1
|
Wittlin S, Mäser P. From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infect Dis 2021; 7:2777-2786. [PMID: 34472830 DOI: 10.1021/acsinfecdis.1c00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paul Ehrlich coined the term "magic bullet" to describe how a drug kills the parasite inside its human host without harming the host itself. Ehrlich concluded that the drug must have a greater affinity to the parasite than to human cells. Today, the specificity of drug action is understood in terms of the drug target. An ideal target is a protein that is essential for the proliferation of the pathogen but absent in human cells. Examples are the enzymes of folate synthesis or of the nonmevalonate pathway in the malaria parasites. However, there are other ways how a drug can kill selectively. Of particular relevance is the specific activation of a prodrug inside the pathogen but not in the host, as this is how the current frontrunners of parasite chemotherapy work. Artemisinins for malaria, fexinidazole for human African trypanosomiasis, benznidazole for Chagas' disease, metronidazole for intestinal protozoa: these molecules are "magic bombs" that are triggered selectively. They are prodrugs that need to be activated by chemical reduction, i.e., the acquisition of an electron, which occurs in the parasite. Such a mode of action is shared by the novel antimalarial peroxides arterolane and artefenomel, which are activated by reduction of the endoperoxide bond with ferrous heme as the likely electron donor, a metabolic end-product of Plasmodium falciparum. Here we provide an overview on the molecular basis of selectivity of antiparasitic drug action with particular reference to the ozonides, the new generation of antimalarial peroxides designed by Jonathan Vennerstrom.
Collapse
Affiliation(s)
- Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Khairallah A, Tastan Bishop Ö, Moses V. AMBER force field parameters for the Zn (II) ions of the tunneling-fold enzymes GTP cyclohydrolase I and 6-pyruvoyl tetrahydropterin synthase. J Biomol Struct Dyn 2020; 39:5843-5860. [PMID: 32720563 DOI: 10.1080/07391102.2020.1796800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The folate biosynthesis pathway is an essential pathway for cell growth and survival. Folate derivatives serve as a source of the one-carbon units in several intracellular metabolic reactions. Rapidly dividing cells rely heavily on the availability of folate derivatives for their proliferation. As a result, drugs targeting this pathway have shown to be effective against tumor cells and pathogens, but drug resistance against the available antifolate drugs emerged quickly. Therefore, there is a need to develop new treatment strategies and identify alternative metabolic targets. The two de novo folate biosynthesis pathway enzymes, GTP cyclohydrolase I (GCH1) and 6-pyruvoyl tetrahydropterin synthase (PTPS), can provide an alternative strategy to overcome the drug resistance that emerged in the two primary targeted enzymes dihydrofolate reductase and dihydropteroate synthase. Both GCH1 and PTPS enzymes contain Zn2+ ions in their active sites, and to accurately study their dynamic behaviors using all-atom molecular dynamics (MD) simulations, appropriate parameters that can describe their metal sites should be developed and validated. In this study, force field parameters of the GCH1 and PTPS metal centers were generated using quantum mechanics (QM) calculations and then validated through MD simulations to ensure their accuracy in describing and maintaining the Zn2+ ion coordination environment. The derived force field parameters will provide accurate and reliable MD simulations involving these two enzymes for future in-silico identification of drug candidates against the GCH1 and PTPS enzymes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Vuyani Moses
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
3
|
Abstract
Folate is essential for DNA synthesis and the survival and growth of the malaria parasite. Folate sufficiency may be associated with an increased risk of malaria. Antifolate antimalarial drugs are of major importance in the prophylaxis and treatment of malaria. Folic acid reverses the inhibition by antifolate drugs of plasmodial growth or survival in vitro, and folic acid supplements given to children with malaria may increase the failure rate of treatment with antimalarials. There is no convincing evidence of a significant prevalence of folate deficiency in children in malarious areas, nor of a beneficial effect of folic acid supplementation on malarial anemia. In areas where Plasmodium falciparum malaria is holoendemic, universal supplementation of children with iron and folic acid may increase the incidence of severe morbidity and mortality. These regions should be excluded from the World Health Organization recommendation of universal folic acid supplementation of children in areas of high prevalence of anemia. This does not apply to supplementation of pregnant women with folic acid.
Collapse
|
4
|
Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci 2015; 1342:10-8. [PMID: 25694157 DOI: 10.1111/nyas.12662] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs that target the folate-synthesis pathway have a long history of effectiveness against a variety of pathogens. As antimalarials, the antifolates were safe and well tolerated, but resistance emerged quickly and has persisted even with decreased drug pressure. The primary determinants of resistance in Plasmodium falciparum are well-described point mutations in the enzymes dihydropteroate synthase and dihydrofolate reductase targeted by the combination sulfadoxine-pyrimethamine. Recent work has highlighted the contributions of additional parasite adaptation to antifolate resistance. In fact, the evolution of antifolate-resistant parasites is multifaceted and complex. Gene amplification of the first enzyme in the parasite folate synthesis pathway, GTP-cyclohydrolase, is strongly associated with resistant parasites and potentially contributes to persistence of resistant parasites. Further understanding of how parasites adjust flux through the folate pathway is important to the further development of alternative agents targeting this crucial synthesis pathway.
