1
|
Dudley EG. The E. coli CRISPR-Cas conundrum: are they functional immune systems or genomic singularities? EcoSal Plus 2025:eesp00402020. [PMID: 40202350 DOI: 10.1128/ecosalplus.esp-0040-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
The discovery and subsequent characterization and applications of CRISPR-Cas is one of the most fascinating scientific stories from the past two decades. While first identified in Escherichia coli, this microbial workhorse often took a back seat to other bacteria during the early race to detail CRISPR-Cas function as an adaptive immune system. This was not a deliberate slight, but the result of early observations that the CRISPR-Cas systems found in E. coli were not robust phage defense systems as first described in Streptococcus thermophilus. This apparent lack of activity was discovered to result from transcriptional repression by the nucleoid protein H-NS. Despite extensive evidence arguing against such roles, some studies still present E. coli CRISPR-Cas systems in the context of anti-phage and/or anti-plasmid activities. Here, the studies that led to our understanding of its cryptic nature are highlighted, along with ongoing research to uncover potential alternative functions in E. coli.
Collapse
Affiliation(s)
- Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Lu H, Cheng L, Cui S, Yi X, Li X, Liu X, Kong X, Yu X. Characterizing the loss and acquisition of Tn2-like transposon in Klebsiella pneumoniae: Implications for carbapenemase gene dissemination. J Glob Antimicrob Resist 2024; 38:98-102. [PMID: 38719187 DOI: 10.1016/j.jgar.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
Over 1 year, two KPC-producing and two non-KPC-producing Klebsiella pneumoniae strains were isolated from a patient. Genome and DNA hybridization analyses revealed the first three strains as a clonal lineage, with carbapenem resistance changes due to a Tn2-like transposon on an IncR/IncFII plasmid. The fourth strain, carrying three plasmids, caused a lethal infection and represented a different lineage. All strains belonged to the ST11-SL47-OL101 type. This study highlights the Tn2-like transposon's role in carbapenemase gene spread and the importance of distinguishing between bacterial colonization and infection.
Collapse
Affiliation(s)
- Hong Lu
- Department of Clinical Laboratory, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Cheng
- Department of Clinical Laboratory and Pathology, Hospital of Shanxi People's Armed Police, Taiyuan, China
| | - Shu Cui
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xin Yi
- Department of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xueqin Li
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Jincheng Coal Industry Group, Jincheng, China
| | - Xiang Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Koo H, Morrow CD. Bacteroidales-Specific Antimicrobial Genes Can Influence the Selection of the Dominant Fecal Strain of Bacteroides vulgatus and Bacteroides uniformis from the Gastrointestinal Tract Microbial Community. Life (Basel) 2024; 14:555. [PMID: 38792577 PMCID: PMC11121782 DOI: 10.3390/life14050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Bacteroides vulgatus and Bacteroides uniformis are known to be abundant in the human fecal microbial community. Although these strains typically remain stable over time in humans, disruption of this microbial community following antibiotics resulted in the transient change to new strains suggesting that a complex, dynamic strain community exists in humans. To further study the selection of dominant fecal microbial strains from the gastrointestinal tract (GIT) community, we analyzed three longitudinal metagenomic sequencing data sets using BLAST+ to identify genes encoding Bacteroidales-specific antimicrobial proteins (BSAP) that have known functions to restrict species-specific replication of B. uniformis (BSAP-2) or B. vulgatus (BSAP-3) and have been postulated to provide a competitive advantage in microbial communities. In the HMP (Human Microbiome Project) data set, we found fecal samples from individuals had B. vulgatus or B. uniformis with either complete or deleted BSAP genes that did not change over time. We also examined fecal samples from two separate longitudinal data sets of individuals who had been given either single or multiple antibiotics. The BSAP gene pattern from most individuals given either single or multiple antibiotics recovered to be the same as the pre-antibiotic strain. However, in a few individuals, we found incomplete BSAP-3 genes at early times during the recovery that were replaced by B. vulgatus with the complete BSAP-3 gene, consistent with the function of the BSAP to specifically restrict Bacteroides spp. The results of these studies provide insights into the fluxes that occur in the Bacteroides spp. GIT community following perturbation and the dynamics of the selection of a dominant fecal strain of Bacteroides spp.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Hall RJ, Snaith AE, Element SJ, Moran RA, Smith H, Cummins EA, Bottery MJ, Chowdhury KF, Sareen D, Ahmad I, Blair JMA, Carter LJ, McNally A. Non-antibiotic pharmaceuticals are toxic against Escherichia coli with no evolution of cross-resistance to antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:11. [PMID: 39843932 PMCID: PMC11721113 DOI: 10.1038/s44259-024-00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/06/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance can arise in the natural environment via prolonged exposure to the effluent released by manufacturing facilities. In addition to antibiotics, pharmaceutical plants also produce non-antibiotic pharmaceuticals, both the active ingredients and other components of the formulations. The effect of these on the surrounding microbial communities is less clear. We aimed to assess whether non-antibiotic pharmaceuticals and other compounds produced by pharmaceutical plants have inherent toxicity, and whether long-term exposure might result in significant genetic changes or select for cross-resistance to antibiotics. To this end, we screened four non-antibiotic pharmaceuticals (acetaminophen, ibuprofen, propranolol, metformin) and titanium dioxide for toxicity against Escherichia coli K-12 MG1655 and conducted a 30 day selection experiment to assess the effect of long-term exposure. All compounds reduced the maximum optical density reached by E. coli at a range of concentrations including one of environmental relevance, with transcriptome analysis identifying upregulated genes related to stress response and multidrug efflux in response ibuprofen treatment. The compounds did not select for significant genetic changes following a 30 day exposure, and no evidence of selection for cross-resistance to antibiotics was observed for population evolved in the presence of ibuprofen in spite of the differential gene expression after exposure to this compound. This work suggests that these compounds, at environmental concentrations, do not select for cross-resistance to antibiotics in E. coli.
