexico
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Eduardo Palacios
- Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad La Paz, Miraflores 334, Col. Bellavista, 23050, La Paz, Baja California Sur, Mexico
| | - John Cavitt
- Avian Ecology Laboratory Department of Zoology, Weber State University, Ogden, UT, 84408, USA
| | - Daniel Galindo-Espinosa
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, A.P. 19-B, 23080, La Paz, B.C.S., Mexico
| | - Salvador Gómez Del Angel
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, Mexico
| | - Raya Pruner
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Panama City, FL, USA
| | - Oscar Gonzalez
- Grupo Aves del Perú, Gómez del Carpio 135, Barrio Medico, 34, Lima, Peru.,Department of Natural Sciences, Emmanuel College, Franklin Springs, GA, 30369, USA
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Clemens Küpper
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319, Seewiesen, Germany.
| |
Collapse
|
5
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Vlček J, Hoeck PEA, Keller LF, Wayhart JP, Dolinová I, Štefka J. Balancing selection and genetic drift create unusual patterns of MHCIIβ variation in Galápagos mockingbirds. Mol Ecol 2016; 25:4757-72. [PMID: 27545344 DOI: 10.1111/mec.13807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The extracellular subunit of the major histocompatibility complex MHCIIβ plays an important role in the recognition of pathogens and the initiation of the adaptive immune response of vertebrates. It is widely accepted that pathogen-mediated selection in combination with neutral micro-evolutionary forces (e.g. genetic drift) shape the diversity of MHCIIβ, but it has proved difficult to determine the relative effects of these forces. We evaluated the effect of genetic drift and balancing selection on MHCIIβ diversity in 12 small populations of Galápagos mockingbirds belonging to four different species, and one larger population of the Northern mockingbird from the continental USA. After genotyping MHCIIβ loci by high-throughput sequencing, we applied a correlational approach to explore the relationships between MHCIIβ diversity and population size by proxy of island size. As expected when drift predominates, we found a positive effect of population size on the number of MHCIIβ alleles present in a population. However, the number of MHCIIβ alleles per individual and number of supertypes were not correlated with population size. This discrepancy points to an interesting feature of MHCIIβ diversity dynamics: some levels of diversity might be shaped by genetic drift while others are independent and possibly maintained by balancing selection.
Collapse
Affiliation(s)
- Jakub Vlček
- Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1670, České Budějovice, Czech Republic
| | - Paquita E A Hoeck
- Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jessica P Wayhart
- Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
| | - Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, Czech Republic
| | - Jan Štefka
- Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1670, České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Jaeger CP, Duvall MR, Swanson BJ, Phillips CA, Dreslik MJ, Baker SJ, King RB. Microsatellite and major histocompatibility complex variation in an endangered rattlesnake, the Eastern Massasauga (Sistrurus catenatus). Ecol Evol 2016; 6:3991-4003. [PMID: 27516858 PMCID: PMC4874855 DOI: 10.1002/ece3.2159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/18/2023] Open
Abstract
Genetic diversity is fundamental to maintaining the long-term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.
Collapse
Affiliation(s)
- Collin P. Jaeger
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois60115
| | - Melvin R. Duvall
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois60115
| | - Bradley J. Swanson
- Department of BiologyCentral Michigan UniversityMt. PleasantMichigan48859
| | - Christopher A. Phillips
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinois61820
| | - Michael J. Dreslik
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinois61820
| | - Sarah J. Baker
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinois61820
| | - Richard B. King
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois60115
| |
Collapse
|
8
|
Balasubramaniam S, Bray RD, Mulder RA, Sunnucks P, Pavlova A, Melville J. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines. BMC Evol Biol 2016; 16:112. [PMID: 27206579 PMCID: PMC4875725 DOI: 10.1186/s12862-016-0681-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. Results We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Conclusions Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0681-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shandiya Balasubramaniam
- Department of Sciences, Museum Victoria, Melbourne, VIC, 3001, Australia. .,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Rebecca D Bray
- Terrestrial Vertebrates, Western Australian Museum, Perth, WA, 6986, Australia
| | - Raoul A Mulder
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jane Melville
- Department of Sciences, Museum Victoria, Melbourne, VIC, 3001, Australia
| |
Collapse
|
9
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
10
|
Lei W, Fang W, Lin Q, Zhou X, Chen X. Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes). Immunogenetics 2015; 67:463-72. [PMID: 26033691 DOI: 10.1007/s00251-015-0846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56-36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China,
| | | | | | | | | |
Collapse
|
11
|
Eimes JA, Townsend AK, Sepil I, Nishiumi I, Satta Y. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism. PeerJ 2015; 3:e853. [PMID: 25802816 PMCID: PMC4369332 DOI: 10.7717/peerj.853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of positively selected amino acids by supertyping revealed a single supertype shared by only jungle and carrion crows, a pattern consistent with convergence, the overall phylogenetic patterns we observed suggest that TSP, rather than convergence, explains the interspecific allelic similarity of MHC IIB genes in these species of crows.