Collapse
|
5
|
Effect of iron/folic Acid supplementation on the outcome of malaria episodes treated with sulfadoxine-pyrimethamine. Malar Res Treat 2014; 2014:625905. [PMID: 24575311 PMCID: PMC3915546 DOI: 10.1155/2014/625905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/12/2013] [Indexed: 12/02/2022] Open
Abstract
Folic acid supplementation may potentially alter the efficacy of sulfadoxine-pyrimethamine (SP) treatment in children with malaria. However, there is lack of evidence from randomized controlled trials and effects of folic acid supplementation on clinical efficacy of SP therapy remain moderately understood among children. In a double masked, placebo-controlled trial among preschool children in Pemba Island (Tanzania), iron and folic acid supplementation (Fe/FA) showed an increased risk of hospitalizations and death. In the present paper, we evaluated if folic acid supplementation reduced the efficacy of malaria treatment and thereby contributed to observed adverse effects. During the study, 1648 children had confirmed malarial episodes and received either sulphadoxine-pyrimethamine (SP) treatment and iron folic acid or SP treatment and placebo. These children were evaluated for recovery and incidence of hospitalization during the next 15, 30, and 140 days. Two groups did not differ in malarial episode or hospitalization rate on subsequent 15, 30, and 140 days. Altered efficacy of SP by folic acid was not observed and did not contribute to adverse events in the previous trial. This trial is registered with Controlled-trials.com ISRCTN59549825.
Collapse
|
6
|
Folate metabolism in human malaria parasites—75 years on. Mol Biochem Parasitol 2013; 188:63-77. [DOI: 10.1016/j.molbiopara.2013.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/21/2022]
|
7
|
Ludin P, Woodcroft B, Ralph SA, Mäser P. In silico prediction of antimalarial drug target candidates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:191-9. [PMID: 24533280 DOI: 10.1016/j.ijpddr.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The need for new antimalarials is persistent due to the emergence of drug resistant parasites. Here we aim to identify new drug targets in Plasmodium falciparum by phylogenomics among the Plasmodium spp. and comparative genomics to Homo sapiens. The proposed target discovery pipeline is largely independent of experimental data and based on the assumption that P. falciparum proteins are likely to be essential if (i) there are no similar proteins in the same proteome and (ii) they are highly conserved across the malaria parasites of mammals. This hypothesis was tested using sequenced Saccharomycetaceae species as a touchstone. Consecutive filters narrowed down the potential target space of P. falciparum to proteins that are likely to be essential, matchless in the human proteome, expressed in the blood stages of the parasite, and amenable to small molecule inhibition. The final set of 40 candidate drug targets was significantly enriched in essential proteins and comprised proven targets (e.g. dihydropteroate synthetase or enzymes of the non-mevalonate pathway), targets currently under investigation (e.g. calcium-dependent protein kinases), and new candidates of potential interest such as phosphomannose isomerase, phosphoenolpyruvate carboxylase, signaling components, and transporters. The targets were prioritized based on druggability indices and on the availability of in vitro assays. Potential inhibitors were inferred from similarity to known targets of other disease systems. The identified candidates from P. falciparum provide insight into biochemical peculiarities and vulnerable points of the malaria parasite and might serve as starting points for rational drug discovery.
Collapse
Affiliation(s)
- Philipp Ludin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| | - Ben Woodcroft
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
8
|
Camara D, Bisanz C, Barette C, Van Daele J, Human E, Barnard B, Van der Straeten D, Stove CP, Lambert WE, Douce R, Maréchal E, Birkholtz LM, Cesbron-Delauw MF, Dumas R, Rébeillé F. Inhibition of p-aminobenzoate and folate syntheses in plants and apicomplexan parasites by natural product rubreserine. J Biol Chem 2012; 287:22367-76. [PMID: 22577137 DOI: 10.1074/jbc.m112.365833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glutamine amidotransferase/aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of p-aminobenzoate, a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the glutamine amidotransferase activity of the plant GAT-ADCS with an apparent IC(50) of about 8 μM. The growth rates of Arabidopsis thaliana, Toxoplasma gondii, and Plasmodium falciparum were inhibited by rubreserine with respective IC(50) values of 65, 20, and 1 μM. The correlation between folate biosynthesis and growth inhibition was studied with Arabidopsis and Toxoplasma. In both organisms, the folate content was decreased by 40-50% in the presence of rubreserine. In both organisms, the addition of p-aminobenzoate or 5-formyltetrahydrofolate in the external medium restored the growth for inhibitor concentrations up to the IC(50) value, indicating that, within this range of concentrations, rubreserine was specific for folate biosynthesis. Rubreserine appeared to be more efficient than sulfonamides, antifolate drugs known to inhibit the invasion and proliferation of T. gondii in human fibroblasts. Altogether, these results validate the use of the bifunctional GAT-ADCS as an efficient drug target in eukaryotic cells and indicate that the chemical structure of rubreserine presents interesting anti-parasitic (toxoplasmosis, malaria) potential.