Collapse
Affiliation(s)
- Rebecca J Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann E Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah J Element
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hannah Smith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael J Bottery
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, M13 9PT, UK
| | | | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Uttar Pradesh, 202001, India
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura J Carter
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Rudenko O, Baseggio L, McGuigan F, Barnes AC. Transforming the untransformable with knockout minicircles: High-efficiency transformation and vector-free allelic exchange knockout in the fish pathogen Photobacterium damselae. Microbiologyopen 2023; 12:e1374. [PMID: 37642481 PMCID: PMC10441182 DOI: 10.1002/mbo3.1374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Gene inactivation studies are critical in pathogenic bacteria, where insights into species biology can guide the development of vaccines and treatments. Allelic exchange via homologous recombination is a generic method of targeted gene editing in bacteria. However, generally applicable protocols are lacking, and suboptimal approaches are often used for nonstandard but epidemiologically important species. Photobacterium damselae subsp. piscicida (Pdp) is a primary pathogen of fish in aquaculture and has been considered hard to transform since the mid-1990s. Consequently, conjugative transfer of RK2/RP4 suicide vectors from Escherichia coli S17-1/SM10 donor strains, a system prone to off-target mutagenesis, was used to deliver the allelic exchange DNA in previous studies. Here we have achieved efficient electrotransformation in Pdp using a salt-free highly concentrated sucrose solution, which performs as a hypertonic wash buffer, cryoprotectant, and electroporation buffer. High-efficiency transformation has enabled vector-free mutagenesis for which we have employed circular minimalistic constructs (knockout minicircles) containing only allelic exchange essentials that were generated by Gibson assembly. Preparation of competent cells using sucrose and electroporation/integration of minicircles had virtually no detectable off-target promutagenic effect. In contrast, a downstream sacB selection apparently induced several large deletions via mobilization of transposable elements. Electroporation of minicircles into sucrose-treated cells is a versatile broadly applicable approach that may facilitate allelic exchange in a wide range of microbial species. The method permitted inactivation of a primary virulence factor unique to Pdp, apoptogenic toxin AIP56, demonstrating the efficacy of minicircles for difficult KO targets located on the high copy number of small plasmids.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Laura Baseggio
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fynn McGuigan
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Andrew C. Barnes
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Horne T, Orr VT, Hall JP. How do interactions between mobile genetic elements affect horizontal gene transfer? Curr Opin Microbiol 2023; 73:102282. [PMID: 36863168 DOI: 10.1016/j.mib.2023.102282] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/03/2023]
Abstract
Horizontal gene transfer is central to bacterial adaptation and is facilitated by mobile genetic elements (MGEs). Increasingly, MGEs are being studied as agents with their own interests and adaptations, and the interactions MGEs have with one another are recognised as having a powerful effect on the flow of traits between microbes. Collaborations and conflicts between MGEs are nuanced and can both promote and inhibit the acquisition of new genetic material, shaping the maintenance of newly acquired genes and the dissemination of important adaptive traits through microbiomes. We review recent studies that shed light on this dynamic and oftentimes interlaced interplay, highlighting the importance of genome defence systems in mediating MGE-MGE conflicts, and outlining the consequences for evolutionary change, that resonate from the molecular to microbiome and ecosystem levels.
Collapse
Affiliation(s)
- Tanya Horne
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Victoria T Orr
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - James Pj Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
7
|
Shin E, Noh HS, Ye Q, Lee SJ. Hydrogen peroxide treatment induces the transposition of an insertion sequence in Deinococcus radiopugnans DY59. Front Microbiol 2023; 14:1110084. [PMID: 36937269 PMCID: PMC10017437 DOI: 10.3389/fmicb.2023.1110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Deinococcus radiopugnans DY59 (formerly Deinococcus swuensis DY59) is a radiation-resistant bacterium isolated from soil. From the 3.5 Mb genomic DNA sequence of strain DY59 (December 2014), 31 insertion sequence (IS) elements of six IS families including IS1, IS4, IS5, IS66, IS630, and IS701 and five unclassified IS elements were detected. Upon induction of oxidative stress with 80 and 100 mM H2O2, the unique ISs of the IS4 family member were actively translocated into a carotenoid biosynthesis gene phytoene desaturase (QR90_10400), resulting in non-pigment phenotypic selection. Therefore, these active transpositions of a specific IS family member were induced by oxidative stress at 80 and 100 mM H2O2. Furthermore, D. radiopugnans DY59 exhibited extremely higher MIC values against H2O2 treatment. To explain this phenomenon, qRT-PCR was conducted to assess the expression levels of catalase and three LysR family regulators. Our findings indicated that the ISDrpg2 and ISDrpg3 elements of the IS4 family were actively transposed into the phytoene desaturase gene by H2O2 treatment via replicative transposition. However, high H2O2 resistance did not originate from H2O2-induced expression of catalase and LysR family regulators.
Collapse
|
8
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
9
|
Ye Q, Lee C, Shin E, Lee SJ. Influence of Redox Imbalances on the Transposition of Insertion Sequences in Deinococcus geothermalis. Antioxidants (Basel) 2021; 10:antiox10101623. [PMID: 34679757 PMCID: PMC8533066 DOI: 10.3390/antiox10101623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
The transposition of insertion sequence elements was evaluated among different Deinococcus geothermalis lineages, including the wild-type, a cystine importer-disrupted mutant, a complemented strain, and a cystine importer-overexpressed strain. Cellular growth reached early exponential growth at OD600 2.0 and late exponential growth at OD600 4.0. Exposing the cells to hydrogen peroxide (80–100 mM) resulted in the transposition of insertion sequences (ISs) in genes associated with the carotenoid biosynthesis pathway. Particularly, ISDge7 (an IS5 family member) and ISDge5 (an IS701 family member) from the cystine importer-disrupted mutant were transposed into phytoene desaturase (dgeo_0524) via replicative transposition. Further, the cystine importer-overexpressed strain Δdgeo_1985R showed transposition of both ISDge2 and ISDge5 elements. In contrast, IS transposition was not detected in the complementary strain. Interestingly, a cystine importer-overexpressing strain exhibited streptomycin resistance, indicating that point mutation occurred in the rpsL (dgeo_1873) gene encoding ribosomal protein S12. qRT-PCR analyses were then conducted to evaluate the expression of oxidative stress response genes, IS elements, and low-molecular-weight thiol compounds such as mycothiol and bacillithiol. Nevertheless, the mechanisms that trigger IS transposition in redox imbalance conditions remain unclear. Here, we report that the active transposition of different IS elements was affected by intracellular redox imbalances caused by cystine importer deficiencies or overexpression.
Collapse
|
10
|
Evolution of an Escherichia coli PTS - strain: a study of reproducibility and dynamics of an adaptive evolutive process. Appl Microbiol Biotechnol 2020; 104:9309-9325. [PMID: 32954454 DOI: 10.1007/s00253-020-10885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Adaptive laboratory evolution (ALE) has been used to study and solve pressing questions about evolution, especially for the study of the development of mutations that confer increased fitness during evolutionary processes. In this contribution, we investigated how the evolutionary process conducted with the PTS- mutant of Escherichia coli PB11 in three parallel batch cultures allowed the restoration of rapid growth with glucose as the carbon source. The significant findings showed that genomic sequence analysis of a set of newly evolved mutants isolated from ALE experiments 2-3 developed some essential mutations, which efficiently improved the fast-growing phenotypes throughout different fitness landscapes. Regulator galR was the target of several mutations such as SNPs, partial and total deletions, and insertion of an IS1 element and thus indicated the relevance of a null mutation of this gene in the adaptation of the evolving population of PB11 during the parallel ALE experiments. These mutations resulted in the selection of MglB and GalP as the primary glucose transporters by the evolving population, but further selection of at least a second adaptive mutation was also necessary. We found that mutations in the yfeO, rppH, and rng genes improved the fitness advantage of evolving PTS- mutants and resulted in amplification of leaky activity in Glk for glucose phosphorylation and upregulation of glycolytic and other growth-related genes. Notably, we determined that these mutations appeared and were fixed in the evolving populations between 48 and 72 h of cultivation, which resulted in the selection of fast-growing mutants during one ALE experiments in batch cultures of 80 h duration.Key points• ALE experiments selected evolved mutants through different fitness landscapes in which galR was the target of different mutations: SNPs, deletions, and insertion of IS.• Key mutations in evolving mutants appeared and fixed at 48-72 h of cultivation.• ALE experiments led to increased understanding of the genetics of cellular adaptation to carbon source limitation.
