1
|
Post F, Bornberg-Bauer E, Vasseur-Cognet M, Harrison MC. More effective transposon regulation in fertile, long-lived termite queens than in sterile workers. Mol Ecol 2023; 32:369-380. [PMID: 36320186 DOI: 10.1111/mec.16753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
Transposable elements (TEs) are mobile genetic sequences, which can cause the accumulation of genomic damage in the lifetime of an organism. The regulation of TEs, for instance via the piRNA-pathway, is an important mechanism to protect the integrity of genomes, especially in the germ-line where mutations can be transmitted to offspring. In eusocial insects, soma and germ-line are divided among worker and reproductive castes, so one may expect caste-specific differences in TE regulation to exist. To test this, we compared whole-genome levels of repeat element transcription in the fat body of female workers, kings and five different queen stages of the higher termite, Macrotermes natalensis. In this species, queens can live over 20 years, maintaining near maximum reproductive output, while sterile workers only live weeks. We found a strong, positive correlation between TE expression and the expression of neighbouring genes in all castes. However, we found substantially higher TE activity in workers than in reproductives. Furthermore, TE expression did not increase with age in queens, despite a sevenfold increase in overall gene expression, due to a significant upregulation of the piRNA-pathway in 20-year-old queens. Our results suggest a caste- and age-specific regulation of the piRNA-pathway has evolved in higher termites that is analogous to germ-line-specific activity in solitary organisms. In the fat body of these termite queens, an important metabolic tissue for maintaining their extreme longevity and reproductive output, an efficient regulation of TEs likely protects genome integrity, thus further promoting reproductive fitness even at high age.
Collapse
Affiliation(s)
- Frederik Post
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAE 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France.,University of Paris-Est, Créteil, France.,INSERM, Paris, France
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Luchetti A, Forni G, Martelossi J, Savojardo C, Martelli PL, Casadio R, Skaist AM, Wheelan SJ, Mantovani B. Comparative genomics of tadpole shrimps (Crustacea, Branchiopoda, Notostraca): Dynamic genome evolution against the backdrop of morphological stasis. Genomics 2021; 113:4163-4172. [PMID: 34748900 DOI: 10.1016/j.ygeno.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
This analysis presents five genome assemblies of four Notostraca taxa. Notostraca origin dates to the Permian/Upper Devonian and the extant forms show a striking morphological similarity to fossil taxa. The comparison of sequenced genomes with other Branchiopoda genomes shows that, despite the morphological stasis, Notostraca share a dynamic genome evolution with high turnover for gene families' expansion/contraction and a transposable elements content comparable to other branchiopods. While Notostraca substitutions rate appears similar or lower in comparison to other branchiopods, a subset of genes shows a faster evolutionary pace, highlighting the difficulty of generalizing about genomic stasis versus dynamism. Moreover, we found that the variation of Triops cancriformis transposable elements content appeared linked to reproductive strategies, in line with theoretical expectations. Overall, besides providing new genomic resources for the study of these organisms, which appear relevant for their ecology and evolution, we also confirmed the decoupling of morphological and molecular evolution.
Collapse
Affiliation(s)
- Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giobbe Forni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Jacopo Martelossi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Alyza M Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah J Wheelan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
3
|
Kozlowski DKL, Hassanaly‐Goulamhoussen R, Da Rocha M, Koutsovoulos GD, Bailly‐Bechet M, Danchin EGJ. Movements of transposable elements contribute to the genomic plasticity and species diversification in an asexually reproducing nematode pest. Evol Appl 2021; 14:1844-1866. [PMID: 34295368 PMCID: PMC8288018 DOI: 10.1111/eva.13246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Despite reproducing without sexual recombination, Meloidogyne incognita is an adaptive and versatile phytoparasitic nematode. This species displays a global distribution, can parasitize a large range of plants, and can overcome plant resistance in a few generations. The mechanisms underlying this adaptability remain poorly known. At the whole-genome level, only a few single nucleotide variations have been observed across different geographical isolates with distinct ranges of compatible hosts. Exploring other factors possibly involved in genomic plasticity is thus important. Transposable elements (TEs), by their repetitive nature and mobility, can passively and actively impact the genome dynamics. This is particularly expected in polyploid hybrid genomes such as the one of M. incognita. Here, we have annotated the TE content of M. incognita, analyzed the statistical properties of this TE landscape, and used whole-genome pool-seq data to estimate the mobility of these TEs across twelve geographical isolates, presenting variations in ranges of compatible host plants. DNA transposons are more abundant than retrotransposons, and the high similarity of TE copies to their consensus sequences suggests they have been at least recently active. We have identified loci in the genome where the frequencies of presence of a TE showed substantial variations across the different isolates. Overall, variations in TE frequencies across isolates followed their phylogenetic divergence, suggesting TEs participate in the species diversification. Compared with the M. incognita reference genome, we detected isolate and lineage-specific de novo insertion of some TEs, including within genic regions or in the upstream regulatory regions. We validated by PCR the insertion of some of these TEs inside genic regions, confirming TE movements have possible functional impacts. Overall, we show DNA transposons can drive genomic plasticity in M. incognita and their role in genome evolution of other parthenogenetic animal deserves further investigation.
