1
|
Ravigné V, Rodrigues LR, Charlery de la Masselière M, Facon B, Kuczyński L, Radwan J, Skoracka A, Magalhães S. Understanding the joint evolution of dispersal and host specialisation using phytophagous arthropods as a model group. Biol Rev Camb Philos Soc 2024; 99:219-237. [PMID: 37724465 DOI: 10.1111/brv.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Theory generally predicts that host specialisation and dispersal should evolve jointly. Indeed, many models predict that specialists should be poor dispersers to avoid landing on unsuitable hosts while generalists will have high dispersal abilities. Phytophagous arthropods are an excellent group to test this prediction, given extensive variation in their host range and dispersal abilities. Here, we explore the degree to which the empirical literature on this group is in accordance with theoretical predictions. We first briefly outline the theoretical reasons to expect such a correlation. We then report empirical studies that measured both dispersal and the degree of specialisation in phytophagous arthropods. We find a correlation between dispersal and levels of specialisation in some studies, but with wide variation in this result. We then review theoretical attributes of species and environment that may blur this correlation, namely environmental grain, temporal heterogeneity, habitat selection, genetic architecture, and coevolution between plants and herbivores. We argue that theoretical models fail to account for important aspects, such as phenotypic plasticity and the impact of selective forces stemming from other biotic interactions, on both dispersal and specialisation. Next, we review empirical caveats in the study of this interplay. We find that studies use different measures of both dispersal and specialisation, hampering comparisons. Moreover, several studies do not provide independent measures of these two traits. Finally, variation in these traits may occur at scales that are not being considered. We conclude that this correlation is likely not to be expected from large-scale comparative analyses as it is highly context dependent and should not be considered in isolation from the factors that modulate it, such as environmental scale and heterogeneity, intrinsic traits or biotic interactions. A stronger crosstalk between theoretical and empirical studies is needed to understand better the prevalence and basis of the correlation between dispersal and specialisation.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRAD, UMR PHIM, - PHIM, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, TA A-120/K, Campus international de Baillarguet, avenue du Campus d'Agropolis, Montpellier Cedex 5, 34398, France
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Maud Charlery de la Masselière
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Benoît Facon
- CBGP, INRAE, IRD, CIRAD, Institut Agro, University of Montpellier, 755 avenue du Campus Agropolis, CS 34988, Montferrier sur Lez cedex, 30016, France
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| |
Collapse
|
2
|
Zhukovskaya MI, Frolov AN. Alternative evolutionary strategies and tactics used by polyphagous insect to inhabit agricultural environment: Ostrinia nubialis as a case. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Substantial differentiation was found between Ostrinia populations, adapted to feed on dicotyledonous and monocotyledonous host plants, which results not only in oviposition and larval survival differences but also in formation of ethological premating sex isolation mechanisms. Two strategies are surmised in warmer and colder areas, correspondingly: wide range of host plant species in combination with strict developmental stages of the plant, and alternatively, few host plant are infested during almost all the stages of their development, Inside these strategies, tactics are plastic. They are activated by the sensory stimuli, such as temperature, humidity and odorants. The tactic of dispersal flight before mating could be beneficial when the host plant is abundant, but mating before the flight is a better choice under the situation of sparse cornfields. There are still multiple questions to address for clear understanding of Ostrinia behavior and evolution.
Collapse
|
3
|
Naino Jika AK, Le Ru B, Capdevielle-Dulac C, Chardonnet F, Silvain JF, Kaiser L, Dupas S. Population genetics of the Mediterranean corn borer (Sesamia nonagrioides) differs between wild and cultivated plants. PLoS One 2020; 15:e0230434. [PMID: 32191750 PMCID: PMC7081988 DOI: 10.1371/journal.pone.0230434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
The population genetic structure of crop pest populations gives information about their spatial ecology, which helps in designing management strategies. In this paper, we investigated the genetic structure of the Mediterranean Corn Borer (MCB), Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), one of the most important maize pests in the Mediterranean countries, using microsatellite markers for the first time in this species. Insects were collected in twenty-five locations in southwest and southeast France from cultivated and wild host plants (Zea mays, Sorghum halepense and Typha domingensis). Contrary to what has been reported so far in France, we found that MCB populations could be locally abundant on wild poales plants. Analysis was carried out at 11 polymorphic microsatellite markers. Molecular variance was significantly determined by geography, then by host plant, with 17% and 4%, respectively, when considered as a major effect, and with 14% and 1%, respectively, when considered as a marginal effect in permutational analysis. Multidimensional scaling (MDS) and GENELAND Bayesian clustering suggested that populations infecting wild plants (T. domingensis and S. halepense) were more structured locally than those affecting cultivated maize. In S. halepense, significant Isolation By Distance (IBD) indicated that this factor could explain genetic differentiation of the moth populations. In T. domingensis, local population differentiation was strong but did not depend on distance. The implication of this absence of population structure in maize and the heterogeneity of population genetics patterns in wild plants are discussed in the context of the population dynamics hypothesis and population management strategies.