Collapse
|
11
|
Said-Salman IH, Jebaii FA, Yusef HH, Moustafa ME. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Sci Rep 2019; 9:14425. [PMID: 31595026 PMCID: PMC6783421 DOI: 10.1038/s41598-019-51046-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
This study investigated the non-thermal effects of Wi-Fi radiofrequency radiation of 2.4 GHz on global gene expression in Escherichia coli K-12 DH5α. High-throughput RNA-sequencing of 2.4 GHz exposed and non-exposed bacteria revealed that 101 genes were differentially expressed (DEGs) at P ≤ 0.05. The up-regulated genes were 52 while the down-regulated ones were 49. QRT-PCR analysis of pgaD, fliC, cheY, malP, malZ, motB, alsC, alsK, appB and appX confirmed the RNA-seq results. About 7% of DEGs are involved in cellular component organization, 6% in response to stress stimulus, 6% in biological regulation, 6% in localization, 5% in locomotion and 3% in cell adhesion. Database for annotation, visualization and integrated discovery (DAVID) functional clustering revealed that DEGs with high enrichment score included genes for localization of cell, locomotion, chemotaxis, response to external stimulus and cell adhesion. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that the pathways for flagellar assembly, chemotaxis and two-component system were affected. Go enrichment analysis indicated that the up-regulated DEGs are involved in metabolic pathways, transposition, response to stimuli, motility, chemotaxis and cell adhesion. The down-regulated DEGs are associated with metabolic pathways and localization of ions and organic molecules. Therefore, the exposure of E. coli DH5α to Wi-Fi radiofrequency radiation for 5 hours influenced several bacterial cellular and metabolic processes.
Collapse
Affiliation(s)
- Ilham H Said-Salman
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon.
| | - Fatima A Jebaii
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Hoda H Yusef
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohamed E Moustafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Detection and Characterization of Transposons in Bacteria. Methods Mol Biol 2019. [PMID: 31584155 DOI: 10.1007/978-1-4939-9877-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bacterial transposons, through their ability to transfer DNA sequences from one position in the genome to another, play a central role in the shape and the evolution of genomes. Extensive studies have been performed during the last five decades to understand the molecular mechanisms involved in the transposition of a variety of elements. Among the methods used, the papillation and the mating out coupled to arbitrary primed PCR assays described in this chapter are widely used as very powerful approaches to detect and characterize transposition events in vivo.
Collapse
|
13
|
|
14
|
Plaza N, Pérez-Reytor D, Ramírez-Araya S, Pavón A, Corsini G, Loyola DE, Jaña V, Pavéz L, Navarrete P, Bastías R, Castillo D, García K. Conservation of Small Regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT Encoded by the Pathogenicity Island (VPaI-7) of Pandemic Strains. Int J Mol Sci 2019; 20:ijms20112827. [PMID: 31185635 PMCID: PMC6601013 DOI: 10.3390/ijms20112827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are molecules that play an important role in the regulation of gene expression. sRNAs in bacteria can affect important processes, such as metabolism and virulence. Previous studies showed a significant role of sRNAs in the Vibrio species, but knowledge about Vibrio parahaemolyticus is limited. Here, we examined the conservation of sRNAs between V. parahaemolyticus and other human Vibrio species, in addition to investigating the conservation between V. parahaemolyticus strains differing in pandemic origin. Our results showed that only 7% of sRNAs were conserved between V. parahaemolyticus and other species, but 88% of sRNAs were highly conserved within species. Nonetheless, two sRNAs coding to RNA-OUT, a component of the Tn10/IS10 system, were exclusively present in pandemic strains. Subsequent analysis showed that both RNA-OUT were located in pathogenicity island-7 and would interact with transposase VPA1379, according to the model of pairing of IS10-encoded antisense RNAs. According to the location of RNA-OUT/VPA1379, we also investigated if they were expressed during infection. We observed that the transcriptional level of VPA1379 was significantly increased, while RNA-OUT was decreased at three hours post-infection. We suggest that IS10 transcription increases in pandemic strains during infection, probably to favor IS10 transposition and improve their fitness when they are facing adverse conditions.
Collapse
Affiliation(s)
- Nicolás Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Sebastián Ramírez-Araya
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
- Departamento Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8320000, Chile.
| | - Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - David E Loyola
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Santiago 8320000, Chile.
| | - Leonardo Pavéz
- Instituto de Ciencias Naturales, Universidad de Las Américas, Santiago 8320000, Chile.
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago 8320000, Chile.
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Millenium nucleus in the Biology of Intestinal Microbiota, INTA, Universidad de Chile, Santiago 8320000, Chile.
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, 1353 Helsingør, Denmark.
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| |
Collapse
|
15
|
Fitzgerald DM, Rosenberg SM. What is mutation? A chapter in the series: How microbes "jeopardize" the modern synthesis. PLoS Genet 2019; 15:e1007995. [PMID: 30933985 PMCID: PMC6443146 DOI: 10.1371/journal.pgen.1007995] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations drive evolution and were assumed to occur by chance: constantly, gradually, roughly uniformly in genomes, and without regard to environmental inputs, but this view is being revised by discoveries of molecular mechanisms of mutation in bacteria, now translated across the tree of life. These mechanisms reveal a picture of highly regulated mutagenesis, up-regulated temporally by stress responses and activated when cells/organisms are maladapted to their environments-when stressed-potentially accelerating adaptation. Mutation is also nonrandom in genomic space, with multiple simultaneous mutations falling in local clusters, which may allow concerted evolution-the multiple changes needed to adapt protein functions and protein machines encoded by linked genes. Molecular mechanisms of stress-inducible mutation change ideas about evolution and suggest different ways to model and address cancer development, infectious disease, and evolution generally.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
16
|
Datta C, Jha RK, Ahmed W, Ganguly S, Ghosh S, Nagaraja V. Physical and functional interaction between nucleoid-associated proteins HU and Lsr2 of Mycobacterium tuberculosis: altered DNA binding and gene regulation. Mol Microbiol 2019; 111:981-994. [PMID: 30633392 DOI: 10.1111/mmi.14202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
Nucleoid-associated proteins (NAPs) in bacteria contribute to key activities such as DNA compaction, chromosome organization and regulation of gene expression. HU and Lsr2 are two principal NAPs in Mycobacterium tuberculosis (Mtb). HU is essential for Mtb survival and is one of the most abundant NAPs. It differs from other eubacterial HU proteins in having a long, flexible lysine- and arginine-rich carboxy-terminal domain. Lsr2 of Mtb is the functional analogue of the bacterial NAP commonly called H-NS. Lsr2 binds to and regulates expression of A/T-rich portions of the otherwise G/C-rich mycobacterial chromosome. Here, we demonstrate that HU and Lsr2 interact to form a complex. The interaction occurs primarily through the flexible carboxy-terminal domain of HU and the acidic amino-terminal domain of Lsr2. The resulting complex, upon binding to DNA, forms thick nucleoprotein rods, in contrast to the DNA bridging seen with Lsr2 and the DNA compaction seen with HU. Furthermore, transcription assays indicate that the HU-Lsr2 complex is a regulator of gene expression. This physical and functional interaction between two NAPs, which has not been reported previously, is likely to be important for DNA organization and gene expression in Mtb and perhaps other bacterial species.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Rajiv Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Sohini Ganguly
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Soumitra Ghosh
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
17
|
Wang L, Si W, Xue H, Zhao X. Characterization of a functional insertion sequence IS Sau2 from Staphylococcus aureus. Mob DNA 2018; 9:3. [PMID: 29371891 PMCID: PMC5771124 DOI: 10.1186/s13100-018-0108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background ISSau2 has been suggested as a member of the IS150 f subgroup in the IS3 family. It encodes a fusion transposase OrfAB produced by programmed − 1 translational frameshifting with two overlapping reading frames orfA and orfB. To better characterize ISSau2, the binding and cleaving activities of the ISSau2 transposase and its transposition frequency were studied. Results The purified ISSau2 transposase OrfAB was a functional protein in vitro since it bound specifically to ISSau2 terminal inverted repeat sequences (IRs) and cleaved the transposon ends at the artificial mini-transposon pUC19-IRL-gfp-IRR. In addition, the transposition frequency of ISSau2 in vivo was approximately 1.76 ± 0.13 × 10− 3, based on a GFP hop-on assay. Furthermore, OrfB cleaved IRs with the similar catalytic activity of OrfAB, while OrfA had no catalytic activity. Finally, either OrfA or OrfB significantly reduced the transposition of ISSau2 induced by OrfAB. Conclusion We have confirmed that ISSau2 is a member of IS150/IS3 family. The ISSau2 transposase OrfAB could bind to and cleave the specific fragments containing the terminal inverted repeat sequences and induce the transposition, suggesting that ISSau2 is at least partially functional. Meanwhile, both OrfA and OrfB inhibited the transposition by ISSau2. Our results will help understand biological roles of ISSau2 in its host S. aureus.