Collapse
Affiliation(s)
- John A Eimes
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| | | | - Irem Sepil
- Department of Zoology, University of Oxford , Oxford , UK
| | - Isao Nishiumi
- Department of Zoology, National Museum of Nature and Science , Tsukuba , Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| |
Collapse
|
12
|
Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Sci Rep 2014; 4:6920. [PMID: 25370306 PMCID: PMC4220275 DOI: 10.1038/srep06920] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
Animals are known to select mates to maximize the genetic diversity of their offspring in order to achieve immunity against a broader range of pathogens. Although several bird species preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC), it remains unknown whether they can use olfactory cues to assess MHC similarity with potential partners. Here we combined gas chromatography data with genetic similarity indices based on MHC to test whether similarity in preen secretion chemicals correlated with MHC relatedness in the black-legged kittiwake (Rissa tridactyla), a species that preferentially mates with genetically dissimilar partners. We found that similarity in preen secretion chemicals was positively correlated with MHC relatedness in male-male and male-female dyads. This study provides the first evidence that preen secretion chemicals can encode information on MHC relatedness and suggests that odor-based mechanisms of MHC-related mate choice may occur in birds.
Collapse
|
13
|
Burri R, Promerová M, Goebel J, Fumagalli L. PCR-based isolation of multigene families: lessons from the avian MHC class IIB. Mol Ecol Resour 2014; 14:778-88. [PMID: 24479469 DOI: 10.1111/1755-0998.12234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
The amount of sequence data available today highly facilitates the access to genes from many gene families. Primers amplifying the desired genes over a range of species are readily obtained by aligning conserved gene regions, and laborious gene isolation procedures can often be replaced by quicker PCR-based approaches. However, in the case of multigene families, PCR-based approaches bear the often ignored risk of incomplete isolation of family members. This problem is most prominent in gene families with highly variable and thus unpredictable number of gene copies among species, such as in the major histocompatibility complex (MHC). In this study, we (i) report new primers for the isolation of the MHC class IIB (MHCIIB) gene family in birds and (ii) share our experience with isolating MHCIIB genes from an unprecedented number of avian species from all over the avian phylogeny. We report important and usually underappreciated problems encountered during PCR-based multigene family isolation and provide a collection of measures to help significantly improving the chance of successfully isolating complete multigene families using PCR-based approaches.
Collapse
Affiliation(s)
- R Burri
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland; Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-75236, Uppsala, Sweden
| | | | | | | |
Collapse
|
14
|
Jaratlerdsiri W, Isberg SR, Higgins DP, Miles LG, Gongora J. Selection and trans-species polymorphism of major histocompatibility complex class II genes in the order Crocodylia. PLoS One 2014; 9:e87534. [PMID: 24503938 PMCID: PMC3913596 DOI: 10.1371/journal.pone.0087534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/30/2013] [Indexed: 12/26/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85-90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia.
Collapse
Affiliation(s)
| | - Sally R. Isberg
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
- Centre for Crocodile Research, Noonamah, Northern Territory, Australia
| | - Damien P. Higgins
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lee G. Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Evolution of MHC class I in the order Crocodylia. Immunogenetics 2013; 66:53-65. [PMID: 24253731 DOI: 10.1007/s00251-013-0746-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a dynamic genomic region with an essential role in the adaptive immunity of jawed vertebrates. The evolution of the MHC has been dominated by gene duplication and gene loss, commonly known as the birth-and-death process. Evolutionary studies of the MHC have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3, and exon 4 across 20 species of the families Alligatoridae and Crocodilidae. We generated 124 DNA sequences and identified 31 putative functional variants as well as 14 null variants. Phylogenetic analyses revealed three gene groups, all of which were present in Crocodilidae but only one in Alligatoridae. Within these groups, variants generally appear to cluster at the genus or family level rather than in species-specific groups. In addition, we found variation in gene copy number and some indication of interlocus recombination. These results suggest that MHC class I in Crocodylia underwent independent events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia.
Collapse
|
16
|
Wang Z, Zhou X, Lin Q, Fang W, Chen X. Characterization, polymorphism and selection of major histocompatibility complex (MHC) DAB genes in vulnerable Chinese egret (Egretta eulophotes). PLoS One 2013; 8:e74185. [PMID: 24019955 PMCID: PMC3760844 DOI: 10.1371/journal.pone.0074185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/28/2013] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB) were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes). Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids.