Collapse
Affiliation(s)
- Abdel Kader Naino Jika
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
- * E-mail:
| | - B. Le Ru
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
- ICIPE- African Insect Science for Food and Health, Kasarani, Nairobi, Kenya
| | - C. Capdevielle-Dulac
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
| | - F. Chardonnet
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
| | - J. F. Silvain
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
| | - L. Kaiser
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
| | - S. Dupas
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS, IRD & Université Paris-Sud Orsay, Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore Tetranychus urticae. Genetics 2019; 211:1409-1427. [PMID: 30745439 DOI: 10.1534/genetics.118.301803] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 01/11/2023] Open
Abstract
Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies.
Collapse
|
5
|
Orsucci M, Audiot P, Nidelet S, Dorkeld F, Pommier A, Vabre M, Severac D, Rohmer M, Gschloessl B, Streiff R. Transcriptomic response of female adult moths to host and non-host plants in two closely related species. BMC Evol Biol 2018; 18:145. [PMID: 30236059 PMCID: PMC6148789 DOI: 10.1186/s12862-018-1257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/30/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Divergent selection has been shown to promote speciation in many taxa and especially in phytophagous insects. In the Ostrinia species complex, the European corn borer (ECB) and adzuki bean borer (ABB) are two sibling species specialized to different host plants. The first is a well-known maize pest, whereas the second is a polyphagous species associated with various dicotyledons. Their specialization to host plants is driven by morphological, behavioral and physiological adaptations. In particular, previous studies have shown that ECB and ABB display marked behavior with regard to plant choice during oviposition, involving specific preference and avoidance mechanisms. In this study, our goal was to identify the mechanisms underlying this host-plant specialization in adult females through an analysis of their gene expression. We assembled and annotated a de novo reference transcriptome and measured differences in gene expression between ECB and ABB females, and between environments. We related differentially expressed genes to host preference behavior, and highlighted the functional categories involved. We also conducted a specific analysis of chemosensory genes, which are considered to be good candidates for host recognition before oviposition. RESULTS We recorded more differentially expressed genes in ECB than in ABB samples, and noticed that the majority of genes potentially involved in the host preference were different between the two species. At the functional level, the response to plant environment in adult females involved many processes, including the metabolism of carbohydrates, lipids, proteins, and amino acids; detoxification mechanisms and immunity; and the chemosensory repertoire (as expected). Until now, most of the olfactory receptors described in Ostrinia spp. had been tested for their putative role in pheromone recognition by males. Here we observed that one specific olfactory receptor was clearly associated with ECB's discrimination between maize and mugwort conditions, highlighting a potential new candidate involved in plant odor discrimination in adult females. CONCLUSIONS Our results are a first step toward the identification of candidate genes and functions involved in chemosensory processes, carbohydrate metabolism, and virus and retrovirus dynamics. These candidates provide new avenues for research into understanding the role of divergent selection between different environments in species diversification.
Collapse
Affiliation(s)
- M. Orsucci
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- DGIMI, INRA, Univ Montpellier, Montpellier, France
- Present address: Department of Ecology and Genetics, EBC, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - P. Audiot
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - S. Nidelet
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - F. Dorkeld
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - A. Pommier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - D. Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 34094 Montpellier Cedex 5, France
| | - M. Rohmer
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 34094 Montpellier Cedex 5, France
| | - B. Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - R. Streiff
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- DGIMI, INRA, Univ Montpellier, Montpellier, France
| |
Collapse
|
6
|
Gschloessl B, Dorkeld F, Audiot P, Bretaudeau A, Kerdelhué C, Streiff R. De novo genome and transcriptome resources of the Adzuki bean borer Ostrinia scapulalis (Lepidoptera: Crambidae). Data Brief 2018; 17:781-787. [PMID: 29785409 PMCID: PMC5958680 DOI: 10.1016/j.dib.2018.01.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 11/25/2022] Open
Abstract
We present a draft genome assembly with a de novo prediction and automated functional annotation of coding genes, and a reference transcriptome of the Adzuki bean borer, Ostrinia scapulalis, based on RNA sequencing of various tissues and developmental stages. The genome assembly spans 419 Mb, has a GC content of 37.4% and includes 26,120 predicted coding genes. The reference transcriptome holds 33,080 unigenes and contains a high proportion of a set of genes conserved in eukaryotes and arthropods, used as quality assessment of the reconstructed transcripts. The new genomic and transcriptomic data presented here significantly enrich the public sequence databases for the Crambidae and Lepidoptera, and represent useful resources for future researches related to the evolution and the adaptation of phytophagous moths. The genome and transcriptome assemblies have been deposited and made accessible via a NCBI BioProject (id PRJNA390510) and the LepidoDB database (http://bipaa.genouest.org/sp/ostrinia_scapulalis/).