Collapse
Affiliation(s)
- Liangliang Wang
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China.,2School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China.,3Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, People's Republic of China
| | - Wei Si
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China
| | - Huping Xue
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China
| | - Xin Zhao
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China.,4Department of Animal Science, McGill University, Quebec, Canada
| |
Collapse
|
18
|
Polit A, Yang H, Amund D. Investigating the transmissibility of tet(W) in bifidobacteria exposed to acid and bile stress. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 37:39-43. [PMID: 29662736 PMCID: PMC5897239 DOI: 10.12938/bmfh.17-017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/09/2017] [Indexed: 11/08/2022]
Abstract
Transfer of antibiotic resistance genes from probiotic bacteria to pathogens poses a safety concern. Orally administered probiotics are exposed to stressful conditions during gastrointestinal transit. In this study,
filter mating experiments were performed to investigate the potential role of exposure of Bifidobacterium isolates to acid and bile stress on the transfer of a tetracycline resistance gene,
tet(W), to Enterococcus faecalis ATCC 51299. No E. faecalis transconjugants were obtained after mating with either stressed or unstressed
Bifidobacterium, thereby suggesting that tet(W) could not be transferred as a result of exposure to gastrointestinal stresses.
Collapse
Affiliation(s)
- Agnieszka Polit
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom
| | - Huiying Yang
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom
| | - Daniel Amund
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom
| |
Collapse
|
19
|
Dou Y, Rutanhira H, Chen X, Mishra A, Wang C, Fletcher HM. Role of extracytoplasmic function sigma factor PG1660 (RpoE) in the oxidative stress resistance regulatory network of Porphyromonas gingivalis. Mol Oral Microbiol 2017; 33:89-104. [PMID: 29059500 DOI: 10.1111/omi.12204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
In Porphyromonas gingivalis, the protein PG1660, composed of 174 amino acids, is annotated as an extracytoplasmic function (ECF) sigma factor (RpoE homologue-σ24). Because PG1660 can modulate several virulence factors and responds to environmental signals in P. gingivalis, its genetic properties were evaluated. PG1660 is co-transcribed with its downstream gene PG1659, and the transcription start site was identified as adenine residue 54-nucleotides upstream of the ATG translation start codon. In addition to binding its own promoter, using the purified rPG1660 and RNAP core enzyme from Escherichia coli with the PG1660 promoter DNA as template, the function of PG1660 as a sigma factor was demonstrated in an in vitro transcription assay. Transcriptome analyses of a P. gingivalis PG1660-defective isogenic mutant revealed that under oxidative stress conditions 176 genes including genes involved in secondary metabolism were downregulated more than two-fold compared with the parental strain. The rPG1660 protein also showed the ability to bind to the promoters of the highly downregulated genes in the PG1660-deficient mutant. As the ECF sigma factor PG0162 has a 29% identity with PG1660 and can modulate its expression, the cross-talk between their regulatory networks was explored. The expression profile of the PG0162PG1660-deficient mutant (P. gingivalis FLL356) revealed that the type IX secretion system genes and several virulence genes were downregulated under hydrogen peroxide stress conditions. Taken together, we have confirmed that PG1660 can function as a sigma factor, and plays an important regulatory role in the oxidative stress and virulence regulatory network of P. gingivalis.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H Rutanhira
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - X Chen
- Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, CA, USA
| | - A Mishra
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
20
|
Ludvigsen J, Porcellato D, L'Abée-Lund TM, Amdam GV, Rudi K. Geographically widespread honeybee-gut symbiont subgroups show locally distinct antibiotic-resistant patterns. Mol Ecol 2017; 26:6590-6607. [PMID: 29087008 DOI: 10.1111/mec.14392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/16/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
How long-term antibiotic treatment affects host bacterial associations is still largely unknown. The honeybee-gut microbiota has a simple composition, so we used this gut community to investigate how long-term antibiotic treatment affects host-associated microbiota. We investigated the phylogenetic relatedness, genomic content (GC percentage, genome size, number of genes and CRISPR) and antibiotic-resistant genes (ARG) for strains from two abundant members of the honeybee core gut microbiota (Gilliamella apicola and Snodgrassella alvi). Domesticated honeybees are subjected to geographically different management policies, so we used two research apiaries, representing different antibiotic treatment regimens in their apiculture: low antibiotic usage (Norway) and high antibiotic usage (Arizona, USA). We applied whole-genome shotgun sequencing on 48 G. apicola and 22 S. alvi. We identified three predominating subgroups of G. apicola in honeybees from both Norway and Arizona. For G. apicola, genetic content substantially varied between subgroups and distance similarity calculations showed similarity discrepancy between subgroups. Functional differences between subgroups, such as pectin-degrading enzymes (G. apicola), were also identified. In addition, we identified horizontal gene transfer (HGT) of transposon (Tn10)-associated tetracycline resistance (Tet B) across the G. apicola subgroups in the Arizonan honeybees, using interspace polymorphisms in the Tet B determinant. Our results support that honeybee-gut symbiont subgroups can resist long-term antibiotic treatment and maintain functionality through acquisition of geographically distinct antibiotic-resistant genes by HGT.