Collapse
Affiliation(s)
- Djeneb Camara
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique/CNRS UMR5168/INRA USC1200/Université Joseph Fourier Grenoble I, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scaling up of intermittent preventive treatment of malaria in pregnancy using sulphadoxine-pyrimethamine: prospects and challenges. Matern Child Health J 2011; 15:542-52. [PMID: 20425139 DOI: 10.1007/s10995-010-0608-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intermittent preventive treatment of malaria during pregnancy with sulphadoxine-pyrimethamine (IPTpSP) is one of the major strategies of malaria control in most African countries where malaria is endemic. The use of sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment of malaria during pregnancy was adopted when proof of its superiority to weekly prophylactic dosing with either chloroquine or pyrimethamine became evident from studies in different malaria endemic countries. The administration of 2 and 3 treatment doses of SP for HIV-negative and HIV-positive pregnant women respectively, given after quickening and at an interval not less than 4 weeks was recommended. The prospects of this control strategy lies on the efficacy of SP, convenient treatment dose and high compliance rate. However, the implementation of this strategy and the efficacy of SP are faced with challenges such as: timing of SP administration, rising levels of parasite resistance to SP in the general population, effect of folate supplementation, adequacy of the recommended doses with regards to malaria endemicity and HIV status, interactions between SP and antiretroviral drugs and low coverage in the bid to scale-up its use. This review highlights the prospects and challenges of scaling up IPTp-SP.
Collapse
|
10
|
Stephens LL, Shonhai A, Blatch GL. Co-expression of the Plasmodium falciparum molecular chaperone, PfHsp70, improves the heterologous production of the antimalarial drug target GTP cyclohydrolase I, PfGCHI. Protein Expr Purif 2011; 77:159-65. [PMID: 21262365 DOI: 10.1016/j.pep.2011.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
Molecular chaperones have been used for the improved expression of target proteins within heterologous systems; however, the chaperone and target protein have seldom been matched in terms of origin. We have developed a heterologous co-expression system that allows independent expression of the plasmodial chaperone, PfHsp70, and a plasmodial target protein. In this study, the target was Plasmodium falciparum GTP cyclohydrolase I (PfGCHI), the first enzyme in the plasmodial folate pathway. The sequential expression of the molecular chaperone followed by the target protein increased the expression of soluble functional PfGCHI. His-tagged PfGCHI was successfully purified using nickel affinity chromatography, and the specific activity was determined by high performance liquid chromatography with spectrofluorometeric detection to be 5.93nmol/h/mg. This is the first report of a heterologous co-expression system in which a plasmodial chaperone is harnessed for the improved production and purification of a plasmodial target protein.
Collapse
Affiliation(s)
- Linda L Stephens
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, South Africa
| | | | | |
Collapse
|
11
|
Wang P, Wang Q, Yang Y, Coward JK, Nzila A, Sims PF, Hyde JE. Characterisation of the bifunctional dihydrofolate synthase-folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition. Mol Biochem Parasitol 2010; 172:41-51. [PMID: 20350571 PMCID: PMC2877875 DOI: 10.1016/j.molbiopara.2010.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/20/2022]
Abstract
Unusually for a eukaryote, the malaria parasite Plasmodium falciparum expresses dihydrofolate synthase (DHFS) and folylpolyglutamate synthase (FPGS) as a single bifunctional protein. The two activities contribute to the essential pathway of folate biosynthesis and modification. The DHFS activity of recombinant PfDHFS–FPGS exhibited non-standard kinetics at high co-substrate (glutamate and ATP) concentrations, being partially inhibited by increasing concentrations of its principal substrate, dihydropteroate (DHP). Binding of DHP to the catalytic and inhibitory sites exhibited dissociation constants of 0.50 μM and 1.25 μM, respectively. DHFS activity measured under lower co-substrate concentrations, where data fitted the Michaelis–Menten equation, yielded apparent Km values of 0.88 μM for DHP, 22.8 μM for ATP and 5.97 μM for glutamate. Of the substrates tested in FPGS assays, only tetrahydrofolate (THF) was efficiently converted to polyglutamylated forms, exhibiting standard kinetics with an apparent Km of 0.96 μM; dihydrofolate, folate and the folate analogue methotrexate (MTX) were negligibly processed, emphasising the importance of the oxidation state of the pterin moiety. Moreover, MTX inhibited neither DHFS nor FPGS, even at high concentrations. Conversely, two phosphinate analogues of 7,8-dihydrofolate that mimic tetrahedral intermediates formed during DHFS- and FPGS-catalysed glutamylation were powerfully inhibitory. The Ki value of an aryl phosphinate analogue against DHFS was 0.14 μM and for an alkyl phosphinate against FPGS 0.091 μM, with each inhibitor showing a high degree of specificity. This, combined with the absence of DHFS activity in humans, suggests PfDHFS–FPGS might represent a potential new drug target in the previously validated folate pathway of P. falciparum.