Collapse
|
4
|
A Survey of Transposon Landscapes in the Putative Ancient Asexual Ostracod Darwinula stevensoni. Genes (Basel) 2021; 12:genes12030401. [PMID: 33799706 PMCID: PMC7998251 DOI: 10.3390/genes12030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022] Open
Abstract
How asexual reproduction shapes transposable element (TE) content and diversity in eukaryotic genomes remains debated. We performed an initial survey of TE load and diversity in the putative ancient asexual ostracod Darwinula stevensoni. We examined long contiguous stretches of DNA in clones from a genomic fosmid library, totaling about 2.5 Mb, and supplemented these data with results on TE abundance and diversity from an Illumina draft genome. In contrast to other TE studies in putatively ancient asexuals, which revealed relatively low TE content, we found that at least 19% of the fosmid dataset and 26% of the genome assembly corresponded to known transposons. We observed a high diversity of transposon families, including LINE, gypsy, PLE, mariner/Tc, hAT, CMC, Sola2, Ginger, Merlin, Harbinger, MITEs and helitrons, with the prevalence of DNA transposons. The predominantly low levels of sequence diversity indicate that many TEs are or have recently been active. In the fosmid data, no correlation was found between telomeric repeats and non-LTR retrotransposons, which are present near telomeres in other taxa. Most TEs in the fosmid data were located outside of introns and almost none were found in exons. We also report an N-terminal Myb/SANT-like DNA-binding domain in site-specific R4/Dong non-LTR retrotransposons. Although initial results on transposable loads need to be verified with high quality draft genomes, this study provides important first insights into TE dynamics in putative ancient asexual ostracods.
Collapse
|
5
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
6
|
Sharko FS, Nedoluzhko AV, Lê BM, Tsygankova SV, Boulygina ES, Rastorguev SM, Sokolov AS, Rodriguez F, Mazur AM, Polilov AA, Benton R, Evgen'ev MB, Arkhipova IR, Prokhortchouk EB, Skryabin KG. A partial genome assembly of the miniature parasitoid wasp, Megaphragma amalphitanum. PLoS One 2019; 14:e0226485. [PMID: 31869362 PMCID: PMC6927652 DOI: 10.1371/journal.pone.0226485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect-the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly, we observed significant changes in M. amalphitanum transposable element dynamics over time, in which an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Overall, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.
Collapse
Affiliation(s)
- Fedor S. Sharko
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Artem V. Nedoluzhko
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Nord University, Faculty of Biosciences and Aquaculture, Bodø, Norway
| | - Brandon M. Lê
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | | | | | | | - Alexey S. Sokolov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Alexander M. Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Polilov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Irina R. Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Egor B. Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Konstantin G. Skryabin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| |
Collapse
|
7
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
8
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Clémentine M François
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France.
| |
Collapse
|
9
|
Savojardo C, Luchetti A, Martelli PL, Casadio R, Mantovani B. Draft genomes and genomic divergence of two
Lepidurus
tadpole shrimp species (Crustacea, Branchiopoda, Notostraca). Mol Ecol Resour 2018; 19:235-244. [DOI: 10.1111/1755-0998.12952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology University of Bologna Bologna Italy
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology University of Bologna Bologna Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology University of Bologna Bologna Italy
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
10
|
Lindsey ARI, Kelkar YD, Wu X, Sun D, Martinson EO, Yan Z, Rugman-Jones PF, Hughes DST, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni HV, Worley KC, Muzny DM, Ye G, Gibbs RA, Richards S, Yi SV, Stouthamer R, Werren JH. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol 2018; 16:54. [PMID: 29776407 PMCID: PMC5960102 DOI: 10.1186/s12915-018-0520-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Background Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. Results We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. Conclusions The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0520-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of California Riverside, Riverside, California, 92521, USA. .,Present Address: Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.