Collapse
Affiliation(s)
- Zeng Wang
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (WF); (XC)
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (WF); (XC)
| |
Collapse
|
17
|
Sutton JT, Robertson BC, Grueber CE, Stanton JAL, Jamieson IG. Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity. Immunogenetics 2013; 65:619-33. [DOI: 10.1007/s00251-013-0708-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
|
18
|
Yasukochi Y, Kurosaki T, Yoneda M, Koike H, Satta Y. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus. BMC Evol Biol 2012. [PMID: 23190438 PMCID: PMC3575356 DOI: 10.1186/1471-2148-12-230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
19
|
van Rensburg AJ, Bloomer P, Ryan PG, Hansson B. Ancestral polymorphism at the major histocompatibility complex (MHCIIß) in the Nesospiza bunting species complex and its sister species (Rowettia goughensis). BMC Evol Biol 2012; 12:143. [PMID: 22894748 PMCID: PMC3483275 DOI: 10.1186/1471-2148-12-143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 07/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is an important component of the vertebrate immune system and is frequently used to characterise adaptive variation in wild populations due to its co-evolution with pathogens. Passerine birds have an exceptionally diverse MHC with multiple gene copies and large numbers of alleles compared to other avian taxa. The Nesospiza bunting species complex (two species on Nightingale Island; one species with three sub-species on Inaccessible Island) represents a rapid adaptive radiation at a small, isolated archipelago, and is thus an excellent model for the study of adaptation and speciation. In this first study of MHC in Nesospiza buntings, we aim to characterize MHCIIß variation, determine the strength of selection acting at this gene region and assess the level of shared polymorphism between the Nesospiza species complex and its putative sister taxon, Rowettia goughensis, from Gough Island. RESULTS In total, 23 unique alleles were found in 14 Nesospiza and 2 R. goughensis individuals encoding at least four presumably functional loci and two pseudogenes. There was no evidence of ongoing selection on the peptide binding region (PBR). Of the 23 alleles, 15 were found on both the islands inhabited by Nesospiza species, and seven in both Nesospiza and Rowettia; indications of shared, ancestral polymorphism. A gene tree of Nesospiza MHCIIß alleles with several other passerine birds shows three highly supported Nesospiza-specific groups. All R. goughensis alleles were shared with Nesospiza, and these alleles were found in all three Nesospiza sequence groups in the gene tree, suggesting that most of the observed variation predates their phylogenetic split. CONCLUSIONS Lack of evidence of selection on the PBR, together with shared polymorphism across the gene tree, suggests that population variation of MHCIIß among Nesospiza and Rowettia is due to ancestral polymorphism rather than local selective forces. Weak or no selection pressure could be attributed to low parasite load at these isolated Atlantic islands. The deep divergence between the highly supported Nesospiza-specific sequence Groups 2 and 3, and the clustering of Group 3 close to the distantly related passerines, provide strong support for preserved ancestral polymorphism, and present evidence of one of the rare cases of extensive ancestral polymorphism in birds.
Collapse
Affiliation(s)
- Alexandra Jansen van Rensburg
- Molecular Ecology and Evolution Program, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Program, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, 0028, South Africa
| | - Peter G Ryan
- Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa
| | - Bengt Hansson
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, SE-22362, Lund, Sweden
| |
Collapse
|
20
|
MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection. Immunogenetics 2012; 64:825-38. [PMID: 22864956 DOI: 10.1007/s00251-012-0637-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Saltwater crocodiles are in high demand for the production of luxury fashion items. However, their susceptibility to disease incurs substantial losses and it is hoped to be able to genetically select these animals for disease resistance. So far, this has only been enabled by phenotypic selection. Investigating the major histocompatibility complex (MHC) could provide insight into the ability of an individual to respond to pathogens acting as a selective pressure on the host. Here, we assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 3 among 42 saltwater crocodiles from nine river basins in the Northern Territory, Australia. We generated 640 sequences using cloning and sequencing methods and identified 43 MHC variants among them. Phylogenetic analyses clustered these variants into two major clades, which may suggest two gene lineages. We found the number of variants within an individual varying between one and seven, indicating that there are at least four gene loci in this species. Selection detection analyses revealed an elevated ratio of nonsynonymous to synonymous substitutions (mean = 1.152 per codon), suggesting balancing selection. Population differentiation analyses revealed that the MHC did not show structuring among the river basins, and there were some shared variants among them. This may be a result of possible gene flow and/or similar selection pressures among populations. These findings provide background knowledge to identify potential MHC markers, which could be used for selecting genetically variable individuals for future disease associations. All MHC class I exon 3 sequences reported in this paper were submitted to the GenBank database with following accession numbers: HQ008785-HQ008789, HQ008791-HQ008798, HQ008808-HQ008815, HQ008824, HQ008826-HQ008830, HQ008835, HQ008839, HQ008842-HQ008850, and JX023536-JX023540.
Collapse
|
21
|
Hawley DM, Fleischer RC. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS One 2012; 7:e30222. [PMID: 22291920 PMCID: PMC3264569 DOI: 10.1371/journal.pone.0030222] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022] Open
Abstract
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
Collapse
Affiliation(s)
- Dana M Hawley
- Center for Conservation and Evolutionary Genetics, Smithsonian Institution, Washington DC, United States of America.