Collapse
Affiliation(s)
- B Gschloessl
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - F Dorkeld
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - P Audiot
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - A Bretaudeau
- INRA, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - C Kerdelhué
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - R Streiff
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
7
|
Yang AH, Wei N, Fritsch PW, Yao XH. AFLP Genome Scanning Reveals Divergent Selection in Natural Populations of Liriodendron chinense (Magnoliaceae) along a Latitudinal Transect. FRONTIERS IN PLANT SCIENCE 2016; 7:698. [PMID: 27303414 PMCID: PMC4880593 DOI: 10.3389/fpls.2016.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/06/2016] [Indexed: 05/27/2023]
Abstract
Understanding adaptive genetic variation and its relation to environmental factors are important for understanding how plants adapt to climate change and for managing genetic resources. Genome scans for the loci exhibiting either notably high or low levels of population differentiation (outlier loci) provide one means of identifying genomic regions possibly associated with convergent or divergent selection. In this study, we combined Amplified Fragment Length Polymorphism (AFLP) genome scan and environmental association analysis to test for signals of natural selection in natural populations of Liriodendron chinense (Chinese Tulip Tree; Magnoliaceae) along a latitudinal transect. We genotyped 276 individuals from 11 populations of L. chinense using 987 AFLP markers. Both frequency-based (Dfdist and BayeScan) and correlation-based (MLM) methods were applied to detect outlier loci. Our analyses recovered both neutral and potentially adaptive genetic differentiation among populations of L. chinense. We found moderate genetic diversity within populations and high genetic differentiation among populations with reduced genetic diversity toward the periphery of the species ranges. Nine AFLP marker loci showed evidence of being outliers for population differentiation for both detection methods. Of these, six were strongly associated with at least one climate factor. Temperature, precipitation, and radiation were found to be three important factors influencing local adaptation of L. chinense. The outlier AFLP loci are likely not the target of natural selection, but the neighboring genes of these loci might be involved in local adaptation. Hence, these candidates should be validated by further studies.
Collapse
Affiliation(s)
- Ai-Hong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Na Wei
- Department of Ecology and Evolutionary Biology, University of MichiganAnn Arbor, MI, USA
| | | | - Xiao-Hong Yao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| |
Collapse
|
8
|
Zou F, Chen C, Zhong D, Shen B, Zhang D, Guo Q, Wang W, Yu J, Lv Y, Lei Z, Ma K, Ma L, Zhu C, Yan G. Identification of QTLs Conferring Resistance to Deltamethrin in Culex pipiens pallens. PLoS One 2015; 10:e0140923. [PMID: 26484540 PMCID: PMC4617896 DOI: 10.1371/journal.pone.0140923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Culex pipiens pallens is the most abundant Culex mosquito species in northern China and is an important vector of bancroftian filariasis and West Nile virus. Deltamethrin is an insecticide that is widely used for mosquito control, however resistance to this and other insecticides has become a major challenge in the control of vector-borne diseases that appear to be inherited quantitatively. Furthermore, the genetic basis of insecticide resistance remains poorly understood. In this study, quantitative trait loci (QTL) mapping of resistance to deltamethrin was conducted in F2 intercross segregation populations using bulked segregation analysis (BSA) and amplified fragment length polymorphism markers (AFLP) in Culex pipiens pallens. A genetic linkage map covering 381 cM was constructed and a total of seven QTL responsible for resistance to deltamethrin were detected by composite interval mapping (CIM), which explained 95% of the phenotypic variance. The major QTL in linkage group 2 accounted for 62% of the variance and is worthy of further study. 12 AFLP markers in the map were cloned and the genomic locations of these marker sequences were determined by applying the Basic Local Alignment Search Tool (BLAST) tool to the genome sequence of the closely related Culex quinquefasciatus. Our results suggest that resistance to deltamethrin is a quantitative trait under the control of a major QTL in Culex pipiens pallens. Cloning of related AFLP markers confirm the potential utility for anchoring the genetic map to the physical map. The results provide insight into the genetic architecture of the trait.