| | - Yogeshwar D Kelkar
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA
| | - Xin Wu
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Dan Sun
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Ellen O Martinson
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.,Present Address: Department of Entomology, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhichao Yan
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.,State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Paul F Rugman-Jones
- Department of Entomology, University of California Riverside, Riverside, California, 92521, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Richard Stouthamer
- Department of Entomology, University of California Riverside, Riverside, California, 92521, USA.
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA.
| |
Collapse
|
11
|
Lindsey ARI, Kelkar YD, Wu X, Sun D, Martinson EO, Yan Z, Rugman-Jones PF, Hughes DST, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni HV, Worley KC, Muzny DM, Ye G, Gibbs RA, Richards S, Yi SV, Stouthamer R, Werren JH. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol 2018. [DOI: 10.1186/s12915-018-0520-9 10.1186/s12915-018-0520-9 [pii]] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, Detrich WH, Ozouf-Costaz C, Higuet D. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics 2018; 19:339. [PMID: 29739320 PMCID: PMC5941688 DOI: 10.1186/s12864-018-4714-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4714-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France. .,Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France.
| | - P Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - L Belkadi
- Institut Pasteur, Laboratoire Signalisation et Pathogénèse, UMR CNRS 3691, Bâtiment DARRE, 25-28 rue du Dr Roux, 75015, Paris, France
| | - L Petit
- Plateforme d'Imagerie et Cytométrie en flux, Sorbonne Université, CNRS, - Institut de Biologie Paris-Seine (BDPS - IBPS), F-75005, Paris, France
| | - E Bonnivard
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - A Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France
| | - W H Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - C Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - D Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| |
Collapse
|
13
|
Kraaijeveld K, Anvar SY, Frank J, Schmitz A, Bast J, Wilbrandt J, Petersen M, Ziesmann T, Niehuis O, de Knijff P, den Dunnen JT, Ellers J. Decay of Sexual Trait Genes in an Asexual Parasitoid Wasp. Genome Biol Evol 2018; 8:3685-3695. [PMID: 28172869 PMCID: PMC5381511 DOI: 10.1093/gbe/evw273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/25/2022] Open
Abstract
Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, The Netherlands.,Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Seyed Yahya Anvar
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Frank
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud Schmitz
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jeanne Wilbrandt
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Malte Petersen
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Tanja Ziesmann
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Oliver Niehuis
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan T den Dunnen
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, The Netherlands
| |
Collapse
|
14
|
Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet 2017; 13:e1006777. [PMID: 28594822 PMCID: PMC5465968 DOI: 10.1371/journal.pgen.1006777] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.
Collapse
|
15
|
Bonandin L, Scavariello C, Mingazzini V, Luchetti A, Mantovani B. Obligatory parthenogenesis and TE load: Bacillus stick insects and the R2 non-LTR retrotransposon. INSECT SCIENCE 2017; 24:409-417. [PMID: 26813995 DOI: 10.1111/1744-7917.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Transposable elements (TEs) are selfish genetic elements whose self-replication is contrasted by the host genome. In this context, host reproductive strategies are predicted to impact on both TEs load and activity. The presence and insertion distribution of the non-LTR retrotransposon R2 was here studied in populations of the strictly bisexual Bacillus grandii maretimi and of the obligatory parthenogenetic Bacillus atticus atticus. Furthermore, data were also obtained from the offspring of selected B. a. atticus females. At the population level, the gonochoric B. g. maretimi showed a significantly higher R2 load than the obligatory parthenogenetic B. a. atticus. The comparison with bisexual and unisexual Bacillus rossius populations showed that their values were higher than those recorded for B. a. atticus and similar, or even higher, than those of B. g. maretimi. Consistently, an R2 load reduction is scored in B. a. atticus offspring even if with a great variance. On the whole, data here produced indicate that in the obligatory unisexual B. a. atticus R2 is active and that mechanisms of molecular turnover are effective. Furthermore, progeny analyses show that, at variance of the facultative parthenogenetic B. rossius, the R2 activity is held at a lower rate. Modeling parental-offspring inheritance, suggests that in B. a. atticus recombination plays a major role in eliminating insertions rather than selection, as previously suggested for unisexual B. rossius progeny, even if in both cases a high variance is observed. In addition to this, mechanisms of R2 silencing or chances of clonal selection cannot be ruled out.