| | | |
Collapse
|
22
|
Li C, Chen L, Sun Y, Liang H, Yi K, Sun Y, Ma Y, Li X, Wu W, Zhou X. Molecular cloning, polymorphism and tissue distribution of the MHC class IIB gene in the Chinese goose (Anser cygnoides). Br Poult Sci 2011; 52:318-27. [PMID: 21732877 DOI: 10.1080/00071668.2011.581270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The goose major histocompatibility complex (MHC) class IIB cDNA (Ancy-MHCII) was cloned by homology cloning and rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR), and the genomic structure and tissue expression were investigated. 2. Three different 5'-RACE sequences (Ancy-MHC II5'-1, Ancy-MHC II5'-2, Ancy-MHC II5'-3), one 3'-RACE sequence (Ancy-MHC II-3') and two different full length Ancy-MHC IIB cDNA sequences (Ancy-CD01, Ancy-CD02), which came from different alleles at one locus or different loci, were determined. 3. The genomic organisation is composed of 6 exons and 5 introns, with a longer intron region than that of the chicken. The alleles encode 259 and 260 amino acids in the mature protein. 4. The number of non-synonymous substitutions (dN) in the peptide-binding region of exon 2 from 8 alleles was higher than that of the synonymous substitutions (dS). 5. Tissue-specific expression of Ancy-MHC II mRNA was detected in an adult goose using RT-PCR. These results showed that Ancy-MHC II mRNA was expressed in the lung, spleen, liver, intestine, heart, kidney, pancreas, brain, skin and muscle. This is consistent with the expression of MHC class IIB in various tissues from the chicken. 6. Sequences from goose, snipe and duck clustered together when compared with known MHC class IIB sequences from the other species, significantly differing from mammals and aquatic species, indicating a pattern consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Science and Veterinary Medicine and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, 5333 Xi'an Avenue, Changchun, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Osborne MJ, Turner TF. Isolation and characterization of major histocompatibility class IIβ genes in an endangered North American cyprinid fish, the Rio Grande silvery minnow (Hybognathus amarus). FISH & SHELLFISH IMMUNOLOGY 2011; 30:1275-1282. [PMID: 21463692 DOI: 10.1016/j.fsi.2011.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 05/30/2023]
Abstract
The major histocompatibility complex (MHC) is a critical component of the adaptive immune response in vertebrates. Due to the role that MHC plays in immunity, absence of variation within these genes may cause species to be vulnerable to emerging diseases. The freshwater fish family Cyprinidae comprises the most diverse and species-rich group of freshwater fish in the world, but some are imperiled. Despite considerable species richness and the long evolutionary history of the family, there are very few reports of MHC sequences (apart from a few model species), and no sequences are reported from endemic North American cyprinids (subfamily Leuciscinae). Here we isolate and characterize the MH Class II beta genes from complementary DNA and genomic DNA of the non-model, endangered Rio Grande silvery minnow (Hybognathus amarus), a North American cyprinid. Phylogenetic reconstruction revealed two groups of divergent MH alleles that are paralogous to previously described loci found in deeply divergent cyprinid taxa including common carp, zebrafish, African large barb and bream. Both groups of alleles were under the influence of diversifying selection yet not all individuals had alleles belonging to both allelic groups. We concluded that the general organization and pattern of variation of MH class II genes in Rio Grande silvery minnow is similar to that identified in other cyprinid fishes studied to date, despite distant evolutionary relationships and evidence of a severe genetic bottleneck.
Collapse
Affiliation(s)
- Megan J Osborne
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC 03-2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | |
Collapse
|
24
|
Juola FA, Dearborn DC. Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird. Proc Biol Sci 2011; 279:153-62. [PMID: 21613297 DOI: 10.1098/rspb.2011.0562] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.
Collapse
Affiliation(s)
- Frans A Juola
- Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Dr, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
25
|
Li L, Zhou X, Chen X. Characterization and evolution of MHC class II B genes in Ardeid birds. J Mol Evol 2011; 72:474-83. [PMID: 21590337 DOI: 10.1007/s00239-011-9446-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 04/29/2011] [Indexed: 01/18/2023]
Abstract
Major histocompatibility complex (MHC) is a multi-gene family that is very suitable to investigate a wide range of open questions in evolutionary ecology. In this study, we characterized two expressed MHC class II B genes (DAB1 and DAB2) in the Grey Heron (Aves: Ardea cinerea). We further developed the primer pairs to amplify and sequence two MHC class II B loci in ten ardeid birds. Phylogenetic analysis revealed that different parts of the genes showed different evolutionary patterns. The exon 2 sequences tended to cluster two gene-specific lineages. In each lineage, exon 2 sequences from several species showed closer relationships than sequences within species, and two shared identical alleles were found between species (Egretta sacra and Nycticorax nycticorax; Egretta garzetta and Bubulcus ibis), supporting the hypothesis of trans-species polymorphism. In contrast, the species-specific intron 2 plus partial exon 3 tree suggested that DAB1 and DAB2 were subject to concerted evolution. GENECONV analyses showed the gene exchange played an important role in the ardeid MHC evolution.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems School of Life Sciences, Xiamen University, Siming, China
| | | | | |
Collapse
|
26
|
Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii). Immunogenetics 2011; 63:223-33. [PMID: 21221966 DOI: 10.1007/s00251-010-0503-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/11/2010] [Indexed: 12/15/2022]
|
27
|
Canal D, Alcaide M, Anmarkrud JA, Potti J. Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca. BMC Res Notes 2010; 3:236. [PMID: 20815923 PMCID: PMC2944132 DOI: 10.1186/1756-0500-3-236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/05/2010] [Indexed: 11/13/2022] Open
Abstract
Background Major Histocompatibility Complex (MHC) has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes) hosts. Findings Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain). Taking the pied flycatcher Ficedula hypoleuca as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles). The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species. Conclusions Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci.
Collapse
Affiliation(s)
- David Canal
- Estación Biológica de Doñana - CSIC, Department of Evolutionary Ecology, Av, Américo Vespucio s/n, 41092 Seville, Spain.
| | | | | | | |
Collapse
|
28
|
Balakrishnan CN, Ekblom R, Völker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV. Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 2010; 8:29. [PMID: 20359332 PMCID: PMC2907588 DOI: 10.1186/1741-7007-8-29] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/01/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. RESULTS The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. CONCLUSION The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.