Collapse
Affiliation(s)
- Feifei Zou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chen Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jing Yu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Kai Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China
- * E-mail:
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
9
|
Simon JC, d'Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 2015; 14:413-23. [DOI: 10.1093/bfgp/elv015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 2015; 6:445-464. [PMID: 25937885 PMCID: PMC4409029 DOI: 10.1111/2041-210x.12324] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022]
Abstract
1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature.
Collapse
Affiliation(s)
- Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of CambridgeDowning Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
11
|
Genetic mapping of two components of reproductive isolation between two sibling species of moths, Ostrinia nubilalis and O. scapulalis. Heredity (Edinb) 2013; 112:370-81. [PMID: 24220089 DOI: 10.1038/hdy.2013.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 07/16/2013] [Accepted: 09/06/2013] [Indexed: 01/24/2023] Open
Abstract
We report the quantitative trait loci (QTL) mapping of reproductive isolation traits between Ostrinia nubilalis (the European corn borer) and its sibling species O. scapulalis (the Adzuki bean borer), focusing on two traits: mating isolation (mi) and pheromone production (Pher). Four genetic maps were generated from two backcross families, with two maps (one chromosomal map and one linkage map) per backcross. We located 165-323 AFLP markers on these four maps, resulting in the identification of 27-31 linkage groups, depending on the map considered. No-choice mating experiments with the offspring of each backcross led to the detection of at least two QTLs for mi in different linkage groups. QTLs underlying Pher were located in a third linkage group. The Z heterochromosome was identified by a specific marker (Tpi) and did not carry any of these QTLs. Finally, we considered the global divergence between the two sibling species, distortions of segregation throughout the genome, and the location and effect of mi and Pher QTLs in light of the known candidate genes for reproductive isolation within the genus Ostrinia and, more broadly, in phytophagous insects.
Collapse
|
12
|
Alem S, Streiff R, Courtois B, Zenboudji S, Limousin D, Greenfield MD. Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth. J Evol Biol 2013; 26:2581-96. [DOI: 10.1111/jeb.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Affiliation(s)
- S. Alem
- Centre National de la Recherche Scientifique (CNRS); UMR 7261 (IRBI); Université François Rabelais de Tours; Tours France
| | - R. Streiff
- Institut National de la Recherche Agronomique (INRA); UMR CBGP (INRA-IRD-CIRAD-Montpellier SupAgro); Montferrier sur Lez France
| | - B. Courtois
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD); UMR AGAP; Montpellier France
| | - S. Zenboudji
- Centre National de la Recherche Scientifique (CNRS); UMR 5175 (CEFE); Montpellier France
| | - D. Limousin
- Institut National de la Recherche Agronomique (INRA); UMR 1272; Physiologie de l'Insecte Signalisation et Communication; Versailles France
| | - M. D. Greenfield
- Centre National de la Recherche Scientifique (CNRS); UMR 7261 (IRBI); Université François Rabelais de Tours; Tours France
| |
Collapse
|
13
|
Coates BS, Johnson H, Kim KS, Hellmich RL, Abel CA, Mason C, Sappington TW. Frequency of hybridization between Ostrinia nubilalis E-and Z-pheromone races in regions of sympatry within the United States. Ecol Evol 2013; 3:2459-70. [PMID: 24567821 PMCID: PMC3930039 DOI: 10.1002/ece3.639] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 01/13/2023] Open
Abstract
Female European corn borer, Ostrinia nubilalis, produce and males respond to sex pheromone blends with either E- or Z-Δ11-tetradecenyl acetate as the major component. E- and Z-race populations are sympatric in the Eastern United States, Southeastern Canada, and the Mediterranean region of Europe. The E- and Z-pheromone races of O. nubilalis are models for incipient species formation, but hybridization frequencies within natural populations remain obscure due to lack of a high-throughput phenotyping method. Lassance et al. previously identified a pheromone gland-expressed fatty-acyl reductase gene (pgfar) that controls the ratio of Δ11-tetradecenyl acetate stereoisomers. We identified three single nucleotide polymorphism (SNP) markers within pgfar that are differentially fixed between E- and Z-race females, and that are ≥98.2% correlated with female pheromone ratios measured by gas chromatography. Genotypic