Collapse
Affiliation(s)
- Livia Bonandin
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Claudia Scavariello
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Valentina Mingazzini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Schön I, Martens K. Ostracod (Ostracoda, Crustacea) genomics - Promises and challenges. Mar Genomics 2016; 29:19-25. [PMID: 27020380 DOI: 10.1016/j.margen.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/18/2023]
Abstract
Ostracods are well-suited model organisms for evolutionary research. Classic genetic techniques have mostly been used for phylogenetic studies on Ostracoda and were somewhat affected by the lack of large numbers of suitable markers. Genomic methods with their huge potential have so far rarely been applied to this group of crustaceans. We provide relevant examples of genomic studies on other organisms to propose future avenues of genomic ostracod research. At the same time, we suggest solutions to the potential problems in ostracods that the application of genomic techniques might present.
Collapse
Affiliation(s)
- Isa Schön
- Royal Belgian Institute of Natural Sciences, OD Nature, ATECO, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium; University of Hasselt, Research Group Zoology, Agoralaan Building D, B-3590 Diepenbeek, Belgium.
| | - Koen Martens
- Royal Belgian Institute of Natural Sciences, OD Nature, ATECO, Freshwater Biology, Vautierstraat 29, B-1000 Brussels, Belgium; University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
17
|
Ferreira de Carvalho J, Oplaat C, Pappas N, Derks M, de Ridder D, Verhoeven KJF. Heritable gene expression differences between apomictic clone members in Taraxacum officinale: Insights into early stages of evolutionary divergence in asexual plants. BMC Genomics 2016; 17:203. [PMID: 26956152 PMCID: PMC4782324 DOI: 10.1186/s12864-016-2524-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence. For plants empirical insight into genome divergence under asexual reproduction remains limited. Here, we characterize expression divergence between clone members of a single apomictic lineage of the common dandelion (Taraxacum officinale) to contribute to our knowledge of genome evolution under asexuality. RESULTS Using RNA-Seq, we show that about one third of heritable divergence within the apomictic lineage is driven by TEs and TE-related gene activity. In addition, we identify non-random transcriptional differences in pathways related to acyl-lipid and abscisic acid metabolisms which might reflect functional divergence within the apomictic lineage. We analyze SNPs in the transcriptome to assess genetic divergence between the apomictic clone members and reveal that heritable expression differences between the accessions are not explained simply by genome-wide genetic divergence. CONCLUSION The present study depicts a first effort towards a more complete understanding of apomictic plant genome evolution. We identify abundant TE activity and ecologically relevant functional genes and pathways affecting heritable within-lineage expression divergence. These findings offer valuable resources for future work looking at epigenetic silencing and Cis-regulation of gene expression with particular emphasis on the effects of TE activity on asexual species' genome.
Collapse
Affiliation(s)
- Julie Ferreira de Carvalho
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| | - Carla Oplaat
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| | - Nikolaos Pappas
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Martijn Derks
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Bast J, Schaefer I, Schwander T, Maraun M, Scheu S, Kraaijeveld K. No Accumulation of Transposable Elements in Asexual Arthropods. Mol Biol Evol 2015; 33:697-706. [PMID: 26560353 PMCID: PMC4760076 DOI: 10.1093/molbev/msv261] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads.