Collapse
Affiliation(s)
- Christopher N Balakrishnan
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Current address: Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, USA
| | - Robert Ekblom
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Population Biology and Conservation Biology, Uppsala University, Uppsala, Sweden
| | - Martin Völker
- Department of Biosciences, University of Kent, Kent, UK
| | | | - Ricardo Godinez
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Kotkiewicz
- School of Medicine, Genome Sequencing Center, Washington University, St Louis, MO, USA
| | - David W Burt
- Roslin Institute, Division of Genetics & Genomics, University of Edinburgh, Edinburgh, UK
| | - Tina Graves
- School of Medicine, Genome Sequencing Center, Washington University, St Louis, MO, USA
| | | | - Wesley C Warren
- School of Medicine, Genome Sequencing Center, Washington University, St Louis, MO, USA
| | - Scott V Edwards
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Bollmer JL, Dunn PO, Whittingham LA, Wimpee C. Extensive MHC Class II B Gene Duplication in a Passerine, the Common Yellowthroat (Geothlypis trichas). J Hered 2010; 101:448-60. [PMID: 20200139 DOI: 10.1093/jhered/esq018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jennifer L Bollmer
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA.
| | | | | | | |
Collapse
|
30
|
Patterns of variation of the major histocompatibility complex class IIB loci in Chinese goose (Anser Cygnoides). Immunogenetics 2009; 61:443-50. [DOI: 10.1007/s00251-009-0374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 04/15/2009] [Indexed: 11/26/2022]
|
31
|
Kikkawa EF, Tsuda TT, Sumiyama D, Naruse TK, Fukuda M, Kurita M, Wilson RP, LeMaho Y, Miller GD, Tsuda M, Murata K, Kulski JK, Inoko H. Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus). Immunogenetics 2009; 61:341-52. [PMID: 19319519 DOI: 10.1007/s00251-009-0363-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
The Major Histocompatibility Complex (Mhc) class II DRB locus of vertebrates is highly polymorphic and some alleles may be shared between closely related species as a result of balancing selection in association with resistance to parasites. In this study, we developed a new set of PCR primers to amplify, clone, and sequence overlapping portions of the Mhc class II DRB-like gene from the 5'UTR end to intron 3, including exons 1, 2, and 3 and introns 1 and 2 in four species (20 Humboldt, six African, five Magellanic, and three Galapagos penguins) of penguin from the genus Spheniscus (Sphe). Analysis of gene sequence variation by the neighbor-joining method of 21 Sphe sequences and 20 previously published sequences from four other penguin species revealed overlapping clades within the Sphe species, but species-specific clades for the other penguin species. The overlap of the DRB-like gene sequence variants between the four Sphe species suggests that, despite their allopatric distribution, the Sphe species are closely related and that some shared DRB1 alleles may have undergone a trans-species inheritance because of balancing selection and/or recent rapid speciation. The new primers and PCR assays that we have developed for the identification of the DRB1 DNA and protein sequence variations appear to be useful for the characterization of the molecular evolution of the gene in closely related Penguin species and might be helpful for the assessment of the genetic health and the management of the conservation and captivity of these endangered species.
Collapse
Affiliation(s)
- Eri F Kikkawa
- Department of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Bousei-dai Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lenz TL, Eizaguirre C, Becker S, Reusch TBH. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus. BMC Evol Biol 2009; 9:57. [PMID: 19291291 PMCID: PMC2662802 DOI: 10.1186/1471-2148-9-57] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/16/2009] [Indexed: 11/26/2022] Open
Abstract
Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism.
Collapse
Affiliation(s)
- Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| | | | | | | |
Collapse
|
33
|
Silva MC, Edwards SV. Structure and evolution of a new avian MHC class II B gene in a sub-Antarctic seabird, the thin-billed prion (Procellariiformes: Pachyptila belcheri). J Mol Evol 2009; 68:279-91. [PMID: 19209378 DOI: 10.1007/s00239-009-9200-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
The major histocompatibility complex encodes molecules that present foreign peptides to T cells of the immune system. The peptide binding region (PBR) of these molecules is among the most polymorphic regions found in vertebrate taxa. Genomic cloning approaches are improving our understanding of the evolution of this multigene family in nonmodel avian groups. By building a cosmid library, a new MHC class II B gene, Pabe-DAB1, was isolated and characterized at the genomic level in a sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri). Pabe-DAB1 exhibits the hallmark structural features of functional MHC class II loci. Direct sequencing of the PBR encoding exon in a panel of prions revealed significantly higher levels of genetic diversity compared to two noncoding neutral loci, with most alleles differing by at least one replacement substitution in the peptide binding codons. We estimated evolutionary dynamics for Pabe-DAB1 using a variety of Bayesian and other approaches. Evidence for balancing selection comes from a spatially variable ratio of nonsynonymous-to-synonymous substitutions (mean d (N)/d (S) = 2.87) in the PBR, with sites predicted to be functionally relevant exhibiting the highest omega values. We estimate the population recombination rate to be approximately 0.3 per site per generation, indicating an important role for recombination in generating polymorphism at this locus. Pabe-DAB1 is among the few avian class II loci characterized at the genomic level and with a known intron-exon structure, a feature that greatly facilitated the amplification and sequencing of a single MHC locus in this species.