Collapse
Affiliation(s)
- Ping Wang
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Qi Wang
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yonghong Yang
- Department of Medicinal Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - James K. Coward
- Department of Medicinal Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - Alexis Nzila
- KEMRI, Wellcome Trust Collaborative Research Programme, Kilifi 80108, Kenya
| | - Paul F.G. Sims
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - John E. Hyde
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Corresponding author at: University of Manchester, Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, 131 Princess St, Manchester M1 7DN, UK. Tel.: +44 161 306 4185; fax: +44 161 306 5201.
| |
Collapse
|
12
|
Babiker HA, Hastings IM, Swedberg G. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Rev Anti Infect Ther 2009; 7:581-93. [PMID: 19485798 DOI: 10.1586/eri.09.29] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria, a leading parasitic disease, inflicts an enormous toll on human lives and is caused by protozoal parasites belonging to the genus Plasmodium. Antimalarial drugs targeting essential biochemical processes in the parasite are the primary resources for management and control. However, the parasite has established mutations, substantially reducing the efficacy of these drugs. First-line therapy is faced the with the consistent evolution of drug-resistant genotypes carrying these mutations. However, drug-resistant genotypes are likely to be less fit than the wild-type, suggesting that they might disappear by reducing the volume of drug pressure. A substantial body of epidemiological evidence confirmed that the frequency of resistant genotypes wanes when active drug selection declines. Drug selection on the parasite genome that removes genetic variation in the vicinity of drug-resistant genes (hitch-hiking) is common among resistant parasites in the field. This can further disadvantage drug-resistant strains and limit their variability in the face of a mounting immune response. Attempts to provide unequivocal evidence for the fitness cost of drug resistance have monitored the outcomes of laboratory competition experiments of deliberate mixtures of sensitive and resistant strains, in the absence of drug pressure, using isogenic clones produced either by drug selection or gene manipulation. Some of these experiments provided inconclusive results, but they all suggested reduced fitness of drug-resistant clones in the absence of drug pressure. In addition, biochemical analyses provided clearer information demonstrating that the mutation of some antimalarial-targeted enzymes lowers their activity compared with the wild-type enzyme. Here, we review current evidences for the disadvantage of drug-resistance mutations, and discuss some strategies of drug deployment to maximize the cost of resistance and limit its spread.
Collapse
Affiliation(s)
- Hamza A Babiker
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, Alkhod, Muscat, Oman.
| | | | | |
Collapse
|
13
|
Pribat A, Jeanguenin L, Lara-Núñez A, Ziemak MJ, Hyde JE, de Crécy-Lagard V, Hanson AD. 6-pyruvoyltetrahydropterin synthase paralogs replace the folate synthesis enzyme dihydroneopterin aldolase in diverse bacteria. J Bacteriol 2009; 191:4158-65. [PMID: 19395485 PMCID: PMC2698474 DOI: 10.1128/jb.00416-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/19/2009] [Indexed: 01/15/2023] Open
Abstract
Dihydroneopterin aldolase (FolB) catalyzes conversion of dihydroneopterin to 6-hydroxymethyldihydropterin (HMDHP) in the classical folate biosynthesis pathway. However, folB genes are missing from the genomes of certain bacteria from the phyla Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, and Spirochaetes. Almost all of these folB-deficient genomes contain an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-pyruvoyltetrahydropterin synthase (PTPS) in which a glutamate residue replaces or accompanies the catalytic cysteine. A similar PTPS paralog from the malaria parasite Plasmodium falciparum is known to form HMDHP from dihydroneopterin triphosphate in vitro and has been proposed to provide a bypass to the FolB step in vivo. Bacterial genes encoding PTPS-like proteins with active-site glutamate, cysteine, or both residues were accordingly tested together with the P. falciparum gene for complementation of the Escherichia coli folB mutation. The P. falciparum sequence and bacterial sequences with glutamate or glutamate plus cysteine were active; those with cysteine alone were not. These results demonstrate that PTPS paralogs with an active-site glutamate (designated PTPS-III proteins) can functionally replace FolB in vivo. Recombinant bacterial PTPS-III proteins, like the P. falciparum enzyme, mediated conversion of dihydroneopterin triphosphate to HMDHP, but other PTPS proteins did not. Neither PTPS-III nor other PTPS proteins exhibited significant dihydroneopterin aldolase activity. Phylogenetic analysis indicated that PTPS-III proteins may have arisen independently in various PTPS lineages. Consistent with this possibility, merely introducing a glutamate residue into the active site of a PTPS protein conferred incipient activity in the growth complementation assay, and replacing glutamate with alanine in a PTPS-III protein abolished complementation.