Collapse
Affiliation(s)
- Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Goettingen, Goettingen, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Goettingen, Goettingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Goettingen, Goettingen, Germany
| | - Ken Kraaijeveld
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands Leiden Genome Technology Center, Department of Human genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Bonandin L, Scavariello C, Luchetti A, Mantovani B. Evolutionary dynamics of R2 retroelement and insertion inheritance in the genome of bisexual and parthenogenetic Bacillus rossius populations (Insecta Phasmida). INSECT MOLECULAR BIOLOGY 2014; 23:808-820. [PMID: 25134735 DOI: 10.1111/imb.12126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Theoretical and empirical studies have shown differential management of transposable elements in organisms with different reproductive strategies. To investigate this issue, we analysed the R2 retroelement structure and variability in parthenogenetic and bisexual populations of Bacillus rossius stick insects, as well as insertions inheritance in the offspring of parthenogenetic isolates and of crosses. The B. rossius genome hosts a functional (R2Br(fun) ) and a degenerate (R2Br(deg) ) element, their presence correlating with neither reproductive strategies nor population distribution. The median-joining network method indicated that R2Br(fun) duplicates through a multiple source model, while R2Br(deg) is apparently still duplicating via a master gene model. Offspring analyses showed that unisexual and bisexual offspring have a similar number of R2Br-occupied sites. Multiple or recent shifts from gonochoric to parthenogenetic reproduction may explain the observed data. Moreover, insertion frequency spectra show that higher-frequency insertions in unisexual offspring significantly outnumber those in bisexual offspring. This suggests that unisexual offspring eliminate insertions with lower efficiency. A comparison with simulated insertion frequencies shows that inherited insertions in unisexual and bisexual offspring are significantly different from the expectation. On the whole, different mechanisms of R2 elimination in unisexual vs bisexual offspring and a complex interplay between recombination effectiveness, natural selection and time can explain the observed data.
Collapse
Affiliation(s)
- L Bonandin
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
20
|
Teixeira MM, de Almeida LGP, Kubitschek-Barreira P, Alves FL, Kioshima ÉS, Abadio AKR, Fernandes L, Derengowski LS, Ferreira KS, Souza RC, Ruiz JC, de Andrade NC, Paes HC, Nicola AM, Albuquerque P, Gerber AL, Martins VP, Peconick LDF, Neto AV, Chaucanez CB, Silva PA, Cunha OL, de Oliveira FFM, dos Santos TC, Barros ALN, Soares MA, de Oliveira LM, Marini MM, Villalobos-Duno H, Cunha MML, de Hoog S, da Silveira JF, Henrissat B, Niño-Vega GA, Cisalpino PS, Mora-Montes HM, Almeida SR, Stajich JE, Lopes-Bezerra LM, Vasconcelos ATR, Felipe MSS. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 2014; 15:943. [PMID: 25351875 PMCID: PMC4226871 DOI: 10.1186/1471-2164-15-943] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/25/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.
Collapse
Affiliation(s)
- Marcus M Teixeira
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | | | - Paula Kubitschek-Barreira
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Fernanda L Alves
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Érika S Kioshima
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR Brazil
| | - Ana KR Abadio
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Larissa Fernandes
- />Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Ceilândia, Brasília, DF Brazil
| | - Lorena S Derengowski
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Karen S Ferreira
- />Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP Brazil
| | - Rangel C Souza
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | - Jeronimo C Ruiz
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | - Nathalia C de Andrade
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Hugo C Paes
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - André M Nicola
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia Albuquerque
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Programa de pós-graduação em Medicina Tropical, Universidade de Brasília, Brasília, DF Brazil
| | | | - Vicente P Martins
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Luisa DF Peconick
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Alan Viggiano Neto
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Claudia B Chaucanez
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Patrícia A Silva
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Oberdan L Cunha
- />Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil
| | | | - Tayná C dos Santos
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Amanda LN Barros
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
| | - Marco A Soares
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Luciana M de Oliveira
- />Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- />Programa de pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marjorie M Marini
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Héctor Villalobos-Duno
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Marcel ML Cunha
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Sybren de Hoog
- />CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - José F da Silveira
- />Departamento de Microbiologia Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Bernard Henrissat
- />Centre National de la Recherche Scientifique, Aix-Marseille, Université, CNRS, Marseille, France
| | - Gustavo A Niño-Vega
- />Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Patrícia S Cisalpino
- />Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou, FIOCRUZ, Minas, Belo Horizonte, MG Brazil
| | | | - Sandro R Almeida
- />Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, São Paulo, SP Brazil
| | - Jason E Stajich
- />Department of Plant Pathology & Microbiology, University of California, Riverside, CA USA
| | - Leila M Lopes-Bezerra
- />Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Maria SS Felipe
- />Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF Brazil
- />Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
21
|
Peyretaillade E, Boucher D, Parisot N, Gasc C, Butler R, Pombert JF, Lerat E, Peyret P. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems. Heredity (Edinb) 2014; 114:441-9. [PMID: 25182222 DOI: 10.1038/hdy.2014.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Fungal species play extremely important roles in ecosystems. Clustered at the base of the fungal kingdom are Microsporidia, a group of obligate intracellular eukaryotes infecting multiple animal lineages. Because of their large host spectrum and their implications in host population regulation, they influence food webs, and accordingly, ecosystem structure and function. Unfortunately, their ecological role is not well understood. Present also as highly resistant spores in the environment, their characterisation requires special attention. Different techniques based on direct isolation and/or molecular approaches can be considered to elucidate their role in the ecosystems, but integrating environmental and genomic data (for example, genome architecture, core genome, transcriptional and translational signals) is crucial to better understand the diversity and adaptive capacities of Microsporidia. Here, we review the current status of Microsporidia in trophic networks; the various genomics tools that could be used to ensure identification and evaluate diversity and abundance of these organisms; and how these tools could be used to explore the microsporidian life cycle in different environments. Our understanding of the evolution of these widespread parasites is currently impaired by limited sampling, and we have no doubt witnessed but a small subset of their diversity.