Collapse
Affiliation(s)
- Jane Ludvigsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Trine M L'Abée-Lund
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Gro V Amdam
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
21
|
Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat Ecol Evol 2017; 1:1348-1353. [PMID: 28890938 PMCID: PMC5584672 DOI: 10.1038/s41559-017-0250-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. .,Department of Biology, University of York, York, YO10 5DD, UK.
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, L69 7ZB, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, L69 7ZB, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
22
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
23
|
Cumming BM, Rahman MA, Lamprecht DA, Rohde KH, Saini V, Adamson JH, Russell DG, Steyn AJC. Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathog 2017; 13:e1006389. [PMID: 28542477 PMCID: PMC5456404 DOI: 10.1371/journal.ppat.1006389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/02/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023] Open
Abstract
Signals modulating the production of Mycobacterium tuberculosis (Mtb) virulence factors essential for establishing long-term persistent infection are unknown. The WhiB3 redox regulator is known to regulate the production of Mtb virulence factors, however the mechanisms of this modulation are unknown. To advance our understanding of the mechanisms involved in WhiB3 regulation, we performed Mtb in vitro, intraphagosomal and infected host expression analyses. Our Mtb expression analyses in conjunction with extracellular flux analyses demonstrated that WhiB3 maintains bioenergetic homeostasis in response to available carbon sources found in vivo to establish Mtb infection. Our infected host expression analysis indicated that WhiB3 is involved in regulation of the host cell cycle. Detailed cell-cycle analysis revealed that Mtb infection inhibited the macrophage G1/S transition, and polyketides under WhiB3 control arrested the macrophages in the G0-G1 phase. Notably, infection with the Mtb whiB3 mutant or polyketide mutants had little effect on the macrophage cell cycle and emulated the uninfected cells. This suggests that polyketides regulated by Mtb WhiB3 are responsible for the cell cycle arrest observed in macrophages infected with the wild type Mtb. Thus, our findings demonstrate that Mtb WhiB3 maintains bioenergetic homeostasis to produce polyketide and lipid cyclomodulins that target the host cell cycle. This is a new mechanism whereby Mtb modulates the immune system by altering the host cell cycle to promote long-term persistence. This new knowledge could serve as the foundation for new host-directed therapeutic discovery efforts that target the host cell cycle.
Collapse
Affiliation(s)
| | | | - Dirk A. Lamprecht
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
| | - Kyle H. Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John H. Adamson
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
| | - David G. Russell
- Cornell University College of Veterinary Medicine, C5 171 Veterinary Medical Center, Ithaca, New York, United States of America
| | - Adrie J. C. Steyn
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
25
|
Abstract
Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.
Collapse
|
26
|
Wu Y, Aandahl RZ, Tanaka MM. Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist? BMC Evol Biol 2015; 15:288. [PMID: 26690348 PMCID: PMC4687120 DOI: 10.1186/s12862-015-0560-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Currently there is no satisfactory explanation for why bacterial insertion sequences (ISs) widely occur across prokaryotes despite being mostly harmful to their host genomes. Rates of horizontal gene transfer are likely to be too low to maintain ISs within a population. IS-induced beneficial mutations may be important for both prevalence of ISs and microbial adaptation to changing environments but may be too rare to sustain IS elements in the long run. Environmental stress can induce elevated rates of IS transposition activities; such episodes are known as ‘transposition bursts’. By examining how selective forces and transposition events interact to influence IS dynamics, this study asks whether transposition bursts can lead to IS persistence. Results We show through a simulation model that ISs are gradually eliminated from a population even if IS transpositions occasionally cause advantageous mutations. With beneficial mutations, transposition bursts create variation in IS copy numbers and improve cell fitness on average. However, these benefits are not usually sufficient to overcome the negative selection against the elements, and transposition bursts amplify the mean fitness effect which, if negative, simply accelerates the extinction of ISs. If down regulation of transposition occurs, IS extinctions are reduced while ISs still generate variation amongst bacterial genomes. Conclusions Transposition bursts do not help ISs persist in a bacterial population in the long run because most burst-induced mutations are deleterious and therefore not favoured by natural selection. However, bursts do create more genetic variation through which occasional advantageous mutations can help organisms adapt. Regulation of IS transposition bursts and stronger positive selection of the elements interact to slow down the burst-induced extinction of ISs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0560-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Wu
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia. .,Present address: Telethon Kids Institute, University of Western Australia, Perth, 6008, WA, Australia.
| | - Richard Z Aandahl
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Mark M Tanaka
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
27
|
Fernandez-Rodriguez J, Yang L, Gorochowski TE, Gordon DB, Voigt CA. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth Biol 2015; 4:1361-72. [PMID: 26548807 DOI: 10.1021/acssynbio.5b00170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic memory can be implemented using enzymes that catalyze DNA inversions, where each orientation corresponds to a "bit". Here, we use two DNA invertases (FimE and HbiF) that reorient DNA irreversibly between two states with opposite directionality. First, we construct memory that is set by FimE and reset by HbiF. Next, we build a NOT gate where the input promoter drives FimE and in the absence of signal the reverse state is maintained by the constitutive expression of HbiF. The gate requires ∼3 h to turn on and off. The evolutionary stabilities of these circuits are measured by passaging cells while cycling function. The memory switch is stable over 400 h (17 days, 14 state changes); however, the gate breaks after 54 h (>2 days) due to continuous invertase expression. Genome sequencing reveals that the circuit remains intact, but the host strain evolves to reduce invertase expression. This work highlights the need to evaluate the evolutionary robustness and failure modes of circuit designs, especially as more complex multigate circuits are implemented.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Yang
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas E. Gorochowski
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - D. Benjamin Gordon
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Christopher A. Voigt
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
28
|
Fablet M, Vieira C. Evolvability, epigenetics and transposable elements. Biomol Concepts 2015; 2:333-41. [PMID: 25962041 DOI: 10.1515/bmc.2011.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022] Open
Abstract
Evolvability can be defined as the capacity of an individual to evolve and thus to capture adaptive mutations. Transposable elements (TE) are an important source of mutations in organisms. Their capacity to transpose within a genome, sometimes at a high rate, and their copy number regulation are environment-sensitive, as are the epigenetic pathways that mediate TE regulation in a genome. In this review we revisit the way we see evolvability with regard to transposable elements and epigenetics.