data from locations in the United States demonstrated that pgfar-z alleles were fixed within historically allopatric Z-pheromone race populations in the Midwest, and that hybrid frequency ranged from 0.00 to 0.42 within 11 sympatric sites where the two races co-occur in the Eastern United States (mean hybridization frequency or heterozygosity (H O) = 0.226 ± 0.279). Estimates of hybridization between the E- and Z-races are important for understanding the dynamics involved in maintaining race integrity, and are consistent with previous estimates of low levels of genetic divergence between E- and Z-races and the presence of weak prezygotic mating barriers. This work describes the development of new single nucleotide polymorphism (SNP) markers within the pheromone gland expressed fatty acyl reductase (pgfar) gene of Ostrinia nubilalis. These SNPs were shown to segregate based upon female pheromone production, and thus provide the first description of an assay for genetic determination of O. nubilalis pheromone strain from field-collected samples. These assays were applied to estimate hybridization within field populations, and represent valuable tools for future population genetic studies of this species.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, Iowa, 50011 ; Department of Entomology, Iowa State University Ames, Iowa, 50011
| | - Holly Johnson
- Entomology and Wildlife Ecology, University of Delaware 531 S College Ave RM 250, Newark, Delaware, 19716-2160
| | - Kyung-Seok Kim
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, Iowa, 50011
| | - Richard L Hellmich
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, Iowa, 50011 ; Department of Entomology, Iowa State University Ames, Iowa, 50011
| | - Craig A Abel
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, Iowa, 50011
| | - Charles Mason
- Entomology and Wildlife Ecology, University of Delaware 531 S College Ave RM 250, Newark, Delaware, 19716-2160
| | - Thomas W Sappington
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, Iowa, 50011 ; Department of Entomology, Iowa State University Ames, Iowa, 50011
| |
Collapse
|
14
|
Alexandre H, Ponsard S, Bourguet D, Vitalis R, Audiot P, Cros-Arteil S, Streiff R. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species. PLoS One 2013; 8:e69211. [PMID: 23874914 PMCID: PMC3709918 DOI: 10.1371/journal.pone.0069211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.
Collapse
Affiliation(s)
- Hermine Alexandre
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
- Université de Toulouse, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- CNRS, Université Paul Sabatier, UMR5174 EDB, Toulouse, France
| | - Sergine Ponsard
- Université de Toulouse, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- CNRS, Université Paul Sabatier, UMR5174 EDB, Toulouse, France
| | - Denis Bourguet
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Renaud Vitalis
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Philippe Audiot
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Sandrine Cros-Arteil
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Réjane Streiff
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
- * E-mail:
| |
Collapse
|
15
|
Galindo J, Martínez-Fernández M, Rodríguez-Ramilo ST, Rolán-Alvarez E. The role of local ecology during hybridization at the initial stages of ecological speciation in a marine snail. J Evol Biol 2013; 26:1472-87. [DOI: 10.1111/jeb.12152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/28/2023]
Affiliation(s)
- J. Galindo
- Departamento de Bioquímica; Xenética e Inmunoloxía; Facultade de Bioloxía; Universidade de Vigo; Campus de Vigo; Vigo Spain
| | - M. Martínez-Fernández
- Departamento de Bioquímica; Xenética e Inmunoloxía; Facultade de Bioloxía; Universidade de Vigo; Campus de Vigo; Vigo Spain
- Unidad de Oncología Molecular; Departamento de Investigación Básica; CIEMAT(ed 70A); Madrid Spain
| | - S. T. Rodríguez-Ramilo
- Departamento de Bioquímica; Xenética e Inmunoloxía; Facultade de Bioloxía; Universidade de Vigo; Campus de Vigo; Vigo Spain
- Departamento de Mejora Genética Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria; Madrid Spain
| | - E. Rolán-Alvarez
- Departamento de Bioquímica; Xenética e Inmunoloxía; Facultade de Bioloxía; Universidade de Vigo; Campus de Vigo; Vigo Spain
| |
Collapse
|
16
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|
17
|
Kirk H, Dorn S, Mazzi D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol 2013; 13:12. [PMID: 23531126 PMCID: PMC3637152 DOI: 10.1186/1472-6785-13-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 11/17/2022] Open
Abstract