Collapse
Affiliation(s)
- Anne Pribat
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Dasgupta T, Chitnumsub P, Kamchonwongpaisan S, Maneeruttanarungroj C, Nichols SE, Lyons TM, Tirado-Rives J, Jorgensen WL, Yuthavong Y, Anderson KS. Exploiting structural analysis, in silico screening, and serendipity to identify novel inhibitors of drug-resistant falciparum malaria. ACS Chem Biol 2009; 4:29-40. [PMID: 19146480 DOI: 10.1021/cb8002804] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in folate biosynthesis and a major malarial drug target. This bifunctional enzyme thus presents different design approaches for developing novel inhibitors against drug-resistant mutants. We performed a high-throughput in silico screen of a database of diverse, drug-like molecules against a non-active-site pocket of TS-DHFR. The top compounds from this virtual screen were evaluated by in vitro enzymatic and cellular culture studies. Three compounds active to 20 microM IC(50)'s in both wildtype and antifolate-resistant P. falciparum parasites were identified; moreover, no inhibition of human DHFR enzyme was observed, indicating that the inhibitory effects appeared to be parasite-specific. Notably, all three compounds had a biguanide scaffold. However, relative free energy of binding calculations suggested that the compounds might preferentially interact with the active site over the screened non-active-site region. To resolve the two possible modes of binding, co-crystallization studies of the compounds complexed with TS-DHFR enzyme were performed. Surprisingly, the structural analysis revealed that these novel, biguanide compounds do indeed bind at the active site of DHFR and additionally revealed the molecular basis by which they overcome drug resistance. To our knowledge, these are the first co-crystal structures of novel, biguanide, non-WR99210 compounds that are active against folate-resistant malaria parasites in cell culture.
Collapse
Affiliation(s)
- Tina Dasgupta
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520
| | - Penchit Chitnumsub
- BIOTEC Central Research Unit, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- BIOTEC Central Research Unit, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Cherdsak Maneeruttanarungroj
- BIOTEC Central Research Unit, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Sara E. Nichols
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street Suite 501, New Haven, Connecticut 06511
| | - Theresa M. Lyons
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - William L. Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Yongyuth Yuthavong
- BIOTEC Central Research Unit, National Science and Technology Development Agency, Science Park, 113 Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Dittrich S, Mitchell SL, Blagborough AM, Wang Q, Wang P, Sims PFG, Hyde JE. An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites. Mol Microbiol 2007; 67:609-18. [PMID: 18093090 PMCID: PMC2229834 DOI: 10.1111/j.1365-2958.2007.06073.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step in the well-characterized pathway of plants, bacteria, and those eukaryotic microorganisms capable of synthesizing their own folate. Utilizing bioinformatics searches based on both primary and higher protein structures, together with biochemical assays, we demonstrate that P. falciparum cell extracts lack detectable DHNA activity, but that the parasite possesses an unusual orthologue of 6-pyruvoyltetrahydropterin synthase (PTPS), which simultaneously gives rise to two products in comparable amounts, the predominant of which is 6-hydroxymethyl-7,8-dihydropterin, the substrate for the fourth step in folate biosynthesis (catalysed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; PPPK). This can provide a bypass for the missing DHNA activity and thus a means of completing the biosynthetic pathway from GTP to dihydrofolate. Supported by site-directed mutagenesis experiments, we ascribe the novel catalytic activity of the malarial PTPS to a Cys to Glu change at its active site relative to all previously characterized PTPS molecules, including that of the human host.
Collapse
Affiliation(s)
- Sabine Dittrich
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Kidgell C, Winzeler EA. Using the genome to dissect the molecular basis of drug resistance. Future Microbiol 2007; 1:185-99. [PMID: 17661664 DOI: 10.2217/17460913.1.2.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need to understand the genetic basis of drug resistance in human pathogens has never been greater. The global incidence of drug-resistant organisms, such as those that cause malaria, continues to rise, while the repertoire of effective, inexpensive drugs is declining. Genomic technologies, such as DNA microarrays and full-genome sequencing offer new hope in advancing our understanding of the underlying genetic processes that facilitate a resistance phenotype. Importantly, evidence that drug resistance in many organisms can be a multigene, complex phenomenon implies that unbiased, genome-wide scans of diversity will be required to fully understand the molecular mechanisms of both established and novel resistance traits. While the potential application of full-genome approaches for deciphering mechanisms of drug resistance has yet to be fully realized, this review evaluates drug resistance in human malaria parasites and discusses the exciting role genome-based systems could play in monitoring drug resistance, as well as guiding the implementation of efficient therapeutic strategies for malaria. The approaches reviewed within this article will be applicable to all known or emerging microbial pathogens.