Collapse
Affiliation(s)
- E Peyretaillade
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - D Boucher
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - N Parisot
- 1] Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France [2] CNRS, UMR 6023, LMGE, Aubière, France
| | - C Gasc
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - R Butler
- Illinois Institute of Technology, BCHS Biology Division, Chicago, IL, USA
| | - J-F Pombert
- Illinois Institute of Technology, BCHS Biology Division, Chicago, IL, USA
| | - E Lerat
- Université de Lyon, Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - P Peyret
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| |
Collapse
|
22
|
Jalasvuori M, Lehtonen J. Virus epidemics can lead to a population-wide spread of intragenomic parasites in a previously parasite-free asexual population. Mol Ecol 2014; 23:987-91. [PMID: 24400851 DOI: 10.1111/mec.12662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/15/2013] [Accepted: 12/27/2013] [Indexed: 12/29/2022]
Abstract
Sexual reproduction is problematic to explain due to its costs, most notably the twofold cost of sex. Yet, sex has been suggested to be favourable in the presence of proliferating intragenomic parasites given that sexual recombination provides a mechanism to confine the accumulation of deleterious mutations. Kraaijeveld et al. compared recently the accumulation of transposons in sexually and asexually reproducing lines of the same species, the parasitoid wasp Leptopilina clavipes. They discovered that within asexually reproducing wasps, the number of gypsy-like retrotransposons was increased fourfold, whereas other retrotransposons were not. Interestingly, gypsy-like retrotransposons are closely related to retroviruses. Endogenous retroviruses are retroviruses that have integrated to the germ line cells and are inherited thereafter vertically. They can also replicate within the genome similarly to retrotransposons as well as form virus particles and infect previously uninfected cells. This highlights the possibility that endogenous retroviruses could play a role in the evolution of sexual reproduction. Here, we show with an individual-based computational model that a virus epidemic within a previously parasite-free asexual population may establish a new intragenomic parasite to the population. Moreover and in contrast to other transposons, the possibility of endogenous viruses to maintain a virus epidemic and simultaneously provide resistance to individuals carrying active endogenous viruses selects for the presence of active intragenomic parasites in the population despite their deleterious effects. Our results suggest that the viral nature of certain intragenomic parasites should be taken into account when sex and its benefits are being considered.
Collapse
Affiliation(s)
- Matti Jalasvuori
- Division of Evolution Ecology and Genetics, Centre of Excellence in Biological Interactions, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia; Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, Jyväskylä, 40014, Finland
| | | |
Collapse
|
23
|
Verhoeven KJF, Preite V. Epigenetic variation in asexually reproducing organisms. Evolution 2013; 68:644-55. [PMID: 24274255 DOI: 10.1111/evo.12320] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual reproduction epigenetic reprogramming mechanisms that are associated with meiosis can be bypassed, which could promote the buildup of epigenetic variation in asexuals. Here, we evaluate current evidence for an epigenetic contribution to adaptation in asexuals. We argue that two aspects of epigenetic variation should have particular relevance for asexuals, namely epigenetics-mediated phenotypic plasticity within and between generations, and heritable variation via stochastic epimutations. An evaluation of epigenetic reprogramming mechanisms suggests that some, but not all, forms of asexual reproduction enhance the likelihood of stable transmission of epigenetic marks across generations compared to sexual reproduction. However, direct tests of these predicted sexual-asexual differences are virtually lacking. Stable transmission of DNA methylation, transcriptomes, and phenotypes from parent to clonal offspring are demonstrated in various asexual species, and clonal genotypes from natural populations show habitat-specific DNA methylation. We discuss how these initial observations can be extended to demonstrate an epigenetic contribution to adaptation.