Background Invasive pest species have large impacts on agricultural crop yields, and understanding their population dynamics is important for ensuring food security. The oriental fruit moth Grapholita molesta is a cosmopolitan pest of stone and pome fruit species including peach and apple, and historical records indicate that it has invaded North and South America, Europe, Australia and Africa from its putative native range in Asia over the past century. Results We used 13 microsatellite loci, including nine newly developed markers, to characterize global population structure of G. molesta. Approximately 15 individuals from each of 26 globally distributed populations were genotyped. A weak but significant global pattern of isolation-by-distance was found, and G. molesta populations were geographically structured on a continental scale. Evidence does not support that G. molesta was introduced to North America from Japan as previously proposed. However, G. molesta was probably introduced from North America to The Azores, South Africa, and Brazil, and from East Asia to Australia. Shared ancestry was inferred between populations from Western Europe and from Brazil, although it remains unresolved whether an introduction occurred from Europe to Brazil, or vice versa. Both genetic diversity and levels of inbreeding were surprisingly high across the range of G. molesta and were not higher or lower overall in introduced areas compared to native areas. There is little evidence for multiple introductions to each continent (except in the case of South America), or for admixture between populations from different origins. Conclusions Cross-continental introductions of G. molesta appear to be infrequent, which is surprising given its rapid worldwide expansion over the past century. We suggest that area-wide spread via transport of fruits and other plant materials is a major mechanism of ongoing invasion, and management efforts should therefore target local and regional farming communities and distribution networks.
Collapse
Affiliation(s)
- Heather Kirk
- ETH Zurich, Institute of Agricultural Sciences, Applied Entomology, Schmelzbergstrasse 9/LFO, Zurich 8092, Switzerland
| | | | | |
Collapse
|
18
|
Gschloessl B, Beyne E, Audiot P, Bourguet D, Streiff R. De novo transcriptomic resources for two sibling species of moths: Ostrinia nubilalis and O. scapulalis. BMC Res Notes 2013; 6:73. [PMID: 23445568 PMCID: PMC3599821 DOI: 10.1186/1756-0500-6-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed at enhancing the transcriptomic resources for two sibling species of moths, Ostrinia scapulalis (Adzuki bean borer) and Ostrinia nubilalis (European corn borer), as a foundation for future researches on their divergence history. Previous works on these species had shown that their genetic divergence was low, while they were reproductively isolated in natura and specialized on different host plants. Comparative genomic resources will help facilitate the understanding of the mechanisms involved in this isolation and adaptation to the host plants. Despite their fundamental interest, these species still lack the genomic resources to thoroughly identify candidate genes for functions of interest. We present here a high throughput sequencing and de novo transcriptome assembly for these two sibling species in line with this objective of comparative genomics. Results Based on 322,504 and 307,622 reads of 454 sequencing for O. scapulalis and O. nubilalis respectively, we reconstructed 11,231 and 10,773 transcripts, of which 40% were functionally annotated by BLAST analyzes. We determined the level of completeness of both assemblies as well as the recovery level of published Ostrinia genomic resources. Gene ontology (GO) of common and species-specific de novo transcripts did not reveal GO terms significantly enriched in one or the other species. By applying stringent homology searches on transcripts common to O. scapulalis and O. nubilalis, we identified a set of homologous transcripts, with a mean nucleotide identity value of 98.1%. In this set, the most divergent transcripts revealed candidate genes involved in developmental, sensorial and pathogen defense processes. Conclusions This data greatly increases the genomic resources of Ostrinia species and constitute a solid skeleton for future comparative analyzes of expression or diversity, despite we show that the transcriptomes for both species have not been assembled at full completion. In addition, we provide a set of homologous transcripts together with their annotation as a source of candidate genes for comparative analyzes.
Collapse
Affiliation(s)
- Bernhard Gschloessl
- Centre de Biologie pour Gestion des Populations UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex 34988, France.