Collapse
Affiliation(s)
- Claire Kidgell
- The Scripps Research Institute, ICND 202, La Jolla, CA 92037, USA.
| | | |
Collapse
|
18
|
Schlitzer M. Malaria Chemotherapeutics Part I: History of Antimalarial Drug Development, Currently Used Therapeutics, and Drugs in Clinical Development. ChemMedChem 2007; 2:944-86. [PMID: 17530725 DOI: 10.1002/cmdc.200600240] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since ancient times, humankind has had to struggle against the persistent onslaught of pathogenic microorganisms. Nowadays, malaria is still the most important infectious disease worldwide. Considerable success in gaining control over malaria was achieved in the 1950s and 60s through landscaping measures, vector control with the insecticide DDT, and the widespread administration of chloroquine, the most important antimalarial agent ever. In the late 1960s, the final victory over malaria was believed to be within reach. However, the parasites could not be eradicated because they developed resistance against the most widely used and affordable drugs of that time. Today, cases of malaria infections are on the rise and have reached record numbers. This review gives a short description of the malaria disease, briefly addresses the history of antimalarial drug development, and focuses on drugs currently available for malaria therapy. The present knowledge regarding their mode of action and the mechanisms of resistance are explained, as are the attempts made by numerous research groups to overcome the resistance problem within classes of existing drugs and in some novel classes. Finally, this review covers all classes of antimalarials for which at least one drug candidate is in clinical development. Antimalarial agents that are solely in early development stages will be addressed in a separate review.
Collapse
Affiliation(s)
- Martin Schlitzer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany.
| |
Collapse
|
19
|
Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol 2007; 23:213-22. [PMID: 17368986 DOI: 10.1016/j.pt.2007.03.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 02/01/2007] [Accepted: 03/06/2007] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is a serious health concern in many regions and is sometimes inadvertently treated with sulfadoxine-pyrimethamine (SP). Mutations in the genes that encode dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) confer resistance to pyrimethamine and sulfadoxine, respectively. Numerous studies have examined the prevalence and diversity of mutations in P. vivax dhfr and some have assessed the relationship between dhfr genotype and clinical or in vitro response to pyrimethamine. Other studies have examined the impact of dhps genotype on response to sulfadoxine. These data indicate that, under certain circumstances, SP could be a valuable tool in the fight against P. vivax.
Collapse
Affiliation(s)
- Vivian N Hawkins
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Wang P, Wang Q, Sims PF, Hyde JE. Characterisation of exogenous folate transport in Plasmodium falciparum. Mol Biochem Parasitol 2007; 154:40-51. [PMID: 17509698 PMCID: PMC1906846 DOI: 10.1016/j.molbiopara.2007.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/02/2022]
Abstract
Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.
Collapse
Affiliation(s)
| | | | | | - John E. Hyde
- Corresponding author. Tel.: +44 161 306 4185; fax: +44 161 306 5201.
| |
Collapse
|
21
|
Abstract
Synthesis de novo, acquisition by salvage and interconversion of purines and pyrimidines represent the fundamental requirements for their eventual assembly into nucleic acids as nucleotides and the deployment of their derivatives in other biochemical pathways. A small number of drugs targeted to nucleotide metabolism, by virtue of their effect on folate biosynthesis and recycling, have been successfully used against apicomplexan parasites such as Plasmodium and Toxoplasma for many years, although resistance is now a major problem in the prevention and treatment of malaria. Many targets not involving folate metabolism have also been explored at the experimental level. However, the unravelling of the genome sequences of these eukaryotic unicellular organisms, together with increasingly sophisticated molecular analyses, opens up possibilities of introducing new drugs that could interfere with these processes. This review examines the status of established drugs of this type and the potential for further exploiting the vulnerability of apicomplexan human pathogens to inhibition of this key area of metabolism.
Collapse
Affiliation(s)
- John E Hyde
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7ND, UK.