Collapse
|
29
|
Ross JA, Trussler RS, Black MD, McLellan CR, Haniford DB. Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS. Mob DNA 2014; 5:27. [PMID: 25506402 PMCID: PMC4265352 DOI: 10.1186/s13100-014-0027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base pairing of mRNAs with trans-encoded sRNAs. It was previously shown that Hfq down-regulates Tn10 transposition by inhibiting IS10 transposase expression at the post-transcriptional level. This provided the first example of Hfq playing a role in DNA transposition and led us to ask if a related transposon, Tn5, is similarly regulated. Results We show that Hfq strongly suppresses Tn5 transposition in Escherichia coli by inhibiting IS50 transposase expression. However, in contrast to the situation for Tn10, Hfq primarily inhibits IS50 transposase transcription. As Hfq does not typically function directly in transcription, we searched for a transcription factor that also down-regulated IS50 transposase transcription and is itself under Hfq control. We show that Crp (cyclic AMP receptor protein) fits these criteria as: (1) disruption of the crp gene led to an increase in IS50 transposase expression and the magnitude of this increase was comparable to that observed for an hfq disruption; and (2) Crp expression decreased in hfq−. We also demonstrate that IS50 transposase expression and Tn5 transposition are induced by over-expression of the sRNA SgrS and link this response to glucose limitation. Conclusions Tn5 transposition is negatively regulated by Hfq primarily through inhibition of IS50 transposase transcription. Preliminary results support the possibility that this regulation is mediated through Crp. We also provide evidence that glucose limitation activates IS50 transposase transcription and transposition. Electronic supplementary material The online version of this article (doi:10.1186/s13100-014-0027-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Biochemistry, University of Western Ontario, London, ONN6A 5C1 Canada
| | - Ryan S Trussler
- Department of Biochemistry, University of Western Ontario, London, ONN6A 5C1 Canada
| | - Morgan D Black
- Department of Biochemistry, University of Western Ontario, London, ONN6A 5C1 Canada
| | - Crystal R McLellan
- Department of Biochemistry, University of Western Ontario, London, ONN6A 5C1 Canada
| | - David B Haniford
- Department of Biochemistry, University of Western Ontario, London, ONN6A 5C1 Canada
| |
Collapse
|
30
|
Ferenci T, Maharjan R. Mutational heterogeneity: A key ingredient of bet-hedging and evolutionary divergence? Bioessays 2014; 37:123-30. [DOI: 10.1002/bies.201400153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas Ferenci
- School of Molecular Bioscience; University of Sydney; NSW Australia
| | - Ram Maharjan
- School of Molecular Bioscience; University of Sydney; NSW Australia
| |
Collapse
|
31
|
Gómez MJ, Díaz-Maldonado H, González-Tortuero E, López de Saro FJ. Chromosomal replication dynamics and interaction with the β sliding clamp determine orientation of bacterial transposable elements. Genome Biol Evol 2014; 6:727-40. [PMID: 24614824 PMCID: PMC3971601 DOI: 10.1093/gbe/evu052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Insertion sequences (ISs) are small transposable elements widespread in bacterial genomes, where they play an essential role in chromosome evolution by stimulating recombination and genetic flow. Despite their ubiquity, it is unclear how ISs interact with the host. Here, we report a survey of the orientation patterns of ISs in bacterial chromosomes with the objective of gaining insight into the interplay between ISs and host chromosomal functions. We find that a significant fraction of IS families present a consistent and family-specific orientation bias with respect to chromosomal DNA replication, especially in Firmicutes. Additionally, we find that the transposases of up to nine different IS families with different transposition pathways interact with the β sliding clamp, an essential replication factor, suggesting that this is a widespread mechanism of interaction with the host. Although we find evidence that the interaction with the β sliding clamp is common to all bacterial phyla, it also could explain the observed strong orientation bias found in Firmicutes, because in this group β is asymmetrically distributed during synthesis of the leading or lagging strands. Besides the interaction with the β sliding clamp, other asymmetries also play a role in the biased orientation of some IS families. The utilization of the highly conserved replication sliding clamps suggests a mechanism for host regulation of IS proliferation and also a universal platform for IS dispersal and transmission within bacterial populations and among phylogenetically distant species.
Collapse
Affiliation(s)
- Manuel J Gómez
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Fricker AD, Peters JE. Vulnerabilities on the lagging-strand template: opportunities for mobile elements. Annu Rev Genet 2014; 48:167-86. [PMID: 25195506 DOI: 10.1146/annurev-genet-120213-092046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mobile genetic elements have the ability to move between positions in a genome. Some of these elements are capable of targeting one of the template strands during DNA replication. Examples found in bacteria include (a) Red recombination mediated by bacteriophage λ, (b) integration of group II mobile introns that reverse splice and reverse transcribe into DNA, (c) HUH endonuclease elements that move as single-stranded DNA, and (d) Tn7, a DNA cut-and-paste transposon that uses a target-site-selecting protein to target transposition into certain forms of DNA replication. In all of these examples, the lagging-strand template appears to be targeted using a variety of features specific to this strand. These features appear especially available in certain situations, such as when replication forks stall or collapse. In this review, we address the idea that features specific to the lagging-strand template represent vulnerabilities that are capitalized on by mobile genetic elements.
Collapse
Affiliation(s)
- Ashwana D Fricker
- Department of Microbiology, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|
33
|
Gonçalves GAL, Oliveira PH, Gomes AG, Prather KLJ, Lewis LA, Prazeres DMF, Monteiro GA. Evidence that the insertion events of IS2 transposition are biased towards abrupt compositional shifts in target DNA and modulated by a diverse set of culture parameters. Appl Microbiol Biotechnol 2014; 98:6609-19. [PMID: 24769900 DOI: 10.1007/s00253-014-5695-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 01/29/2023]
Abstract
Insertion specificity of mobile genetic elements is a rather complex aspect of DNA transposition, which, despite much progress towards its elucidation, still remains incompletely understood. We report here the results of a meta-analysis of IS2 target sites from genomic, phage, and plasmid DNA and find that newly acquired IS2 elements are consistently inserted around abrupt DNA compositional shifts, particularly in the form of switch sites of GC skew. The results presented in this study not only corroborate our previous observations that both the insertion sequence (IS) minicircle junction and target region adopt intrinsically bent conformations in IS2, but most interestingly, extend this requirement to other families of IS elements. Using this information, we were able to pinpoint regions with high propensity for transposition and to predict and detect, de novo, a novel IS2 insertion event in the 3' region of the gfp gene of a reporter plasmid. We also found that during amplification of this plasmid, process parameters such as scale, culture growth phase, and medium composition exacerbate IS2 transposition, leading to contamination levels with potentially detrimental clinical effects. Overall, our findings provide new insights into the role of target DNA structure in the mechanism of transposition of IS elements and extend our understanding of how culture conditions are a relevant factor in the induction of genetic instability.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
34
|
González A, Angarica VE, Sancho J, Fillat MF. The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Res 2014; 42:4833-46. [PMID: 24503250 PMCID: PMC4005646 DOI: 10.1093/nar/gku123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the filamentous cyanobacterium Anabaena sp. PCC 7120, the ferric uptake regulator FurA functions as a global transcriptional regulator. Despite several analyses have focused on elucidating the FurA-regulatory network, the number of target genes described for this essential transcription factor is limited to a handful of examples. In this article, we combine an in silico genome-wide predictive approach with experimental determinations to better define the FurA regulon. Predicted FurA-binding sites were identified upstream of 215 genes belonging to diverse functional categories including iron homeostasis, photosynthesis and respiration, heterocyst differentiation, oxidative stress defence and light-dependent signal transduction mechanisms, among others. The probabilistic model proved to be effective at discerning FurA boxes from non-cognate sequences, while subsequent electrophoretic mobility shift assay experiments confirmed the in vitro specific binding of FurA to at least 20 selected predicted targets. Gene-expression analyses further supported the dual role of FurA as transcriptional modulator that can act both as repressor and as activator. In either role, the in vitro affinity of the protein to its target sequences is strongly dependent on metal co-regulator and reducing conditions, suggesting that FurA couples in vivo iron homeostasis and the response to oxidative stress to major physiological processes in cyanobacteria.