| | | | | | | | | |
Collapse
|
19
|
Tollenaere C, Jacquet S, Ivanova S, Loiseau A, Duplantier JM, Streiff R, Brouat C. Beyond an AFLP genome scan towards the identification of immune genes involved in plague resistance inRattus rattusfrom Madagascar. Mol Ecol 2012; 22:354-67. [DOI: 10.1111/mec.12115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 12/26/2022]
Affiliation(s)
- C. Tollenaere
- IRD UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| | - S. Jacquet
- IRD UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| | - S. Ivanova
- IRD UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| | - A. Loiseau
- INRA UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| | - J.-M. Duplantier
- IRD UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| | - R. Streiff
- INRA UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| | - C. Brouat
- IRD UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro); Campus International Baillarguet; CS 30016 34988 Montferrier sur Lez cedex France
| |
Collapse
|
20
|
Messina FJ, Peña NM. Mode of inheritance of increased host acceptance in a seed beetle. BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:497-503. [PMID: 22360896 DOI: 10.1017/s0007485312000028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Colonization of a novel plant by herbivorous insects is frequently accompanied by genetic changes that progressively improve larval or adult performance on the new host. This study examined the genetic basis of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus maculatus (F.). Quasi-natural selection in the laboratory rapidly increased the tendency to oviposit on lentil. The mode of inheritance of this increase in host acceptance was determined from crosses between three lentil-adapted lines and a line maintained on the ancestral host, mung bean. In each set of crosses, females from the lentil lines laid two to three times more eggs on lentil than did females from the mung-bean line. Hybrid females consistently displayed an intermediate level of host acceptance, which did not differ between reciprocal crosses. Alleles promoting greater oviposition on lentil thus were inherited additively, with no evidence of sex-linkage or cytoplasmic effects. In a time-course study, hybrid females initially resembled the parent from the mung-bean line, as few eggs were laid on lentil during the first 24 h. However, oviposition rates on lentil after 72 h were closer to the rate observed in the lentil-line parent. Inferences about additivity vs. dominance in genes affecting oviposition may, therefore, depend on experimental protocol. Comparison with earlier work suggests that inheritance patterns observed in crosses between recently derived selection lines (as in this study) may differ from those obtained in crosses between long-divergent geographic populations.
Collapse
Affiliation(s)
- F J Messina
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA
| | - N M Peña
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA
| |
Collapse
|
21
|
Limousin D, Streiff R, Courtois B, Dupuy V, Alem S, Greenfield MD. Genetic architecture of sexual selection: QTL mapping of male song and female receiver traits in an acoustic moth. PLoS One 2012; 7:e44554. [PMID: 22957082 PMCID: PMC3434148 DOI: 10.1371/journal.pone.0044554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/06/2012] [Indexed: 11/21/2022] Open
Abstract
Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to non-random mate choice or physical linkage. Such linkage disequilibria can accelerate the evolution of traits and preferences to exaggerated levels. Both theory and recent empirical findings on species recognition suggest that such linkage disequilibria may result from physical linkage or pleiotropy, but very little work has addressed this possibility within the context of sexual selection. We studied the genetic architecture of sexually selected traits by analyzing signals and preferences in an acoustic moth, Achroia grisella, in which males attract females with a train of ultrasound pulses and females prefer loud songs and a fast pulse rhythm. Both male signal characters and female preferences are repeatable and heritable traits. Moreover, female choice is based largely on male song, while males do not appear to provide direct benefits at mating. Thus, some genetic correlation between song and preference traits is expected. We employed a standard crossing design between inbred lines and used AFLP markers to build a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female preference. Our analyses mostly revealed QTLs of moderate strength that influence various male signal and female receiver traits, but one QTL was found that exerts a major influence on the pulse-pair rate of male song, a critical trait in female attraction. However, we found no evidence of specific co-localization of QTLs influencing male signal and female receiver traits on the same linkage groups. This finding suggests that the sexual selection process would proceed at a modest rate in A. grisella and that evolution toward exaggerated character states may be tempered. We suggest that this equilibrium state may be more the norm than the exception among animal species.