| |
Collapse
|
22
|
Ouma P, Parise ME, Hamel MJ, ter Kuile FO, Otieno K, Ayisi JG, Kager PA, Steketee RW, Slutsker L, van Eijk AM. A randomized controlled trial of folate supplementation when treating malaria in pregnancy with sulfadoxine-pyrimethamine. PLOS CLINICAL TRIALS 2006; 1:e28. [PMID: 17053829 PMCID: PMC1617124 DOI: 10.1371/journal.pctr.0010028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/29/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Sulfadoxine-pyrimethamine (SP) is an antimalarial drug that acts on the folate metabolism of the malaria parasite. We investigated whether folate (FA) supplementation in a high or a low dose affects the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. DESIGN This was a randomized, placebo-controlled, double-blind trial. SETTING The trial was carried out at three hospitals in western Kenya. PARTICIPANTS The participants were 488 pregnant women presenting at their first antenatal visit with uncomplicated malaria parasitaemia (density of >or= 500 parasites/microl), a haemoglobin level higher than 7 g/dl, a gestational age between 17 and 34 weeks, and no history of antimalarial or FA use, or sulfa allergy. A total of 415 women completed the study. INTERVENTIONS All participants received SP and iron supplementation. They were randomized to the following arms: FA 5 mg, FA 0.4 mg, or FA placebo. After 14 days, all participants continued with FA 5 mg daily as per national guidelines. Participants were followed at days 2, 3, 7, 14, 21, and 28 or until treatment failure. OUTCOME MEASURES The outcomes were SP failure rate and change in haemoglobin at day 14. RESULTS The proportion of treatment failure at day 14 was 13.9% (19/137) in the placebo group, 14.5% (20/138) in the FA 0.4 mg arm (adjusted hazard ratio [AHR], 1.07; 98.7% confidence interval [CI], 0.48 to 2.37; p = 0.8), and 27.1% (38/140) in the FA 5 mg arm (AHR, 2.19; 98.7% CI, 1.09 to 4.40; p = 0.005). The haemoglobin levels at day 14 were not different relative to placebo (mean difference for FA 5 mg, 0.17 g/dl; 98.7% CI, -0.19 to 0.52; and for FA 0.4 mg, 0.14 g/dl; 98.7% CI, -0.21 to 0.49). CONCLUSIONS Concomitant use of 5 mg FA supplementation compromises the efficacy of SP for the treatment of uncomplicated malaria in pregnant women. Countries that use SP for treatment or prevention of malaria in pregnancy need to evaluate their antenatal policy on timing or dose of FA supplementation.
Collapse
Affiliation(s)
- Peter Ouma
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Monica E Parise
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mary J Hamel
- Kenya Field Station, Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Feiko O. ter Kuile
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kephas Otieno
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John G Ayisi
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Piet A Kager
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Richard W Steketee
- Malaria Control and Evaluation Partnership in Africa, Program for Appropriate Technology in Health, Batiment Avant Centre, Ferney-Voltaire, France
| | - Laurence Slutsker
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anna M van Eijk
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Platteeuw JJ. Resistance to sulphadrug-based antifolate therapy in malaria: are we looking in the right place? Trop Med Int Health 2006; 11:804-8. [PMID: 16772001 DOI: 10.1111/j.1365-3156.2006.01646.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulphadrug treatment failure in malaria therapy cannot solely be ascribed to the build-up of genetic resistance within the parasitic genome. Although numerous in vitro studies have tried to determine the exact genetic markers that could predict treatment outcome in patients, this research has not been conclusive. Sulphadrugs work by competitive inhibition with pABA at one point of the pathway to de novo folate synthesis. However, evidence suggests that the malaria parasite is capable of overcoming this competitive inhibition by switching over to other metabolic pathways, like direct folate salvage from a person's bloodstream. In other words, increased folic acid administration, via diet or supplementation, may have reduced the effectiveness of sulphadrugs more than genetic mutations. Although in vitro studies are valuable for understanding disease mechanisms, we should not forget that the human being is infinitely more complex than any laboratory model.
Collapse
|
24
|
Bell A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 2005; 253:171-84. [PMID: 16243458 DOI: 10.1016/j.femsle.2005.09.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 11/18/2022] Open
Abstract
Interactions between antimicrobial agents provide clues as to their mechanisms of action and influence the combinations chosen for therapy of infectious diseases. In the treatment of malaria, combinations of drugs, in many cases acting synergistically, are increasingly important in view of the frequency of resistance to single agents. The study of antimalarial drug interactions is therefore of great significance to both treatment and research. It is therefore worrying that the analysis of drug-interaction data is often inadequate, leading in some cases to dubious conclusions about synergism or antagonism. Furthermore, making mechanistic deductions from drug-interaction data is not straightforward and of the many reported instances of antimalarial synergism or antagonism, few have been fully explained biochemically. This review discusses recent findings on antimalarial drug interactions and some pitfalls in their analysis and interpretation. The conclusions are likely to have relevance to other antimicrobial agents.
Collapse
Affiliation(s)
- Angus Bell
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin--Trinity College, Dublin 2, Ireland.