Collapse
Affiliation(s)
- Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain and Unidad Asociada BIFI-IQFR (CSIC), 28006 Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Ganesh S, Parris DJ, DeLong EF, Stewart FJ. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. THE ISME JOURNAL 2014; 8:187-211. [PMID: 24030599 PMCID: PMC3869020 DOI: 10.1038/ismej.2013.144] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 01/27/2023]
Abstract
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.
Collapse
Affiliation(s)
- Sangita Ganesh
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory 48, Cambridge, MA, USA
- Center for Microbial Ecology: Research and Education, Honolulu, Hawaii, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
36
|
Ruiz L, Motherway MO, Lanigan N, van Sinderen D. Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 2013; 8:e64699. [PMID: 23737995 PMCID: PMC3667832 DOI: 10.1371/journal.pone.0064699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/17/2013] [Indexed: 01/20/2023] Open
Abstract
Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Mary O’Connell Motherway
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Noreen Lanigan
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology and Alimentary Pharmabiotic Centre, National University of Ireland, Cork, Ireland
- * E-mail:
| |
Collapse
|
37
|
van der Heijden I, Gomez-Eerland R, van den Berg JH, Oosterhuis K, Schumacher TN, Haanen JBAG, Beijnen JH, Nuijen B. Transposon leads to contamination of clinical pDNA vaccine. Vaccine 2013; 31:3274-80. [PMID: 23707695 DOI: 10.1016/j.vaccine.2013.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/02/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
Abstract
We report an unexpected contamination during clinical manufacture of a Human Papilomavirus (HPV) 16 E6 encoding plasmid DNA (pDNA) vaccine, with a transposon originating from the Escherichia coli DH5 host cell genome. During processing, presence of this transposable element, insertion sequence 2 (IS2) in the plasmid vector was not noticed until quality control of the bulk pDNA vaccine when results of restriction digestion, sequencing, and CGE analysis were clearly indicative for the presence of a contaminant. Due to the very low level of contamination, only an insert-specific PCR method was capable of tracing back the presence of the transposon in the source pDNA and master cell bank (MCB). Based on the presence of an uncontrolled contamination with unknown clinical relevance, the product was rejected for clinical use. In order to prevent costly rejection of clinical material, both in-process controls and quality control methods must be sensitive enough to detect such a contamination as early as possible, i.e. preferably during plasmid DNA source generation, MCB production and ultimately during upstream processing. However, as we have shown that contamination early in the process development pipeline (source pDNA, MCB) can be present below limits of detection of generally applied analytical methods, the introduction of "engineered" or transposon-free host cells seems the only 100% effective solution to avoid contamination with movable elements and should be considered when searching for a suitable host cell-vector combination.
Collapse
Affiliation(s)
- I van der Heijden
- Department of Pharmacy & Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Identification of IS2 transposition in pVAX1-based plasmid, a common vector for DNA vaccine development. N Biotechnol 2012. [DOI: 10.1016/j.nbt.2012.08.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Messing SAJ, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucleic Acids Res 2012; 40:9964-79. [PMID: 22885300 PMCID: PMC3479197 DOI: 10.1093/nar/gks741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extragenic sequences in genomes, such as microRNA and CRISPR, are vital players in the cell. Repetitive extragenic palindromic sequences (REPs) are a class of extragenic sequences, which form nucleotide stem-loop structures. REPs are found in many bacterial species at a high copy number and are important in regulation of certain bacterial functions, such as Integration Host Factor recruitment and mRNA turnover. Although a new clade of putative transposases (RAYTs or TnpAREP) is often associated with an increase in these repeats, it is not clear how these proteins might have directed amplification of REPs. We report here the structure to 2.6 Å of TnpAREP from Escherichia coli MG1655 bound to a REP. Sequence analysis showed that TnpAREP is highly related to the IS200/IS605 family, but in contrast to IS200/IS605 transposases, TnpAREP is a monomer, is auto-inhibited and is active only in manganese. These features suggest that, relative to IS200/IS605 transposases, it has evolved a different mechanism for the movement of discrete segments of DNA and has been severely down-regulated, perhaps to prevent REPs from sweeping through genomes.
Collapse
Affiliation(s)
- Simon A J Messing
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Z, Saier MH. Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J Mol Microbiol Biotechnol 2012; 21:59-70. [PMID: 22248543 DOI: 10.1159/000333108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposons, mobile genetic elements that can hop from one chromosomal location to another, are known to be both beneficial and deleterious to the cell that bears them. Their value in accelerating evolutionary adaptation is well recognized. We herein summarize published research dealing with these elements and then move on to review our own research efforts which focus on a small transposon that can induce mutations under the control of host factors in a process that phenotypically and mechanistically conforms to the definition of 'directed mutation'. Directed mutations occur at higher frequencies when they are beneficial, being induced by the stress condition that they relieve. Here, we review evidence for transposon-mediated directed mutation in Escherichia coli. Deletion mutants in the crp gene can not grow on glycerol (Glp(-)); however, these cells mutate specifically to efficient glycerol utilization (Glp(+)) at rates that are greatly enhanced by the presence of glycerol or the loss of the glycerol repressor (GlpR). These rates are greatly depressed by glucose or by glpR overexpression. Of the four tandem GlpR-binding sites (O1-O4) in the control region of the glpFK operon, O4 (downstream) specifically controls glpFK expression while O1 (upstream) controls mutation rate. Mutation is due to insertion of the small transposon IS5 into a specific site just upstream of the glpFK promoter. Mutational control by the glycerol regulon repressor GlpR is independent of the selection and assay procedures, and IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish the principle of transposon-mediated directed mutation, identify a protein responsible for its regulation, and define essential aspects of the mechanism.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
41
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
42
|
Donnelly A, Caffarra A, O'Neill BF. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2011; 55:805-817. [PMID: 21509461 DOI: 10.1007/s00484-011-0426-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Mismatches in phenology between mutually dependent species, resulting from climate change, can have far-reaching consequences throughout an ecosystem at both higher and lower trophic levels. Rising temperatures, due to climate warming, have resulted in advances in development and changes in behaviour of many organisms around the world. However, not all species or phenophases are responding to this increase in temperature at the same rate, thus creating a disruption to previously synchronised interdependent key life-cycle stages. Mismatches have been reported between plants and pollinators, predators and prey, and pests and hosts. Here, we review mismatches between interdependent phenophases at different trophic levels resulting from climate change. We categorized the studies into (1) terrestrial (natural and agricultural) ecosystems, and (2) aquatic (freshwater and marine) ecosystems. As expected, we found reports of 'winners' and 'losers' in each system, such as earlier emergence of prey enabling partial avoidance of predators, potential reductions in crop yield if herbivore pests emerge before their predators and possible declines in marine biodiversity due to disruption in plankton-fish phenologies. Furthermore, in the marine environment rising temperatures have resulted in synchrony in a previously mismatched prey and predator system, resulting in an abrupt population decline in the prey species. The examples reviewed suggest that more research into the complex interactions between species in terrestrial and aquatic ecosystems is necessary to make conclusive predictions of how climate warming may impact the fragile balances within ecosystems in future.