Collapse
Affiliation(s)
- Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| | | |
Collapse
|
24
|
Ricci M, Luchetti A, Bonandin L, Mantovani B. Random DNA libraries from three species of the stick insect genus Bacillus (Insecta: Phasmida): repetitive DNA characterization and first observation of polyneopteran MITEs. Genome 2013; 56:729-35. [PMID: 24433208 DOI: 10.1139/gen-2013-0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The repetitive DNA content of the stick insect species Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric), and Bacillus atticus (obligate parthenogenetic) was analyzed through the survey of random genomic libraries roughly corresponding to 0.006% of the genome. By repeat masking, 19 families of transposable elements were identified (two LTR and six non-LTR retrotransposons; 11 DNA transposons). Moreover, a de novo analysis revealed, among the three libraries, the first MITE family observed in polyneopteran genomes. On the whole, transposable element abundance represented 23.3% of the genome in B. rossius, 22.9% in B. atticus, and 18% in B. grandii. Tandem repeat content in the three libraries is much lower: 1.32%, 0.64%, and 1.86% in B. rossius, B. grandii, and B. atticus, respectively. Microsatellites are the most abundant in all species. Minisatellites were only found in B. rossius and B. atticus, and five monomers belonging to the Bag320 satellite family were detected in B. atticus. Assuming the survey provides adequate representation of the relative genome, the obligate parthenogenetic species (B. atticus), compared with the other two species analyzed, does not show a lower transposable element content, as expected from some theoretical and empirical studies.
Collapse
Affiliation(s)
- Marco Ricci
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, via Selmi 3, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
25
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|
26
|
Rieseberg L, Vines T, Kane N. Editorial 2013. Mol Ecol 2012; 22:1-14. [PMID: 23252575 DOI: 10.1111/mec.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Abstract
Resolving the paradox of sex, with its twofold cost to genic transmission, remains one of the major unresolved questions in evolutionary biology. Counting this genetic cost has now gone genomic. In this issue of Molecular Ecology, Kraaijeveld et al. (2012) describe the first genome-scale comparative study of related sexual and asexual animal lineages, to test the hypothesis that asexuals bear heavier loads of deleterious transposable elements. A much higher density of such parasites might be expected, due to the inability of asexual lineages to purge transposons via mechanisms exclusive to sexual reproduction. They find that the answer is yes--and no--depending upon the family of transposons considered. Like many such advances in testing theory, more questions are raised by this study than answered, but a door has been opened to molecular evolutionary analyses of how responses to selection from intragenomic parasites might mediate the costs of sex.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
28
|
Kraaijeveld K, Bast J. Transposable element proliferation as a possible side effect of endosymbiont manipulations. Mob Genet Elements 2012; 2:253-256. [PMID: 23550173 PMCID: PMC3575435 DOI: 10.4161/mge.22878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mode of reproduction has been predicted to affect the proliferation of transposable elements (TEs). A population that switches from sexual to asexual reproduction could either accumulate TEs because purifying selection becomes less efficient, or a decrease in TE load because the opportunity for horizontal transmission is reduced. A third possibility is that the mechanism that induces asexual reproduction affects TE dynamics as a side effect. We propose two such mechanisms that might explain recently described patterns of TE abundance in sexual and asexual lineages of the parasitoid wasp Leptopilina clavipes. Asexual reproduction in this species is induced by endosymbiotic Wolbachia bacteria. In order to achieve parthenogenesis in its host, Wolbachia might remove methylation or interfere with Argonaute proteins. Both methylation and Argonaute proteins are known to control TE activity in other species. By interfering with either, Wolbachia might therefore secondarily hamper the control of specific TEs.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Leiden Genome Technology Center; Leiden University Medical Center; Leiden, The Netherlands
| | | |
Collapse
|