Collapse
Affiliation(s)
- Mónica C Silva
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA.
| | | |
Collapse
|
34
|
Piertney SB, Webster LMI. Characterising functionally important and ecologically meaningful genetic diversity using a candidate gene approach. Genetica 2008; 138:419-32. [PMID: 18803023 DOI: 10.1007/s10709-008-9322-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/20/2008] [Indexed: 01/13/2023]
|
35
|
Alcaide M, Edwards SV, Cadahía L, Negro JJ. MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. CONSERV GENET 2008. [DOI: 10.1007/s10592-008-9653-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
MHC haplotype involvement in avian resistance to an ectoparasite. Immunogenetics 2008; 60:621-31. [PMID: 18626638 DOI: 10.1007/s00251-008-0314-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Research on immune function in evolutionary ecology has frequently focused on avian ectoparasites (e.g., mites and lice). However, host immunogenetics involved with bird resistance to ectoparasites has not been determined. The critical role of the major histocompatibility complex (MHC) in adaptive immunity and high genetic variation found within the MHC make this gene complex useful for exploring the immunogenetic basis for bird resistance to ectoparasites. The objective of this study was to determine if the avian MHC influenced resistance to a blood-feeding ectoparasite. Four congenic lines of chickens, differing only at the MHC, were comparatively infested with a cosmopolitan ectoparasite of birds-northern fowl mite (NFM)-which is also a serious pest species of poultry. Mite infestations were monitored over time and mite densities (weekly and maximum) were compared among lines. Chickens with the MHC haplotype B21 were relatively resistant to NFM, compared with birds in the B15 congenic line (P < 0.02). To test for similar effects in an outbred genetic background, a separate experiment was performed with 107 commercial chickens (white leghorn, W-36 strain) infested with NFM. Hens were genotyped using a MHC microsatellite marker (LEI0258) and associations between MHC haplotype and NFM density were tested. The highest peak NFM populations occurred more often on hens with the B15 haplotype versus the B21 haplotype (P = 0.012), which supported the results of the congenic study. These data indicate the avian MHC influences ectoparasite resistance, which is relevant to disease ecology and avian-ectoparasite interaction.
Collapse
|
37
|
Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL. Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 2008; 17:2652-65. [PMID: 18489548 DOI: 10.1111/j.1365-294x.2008.03791.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana (CSIC) Pabellón de Perú, Avenida Maria Luisa s/n 41013, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
38
|
Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class II B gene. Immunogenetics 2008; 60:219-31. [PMID: 18431567 DOI: 10.1007/s00251-008-0287-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
39
|
Burri R, Hirzel HN, Salamin N, Roulin A, Fumagalli L. Evolutionary Patterns of MHC Class II B in Owls and Their Implications for the Understanding of Avian MHC Evolution. Mol Biol Evol 2008; 25:1180-91. [DOI: 10.1093/molbev/msn065] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Alcaide M, Edwards SV, Negro JJ. Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol 2007; 65:541-54. [PMID: 17925996 DOI: 10.1007/s00239-007-9033-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/18/2007] [Accepted: 07/09/2007] [Indexed: 11/24/2022]
Abstract
During the last decade, the major histocompatibility complex (MHC) has received much attention in the fields of evolutionary and conservation biology because of its potential implications in many biological processes. New insights into the gene structure and evolution of MHC genes can be gained through study of additional lineages of birds not yet investigated at the genomic level. In this study, we characterized MHC class II B genes in five families of birds of prey (Accipitridae, Pandionidae, Strigidae, Tytonidae, and Falconidae). Using PCR approaches, we isolated genomic MHC sequences up to 1300 bp spanning exons 1 to 3 in 26 representatives of each raptor lineage, finding no stop codons or frameshift mutations in any coding region. A survey of diversity across the entirety of exon 2 in the lesser kestrel Falco naumanni reported 26 alleles in 21 individuals. Bayesian analysis revealed 21 positively selected amino acid sites, which suggests that the MHC genes described here are functional and probably expressed. Finally, through interlocus comparisons and phylogenetic analysis, we also discuss genetic evidence for concerted and transspecies evolution in the raptor MHC.
Collapse
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana, (CSIC) Pabellón de Perú, Avda. Ma Luisa s/n, 41013, Sevilla, Spain.
| | | | | |
Collapse
|
41
|
Hauswaldt JS, Stuckas H, Pfautsch S, Tiedemann R. Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina. Immunogenetics 2007; 59:479-91. [PMID: 17406862 DOI: 10.1007/s00251-007-0210-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
While the anuran Xenopus comprises one of the best characterized nonmammalian taxa regarding the major histocompatibility complex (MHC), the organization of this gene complex has never been studied in other anurans, and information on amphibian MHC (other than Xenopus) is generally very scarce. Here, we describe the characterization of the first MHC class II B cDNA sequences from a nonmodel anuran species, the European fire-bellied toad (Bombina bombina). We isolated two transcript sequences differing substantially in amino acid composition and length within the beta2 domain. To investigate the variability of the peptide binding region in this species, we sequenced a 158-bp large fragment from wild B. bombina (n = 20) and identified eight distinct alleles. All substitutions but one were nonsynonymous, and many of the highly polymorphic sites corresponded with amino acid positions known to be involved in antigen binding. The level of variation we found in B. bombina was similar compared to that previously found in a comparable sample of a wild urodelan species, Ambystoma tigrinum, and to that found in Xenopus laevis. Based on the cDNA data and the individual's allelic diversity, we conclude that Bombina possesses at least two class II B loci. With our new beta1 primers, we were able to generate sequences in other species of anurans. We provide here a first phylogenetic analysis of this gene in amphibians.