| |
Collapse
|
25
|
Arav-Boger R, Shapiro TA. MOLECULAR MECHANISMS OF RESISTANCE IN ANTIMALARIAL CHEMOTHERAPY: The Unmet Challenge. Annu Rev Pharmacol Toxicol 2005; 45:565-85. [PMID: 15822189 DOI: 10.1146/annurev.pharmtox.45.120403.095946] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
▪ Abstract The enormous public health problem posed by malaria has been substantially worsened in recent years by the emergence and worldwide spread of drug-resistant parasites. The utility of two major therapies, chloroquine and the synergistic combination of pyrimethamine/sulfadoxine, is now seriously compromised. Although several genetic mechanisms have been described, the major source of drug resistance appears to be point mutations in protein target genes. Clinically significant resistance to these agents requires the accumulation of multiple mutations, which genetic studies of parasite populations suggest arise focally and sweep through the population. Efforts to circumvent resistance range from the use of combination therapy with existing agents to laboratory studies directed toward discovering novel targets and therapies. The prevention and management of drug resistance are among the most important practical problems of tropical medicine and public health. Leonard J. Bruce-Chwatt, 1972
Collapse
Affiliation(s)
- Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
26
|
Nzila A, Ward SA, Marsh K, Sims PFG, Hyde JE. Comparative folate metabolism in humans and malaria parasites (part II): activities as yet untargeted or specific to Plasmodium. Trends Parasitol 2005; 21:334-9. [PMID: 15936248 PMCID: PMC2720531 DOI: 10.1016/j.pt.2005.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 02/10/2005] [Accepted: 05/10/2005] [Indexed: 01/26/2023]
Abstract
The folate pathway represents a powerful target for combating rapidly dividing systems such as cancer cells, bacteria and malaria parasites. Whereas folate metabolism in mammalian cells and bacteria has been studied extensively, it is understood less well in malaria parasites. In two articles, we attempt to reconstitute the malaria folate pathway based on available information from mammalian and microbial systems, in addition to Plasmodium-genome-sequencing projects. In part I, we focused on folate enzymes that are already used clinically as anticancer drug targets or that are under development in drug-discovery programs. In this article, we discuss mammalian folate enzymes that have not yet been exploited as potential drug targets, and enzymes that function in the de novo folate-synthesis pathway of the parasite--a particularly attractive area of attack because of its absence from the mammalian host.
Collapse
Affiliation(s)
- Alexis Nzila
- Kenya Medical Research Institute and Wellcome Trust Collaborative Research Program, Wellcome Trust Research Laboratories, PO Box 43640, Nairobi GPO 00100, Kenya.
| | | | | | | | | |
Collapse
|
27
|
Abstract
As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.
Collapse
Affiliation(s)
- John E Hyde
- Faculty of life Sciences, University of Manchester, P.O. Box 88, Manchester M60 1QD, UK.
| |
Collapse
|
28
|
Abstract
With the sequencing of the Plasmodium falciparum genome now complete, increasing attention is turning to the function of gene products and to cell-regulatory processes. The combination of in silico analyses with modern molecular and biophysical methods is leading to rapid advances in our understanding of the mechanisms underlying the biochemistry and physiology of the parasite and its host cell. In this brief review, we present a "snap shot" of recent work in this area, with particular emphasis on aspects relevant to the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Katja Becker
- Department of Biochemistry, Interdisciplinary Research Center, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|
29
|
Wang P, Nirmalan N, Wang Q, Sims PFG, Hyde JE. Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2005; 135:77-87. [PMID: 15287589 DOI: 10.1016/j.molbiopara.2004.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Antifolate drugs that target the biosynthesis and processing of essential folate cofactors are widely used for treatment of chloroquine-resistant falciparum malaria. Salvage of pre-formed folate can strongly compromise the efficacy of these drugs in vitro and the availability of folate from the human host in natural infections also influences therapeutic outcomes. To investigate how different parasite lines respond to the presence of exogenous folate, we measured the effect of the latter on the susceptibility of parasites to sulfa-drug blockage of folate biosynthesis, utilising the parents and 22 progeny of the HB3-Dd2 genetic cross of Plasmodium falciparum, together with selected unrelated lines. Complete linkage of the folate utilisation phenotype was observed to a DNA sequence of 48.6 kb lying between nucleotide positions 738,489 and 787,058 of chromosome 4 and encompassing the dihydrofolate reductase-thymidylate synthase (dhfr-ts) gene locus. Examination of the putative ORFs on this fragment upstream (3) and downstream (4) of dhfr-ts revealed no plausible candidate genes for folate processing. Similarly, a marked heterogeneity in the 5'-UTR regions of Dd2 and HB3, manifest as a directly repeated 256 bp sequence in the former, also did not correlate with the folate utilisation phenotype nor apparently influence levels of dhfr-ts transcripts or protein products. By contrast, the nature of the coding sequence of the dhfr domain appeared to play a direct role, with the single mutant (S108N) HB3-type utilising folic acid much less efficiently than other allelic variants. We also compared the processing of exogenous folic acid, folinic acid and p-aminobenzoic acid (pABA) in metabolic labelling studies of HB3 and Dd2. These support the view that DHFR is likely to have a low-level folate reductase activity as well as its normal function of reducing dihydrofolate to tetrahydrofolate, and that a significant hurdle in the utilisation of exogenous folic acid is the initial reduction of fully oxidised folic acid to dihydrofolate, an activity that the single mutant enzyme found in HB3 is postulated to perform particularly poorly. This would mirror earlier studies indicating that the DHFR activity of HB3 is also compromised relative to other variants.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 1QD, UK
| | | | | | | | | |
Collapse
|