Collapse
Affiliation(s)
- Denis Limousin
- Centre National de la Recherche Scientifique (CNRS), UMR 7261 (IRBI), Université François Rabelais de Tours, Parc de Grandmont, Tours, France
| | - Réjane Streiff
- Institut National de la Recherche Agronomique (INRA), UMR CBGP (INRA – IRD – CIRAD – Montpellier SupAgro), Campus International de Baillarguet, CS 30016, Montferrier sur Lez, France
| | - Brigitte Courtois
- Centre International de Recherches en Agronomie pour le Développement (CIRAD), UMR AGAP, Montpellier, France
| | - Virginie Dupuy
- Institut National de la Recherche Agronomique (INRA), UMR CBGP (INRA – IRD – CIRAD – Montpellier SupAgro), Campus International de Baillarguet, CS 30016, Montferrier sur Lez, France
| | - Sylvain Alem
- Centre National de la Recherche Scientifique (CNRS), UMR 7261 (IRBI), Université François Rabelais de Tours, Parc de Grandmont, Tours, France
| | - Michael D. Greenfield
- Centre National de la Recherche Scientifique (CNRS), UMR 7261 (IRBI), Université François Rabelais de Tours, Parc de Grandmont, Tours, France
| |
Collapse
|
22
|
Challenges and pitfalls in the characterization of anonymous outlier AFLP markers in non-model species: lessons from an ocellated lizard genome scan. Heredity (Edinb) 2012; 109:340-8. [PMID: 22892639 DOI: 10.1038/hdy.2012.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the last few years, dozens of studies have documented the detection of loci influenced by selection from genome scans in a wide range of non-model species. Many of those studies used amplified fragment length polymorphism (AFLP) markers, which became popular for being easily applicable to any organism. However, because they are anonymous markers, AFLPs impose many challenges for their isolation and identification. Most recent AFLP genome scans used capillary electrophoresis (CE), which adds even more obstacles to the isolation of bands with a specific size for sequencing. These caveats might explain the extremely low number of studies that moved from the detection of outlier AFLP markers to their actual isolation and characterization. We document our efforts to characterize a set of outlier AFLP markers from a previous genome scan with CE in ocellated lizards (Lacerta lepida). Seven outliers were successfully isolated, cloned and sequenced. Their sequences are noncoding and show internal indels or polymorphic repetitive elements (microsatellites). Three outliers were converted into codominant markers by using specific internal primers to sequence and screen population variability from undigested DNA. Amplification in closely related lizard species was also achieved, revealing remarkable interspecific conservation in outlier loci sequences. We stress the importance of following up AFLP genome scans to validate selection signatures of outlier loci, but also report the main challenges and pitfalls that may be faced during the process.
Collapse
|
23
|
Mattersdorfer K, Koblmüller S, Sefc KM. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish. Mol Ecol 2012; 21:3531-44. [PMID: 22625655 DOI: 10.1111/j.1365-294x.2012.05634.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations.
Collapse
Affiliation(s)
- Karin Mattersdorfer
- Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | | |
Collapse
|
24
|
Paris M, Despres L. Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing. Mol Ecol 2012; 21:1672-86. [PMID: 22348648 DOI: 10.1111/j.1365-294x.2012.05499.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AFLP-based genome scans are widely used to study the genetics of adaptation and to identify genomic regions potentially under selection. However, this approach usually fails to detect the actual genes or mutations targeted by selection owing to the difficulties of obtaining DNA sequences from AFLP fragments. Here, we combine classical AFLP outlier detection with 454 sequencing of AFLP fragments to obtain sequences from outlier loci. We applied this approach to the study of resistance to Bacillus thuringiensis israelensis (Bti) toxins in the dengue vector Aedes aegypti. A genome scan of Bti-resistant and Bti-susceptible A. aegypti laboratory strains was performed based on 432 AFLP markers. Fourteen outliers were detected using two different population genetic algorithms. Out of these, 11 were successfully sequenced. Three contained transposable elements (TEs) sequences, and the 10 outliers that could be mapped at a unique location in the reference genome were located on different supercontigs. One outlier was in the vicinity of a gene coding for an aminopeptidase potentially involved in Bti toxin-binding. Patterns of sequence variability of this gene showed significant deviation from neutrality in the resistant strain but not in the susceptible strain, even after taking into account the known demographic history of the selected strain. This gene is a promising candidate for future functional analysis.
Collapse
Affiliation(s)
- Margot Paris
- Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, BP53 38041 Grenoble Cedex 9, France
| | | |
Collapse
|
25
|
Abstract
In the new era of population genomics, surveys of genetic polymorphism ("genome scans") offer the opportunity to distinguish locus-specific from genome-wide effects at many loci. Identifying presumably neutral regions of the genome that are assumed to be influenced by genome-wide effects only, and excluding presumably selected regions, is therefore critical to infer population demography and phylogenetic history reliably. Conversely, detecting locus-specific effects may help identify those genes that have been, or still are, targeted by natural selection. The software package DETSEL has been developed to identify markers that show deviation from neutral expectation in pairwise comparisons of diverging populations. Recently, two major improvements have been made: the analysis of dominant markers is now supported, and the estimation of empirical P-values has been implemented. These features, which are described below, have been incorporated into an R package, which replaces the stand-alone DETSEL software package.
Collapse
Affiliation(s)
- Renaud Vitalis
- CNRS, INRA, UMR CBGP (INRA-IRD-CIRAD-Montpellier SupAgro), Montferrier-sur-Lez Cedex, France.
| |
Collapse
|
26
|
|