Collapse
Affiliation(s)
- J Susanne Hauswaldt
- Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Potsdam, Germany
| | | | | | | |
Collapse
|
42
|
Hess CM, Wang Z, Edwards SV. Evolutionary genetics of Carpodacus mexicanus, a recently colonized host of a bacterial pathogen, Mycoplasma gallisepticum. Genetica 2006; 129:217-25. [PMID: 17103248 DOI: 10.1007/s10709-006-9016-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Accepted: 02/28/2006] [Indexed: 10/23/2022]
Abstract
We present molecular data documenting how introduction to the eastern United States and an epizootic involving a bacterial pathogen has affected the genetic diversity of house finches, a cardueline songbird. Population bottlenecks during introduction can cause loss of genetic variation and may negatively affect a population's ability to adapt to novel stressors such as disease. Although a genome-wide survey using Amplified Fragment Length Polymorphism (AFLP) markers suggests little loss of genetic diversity in introduced populations, an epizootic of bacterial Mycoplasma has nonetheless caused dramatic declines in the eastern US population. Sequence analysis of a candidate gene for pathogen resistance in the Major Histocompatibity Complex (MHC) in pre- and post-epizootic population samples reveals allele frequency shifts since introduction of the pathogen, but similar shifts are also observed in control populations not exposed to the bacteria, and in a neutral non-coding locus. Expression studies using a novel subtractive hybridization approach indicate decreased expression of the class II MHC locus upon exposure to Mycoplasma, a pattern also seen in MHC class I loci in mice infected with cytomegalovirus and consistent with manipulation of the finch immune system by Mycoplasma. These results will be further expanded using experimental studies as well as examination of evolution of the pathogen genome itself.
Collapse
|
43
|
Zhang B, Fang SG, Xi YM. Major histocompatibility complex variation in the endangered crested ibis Nipponia nippon and implications for reintroduction. Biochem Genet 2006; 44:113-23. [PMID: 16648992 DOI: 10.1007/s10528-006-9018-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 09/08/2005] [Indexed: 10/24/2022]
Abstract
The major histocompatibility complex (MHC), with its extraordinary levels of genetic variation, is thought to be an essential aspect of the ability of an organism to recognize different parasites and pathogens. It has also been proposed to regulate reproductive processes in many aspects. Here we examine the genetic variation of the second exon of the MHC class II B genes of the crested ibis, an endangered species known to descend from just two breeding pairs rediscovered in 1981. Only five alleles are identified by single-strand conformation polymorphism (SSCP) analysis of 36 samples taken from both wild and captive populations, and a comparatively low level of divergence between MHC alleles is observed. We suggest that representative sampling of individuals with most of the different MHC allele genotypes to constitute a founder population, together with the monitoring of the pathogen status of candidate sites before release, is of great importance for raising the success rate of reintroduction for the crested ibis.
Collapse
Affiliation(s)
- Bei Zhang
- College of Life Sciences, Zhejiang University, Ministry of Education, Hangzhou, 310029 Zhejiang, P.R. China
| | | | | |
Collapse
|
44
|
Aguilar A, Edwards SV, Smith TB, Wayne RK. Patterns of variation in MHC class II beta loci of the little greenbul (Andropadus virens) with comments on MHC evolution in birds. ACTA ACUST UNITED AC 2006; 97:133-42. [PMID: 16489149 DOI: 10.1093/jhered/esj013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have isolated major histocompatibility complex (MHC) class II beta loci from the little greenbul (Andropadus virens), an African songbird. We utilized preexisting information about conserved regions of the avian MHC to design primers to amplify a pool of sequences representing multiple loci. From this pool, a unique locus spanning 1109 bp that we designate as Anvi-DAB1 was cloned and sequenced. We designed locus-specific primers based on this sequence information and amplified six alleles from seven individuals. Compared to other A. virens MHC sequences obtained from genomic DNA or cDNA, the variability of sequences from Anvi-DAB1 was low and the ratio of nonsynonymous to synonymous substitution was much less than one, suggesting that Anvi-DAB1 may either be a pseudogene or a nonclassical MHC locus. Phylogenetic analysis revealed that the Anvi-DAB1 locus was highly divergent when compared with other passerine or A. virens genomic or transcribed MHC sequences. The use of conserved MHC primers followed by analysis of cloned sequences allows rapid isolation of MHC loci from exotic species and avoids laborious large-scale cloning and sequencing.
Collapse
Affiliation(s)
- Andres Aguilar
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
45
|
Miller HC, Belov K, Daugherty CH. Characterization of MHC class II genes from an ancient reptile lineage, Sphenodon (tuatara). Immunogenetics 2005; 57:883-91. [PMID: 16261382 DOI: 10.1007/s00251-005-0055-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The organization and evolution of major histocompatibility complex (MHC) genes vary considerably among vertebrate lineages. MHC genes have been well characterized in mammals, birds, amphibians and fish, but little is known about their organization in reptiles, despite the fact that reptiles occupy an important phylogenetic position for understanding the evolutionary history of both mammalian and avian MHC genes. Here we describe the characterization of the first MHC class II B cDNA sequences from a non-avian reptile, the tuatara (Sphenodon spp.). Three class II B sequences were isolated from a tuatara cDNA library, and four additional partial sequences were isolated by reverse transcriptase-polymerase chain reaction. Six of these sequences appear to belong to the same gene family, which we have named SppuDAB. The remaining sequence (named SppuDBB) shares only 43.9% amino acid similarity with SppuDAB and thus appears to represent a separate gene family. SppuDBB may be a non-classical locus as it does not contain all the conserved residues expected of a classical MHC class II gene. Southern blot analysis indicates that only a single copy of SppuDBB exists in tuatara, but that multiple loci related to SppuDAB are present. The SppuDAB sequences have the highest amino acid similarity (57.2-62.4%) with class II B sequences from the spectacled caiman, but only 26.4-48.7% similarity with sequences from other vertebrates. The tuatara sequences do not strongly group with other reptile sequences on a phylogenetic tree, reflecting the antiquity of the Sphenodon lineage and the lack of closely related sequences for comparison.
Collapse
Affiliation(s)
- Hilary C Miller
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | |
Collapse
|
46
|
Abstract
The major histocompatibility complex (MHC) has become a paradigm for how selection can act to maintain adaptively important genetic diversity in natural populations. Here, we review the contribution of studies on the MHC in non-model species to our understanding of how selection affects MHC diversity, emphasising how ecological and ethological processes influence the tempo and mode of evolution at the MHC, and conversely, how variability at the MHC affects individual fitness, population dynamics and viability. We focus on three main areas: the types of information that have been used to detect the action of selection on MHC genes; the relative contributions of parasite-mediated and sexual selection on the maintenance of MHC diversity; and possible future lines of research that may help resolve some of the unanswered issues associated with MHC evolution.
Collapse
Affiliation(s)
- S B Piertney
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
47
|
Miller HC, Lambert DM. Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 2005; 13:3709-21. [PMID: 15548285 DOI: 10.1111/j.1365-294x.2004.02368.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Chatham Island black robin, Petroica traversi, is a highly inbred, endangered passerine with extremely low levels of variation at hypervariable neutral DNA markers. In this study we investigated variation in major histocompatibility complex (MHC) class II genes in both the black robin and its nonendangered relative, the South Island robin Petroica australis australis. Previous studies have shown that Petroica have at least four expressed class II B MHC genes. In this study, the sequences of introns flanking exon 2 of these loci were characterized to design primers for peptide-binding region (PBR) sequence analysis. Intron sequences were comprised of varying numbers of repeated units, with highly conserved regions immediately flanking exon 2. Polymerase chain reaction primers designed to this region amplified three or four sequences per black robin individual, and eight to 14 sequences per South Island robin individual. MHC genes are fitness-related genes thought to be under balancing selection, so they may be more likely to retain variation in bottlenecked populations. To test this, we compared MHC variation in the black robin with artificially bottlenecked populations of South Island robin, and with their respective source populations, using restriction fragment length polymorphism analyses and DNA sequencing of the PBR. Our results indicate that the black robin is monomorphic at class II B MHC loci, while both source and bottlenecked populations of South Island robin have retained moderate levels of variation. Comparison of MHC variation with minisatellite DNA variation indicates that genetic drift outweighs balancing selection in determining MHC diversity in the bottlenecked populations. However, balancing selection appears to influence MHC diversity over evolutionary timescales, and the effects of gene conversion are evident.
Collapse
Affiliation(s)
- Hilary C Miller
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Private Bag 102904, Auckland, New Zealand
| | | |
Collapse
|
48
|
Ekblom R, Saether SA, Grahn M, Fiske P, Kålås JA, Höglund J. Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol Ecol 2005; 13:3821-8. [PMID: 15548294 DOI: 10.1111/j.1365-294x.2004.02361.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a major part in the activation of the vertebrate immune system. In addition, they also appear to function as cues for mate choice. In mammals especially, several kinds of MHC-dependent mate choice have been hypothesized and observed. These include choice of mates that share no or few alleles with the choosing individual, choice of mates with alleles that differ as much as possible from the choosing individual, choice of heterozygous mates, choice of certain genotypes and choice of rare alleles. We investigated these different aspects of mate choice in relation to MHC in a lekking bird species, the great snipe (Gallinago media). We found no evidence for MHC disassortative mating, no preference for males with many MHC alleles and no preference for rare alleles. However, we did find that some allelic lineages were more often found in males with mating success than in males without mating success. Females do not seem to use themselves as references for the MHC-dependent mate choice, rather they seem to prefer males with certain allele types. We speculate that these alleles may be linked to resistance to common parasites.
Collapse
Affiliation(s)
- R Ekblom
- Population Biology/Evolutionary Biology Centre, Uppsala University, Norbyv.18D, SE-752 36 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2004; 56:683-95. [PMID: 15605248 DOI: 10.1007/s00251-004-0717-7] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex (MHC) is a gene dense region found in all jawed vertebrates examined to date. The MHC contains a high percentage of immune genes, in particular genes involved in antigen presentation, which are generally highly polymorphic. The region plays an important role in disease resistance. The clustering of MHC genes could be advantageous for co-evolution or regulation, and its study in many species is desirable. Even though some linkage of MHC genes is apparent in all gnathostomes, the genomic organization can differ greatly by species, suggesting rapid evolution of MHC genes after divergence from a common ancestor. Previous reviews of comparative MHC organization have been written when relatively fragmentary sequence and mapping data were available on many species. This review compares maps of MHC gene orders in commonly studied species, where extensive sequencing has been performed.
Collapse
Affiliation(s)
- James Kelley
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | |
Collapse
|
50
|
Jarvi SI, Tarr CL, McIntosh CE, Atkinson CT, Fleischer RC. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae). Mol Ecol 2004; 13:2157-68. [PMID: 15245391 DOI: 10.1111/j.1365-294x.2004.02228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II beta chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > dS and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II beta chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.
Collapse
Affiliation(s)
- Susan I Jarvi
- Molecular Genetics Laboratory, National Zoological Park, Smithsonian Institution, Washington, USA.
| | | | | | | | | |
Collapse
|