Collapse
Affiliation(s)
- Alison Donnelly
- Centre for Environment, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
43
|
Schmitz-Esser S, Penz T, Spang A, Horn M. A bacterial genome in transition--an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus. BMC Evol Biol 2011; 11:270. [PMID: 21943072 PMCID: PMC3196728 DOI: 10.1186/1471-2148-11-270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Results The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction. Conclusions Taken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
44
|
Bickhart DM, Benson DR. Transcriptomes of Frankia sp. strain CcI3 in growth transitions. BMC Microbiol 2011; 11:192. [PMID: 21867524 PMCID: PMC3188489 DOI: 10.1186/1471-2180-11-192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022] Open
Abstract
Background Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high.
Collapse
Affiliation(s)
- Derek M Bickhart
- Department of Molecular and Cell Biology, U-3125, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
45
|
Insertion sequence elements in Cupriavidus metallidurans CH34: Distribution and role in adaptation. Plasmid 2011; 65:193-203. [DOI: 10.1016/j.plasmid.2010.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022]
|
46
|
Giorgi G, Marcantonio P, Bersani F, Gavoçi E, Del Re B. Effect of extremely low frequency magnetic field exposure on DNA transposition in relation to frequency, wave shape and exposure time. Int J Radiat Biol 2011; 87:601-8. [PMID: 21504343 DOI: 10.3109/09553002.2011.570855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effect of extremely low frequency magnetic field (ELF-MF) exposure on transposon (Tn) mobility in relation to the exposure time, the frequency and the wave shape of the field applied. MATERIALS AND METHODS Two Escherichia coli model systems were used: (1) Cells unable to express β-galactosidase (LacZ(-)), containing a mini-transposon Tn10 element able to give ability to express β-galactosidase (LacZ(+)) upon its transposition; therefore in these cells transposition activity can be evaluated by analysing LacZ(+) clones; (2) cells carrying Fertility plasmid (F(+)), and a Tn5 element located on the chromosome; therefore in these cells transposition activity can be estimated by a bacterial conjugation assay. Cells were exposed to sinusoidal (SiMF) or pulsed-square wave (PMF) magnetic fields of various frequencies (20, 50, 75 Hz) and for different exposure times (15 and 90 min). RESULTS Both mini-Tn10 and Tn5 transposition decreased under SiMF and increased under PMF, as compared to sham exposure control. No significant difference was found between frequencies and between exposure times. CONCLUSIONS ELF-MF exposure affects transposition activity and the effects critically depend on the wave shape of the field, but not on the frequency and the exposure time, at least in the range observed.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Evolutionary Experimental Biology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
47
|
Genotype and phenotypes of an intestine-adapted Escherichia coli K-12 mutant selected by animal passage for superior colonization. Infect Immun 2011; 79:2430-9. [PMID: 21422176 DOI: 10.1128/iai.01199-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously isolated a spontaneous mutant of Escherichia coli K-12, strain MG1655, following passage through the streptomycin-treated mouse intestine, that has colonization traits superior to the wild-type parent strain (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). This intestine-adapted strain (E. coli MG1655*) grew faster on several different carbon sources than the wild type and was nonmotile due to deletion of the flhD gene. We now report the results of several high-throughput genomic analysis approaches to further characterize E. coli MG1655*. Whole-genome pyrosequencing did not reveal any changes on its genome, aside from the deletion at the flhDC locus, that could explain the colonization advantage of E. coli MG1655*. Microarray analysis revealed modest yet significant induction of catabolic gene systems across the genome in both E. coli MG1655* and an isogenic flhD mutant constructed in the laboratory. Catabolome analysis with Biolog GN2 microplates revealed an enhanced ability of both E. coli MG1655* and the isogenic flhD mutant to oxidize a variety of carbon sources. The results show that intestine-adapted E. coli MG1655* is more fit than the wild type for intestinal colonization, because loss of FlhD results in elevated expression of genes involved in carbon and energy metabolism, resulting in more efficient carbon source utilization and a higher intestinal population. Hence, mutations that enhance metabolic efficiency confer a colonization advantage.
Collapse
|
48
|
Pajunen MI, Rasila TS, Happonen LJ, Lamberg A, Haapa-Paananen S, Kiljunen S, Savilahti H. Universal platform for quantitative analysis of DNA transposition. Mob DNA 2010; 1:24. [PMID: 21110848 PMCID: PMC3003695 DOI: 10.1186/1759-8753-1-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/26/2010] [Indexed: 01/16/2023] Open
Abstract
Background Completed genome projects have revealed an astonishing diversity of transposable genetic elements, implying the existence of novel element families yet to be discovered from diverse life forms. Concurrently, several better understood transposon systems have been exploited as efficient tools in molecular biology and genomics applications. Characterization of new mobile elements and improvement of the existing transposition technology platforms warrant easy-to-use assays for the quantitative analysis of DNA transposition. Results Here we developed a universal in vivo platform for the analysis of transposition frequency with class II mobile elements, i.e., DNA transposons. For each particular transposon system, cloning of the transposon ends and the cognate transposase gene, in three consecutive steps, generates a multifunctional plasmid, which drives inducible expression of the transposase gene and includes a mobilisable lacZ-containing reporter transposon. The assay scores transposition events as blue microcolonies, papillae, growing within otherwise whitish Escherichia coli colonies on indicator plates. We developed the assay using phage Mu transposition as a test model and validated the platform using various MuA transposase mutants. For further validation and to illustrate universality, we introduced IS903 transposition system components into the assay. The developed assay is adjustable to a desired level of initial transposition via the control of a plasmid-borne E. coli arabinose promoter. In practice, the transposition frequency is modulated by varying the concentration of arabinose or glucose in the growth medium. We show that variable levels of transpositional activity can be analysed, thus enabling straightforward screens for hyper- or hypoactive transposase mutants, regardless of the original wild-type activity level. Conclusions The established universal papillation assay platform should be widely applicable to a variety of mobile elements. It can be used for mechanistic studies to dissect transposition and provides a means to screen or scrutinise transposase mutants and genes encoding host factors. In succession, improved versions of transposition systems should yield better tools for molecular biology and offer versatile genome modification vehicles for many types of studies, including gene therapy and stem cell research.
Collapse
Affiliation(s)
- Maria I Pajunen
- Division of Genetics and Physiology, Department of Biology, Vesilinnantie 5, FIN-20014 University of Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sleight SC, Bartley BA, Lieviant JA, Sauro HM. Designing and engineering evolutionary robust genetic circuits. J Biol Eng 2010; 4:12. [PMID: 21040586 PMCID: PMC2991278 DOI: 10.1186/1754-1611-4-12] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/01/2010] [Indexed: 12/25/2022] Open
Abstract
Background One problem with engineered genetic circuits in synthetic microbes is their stability over evolutionary time in the absence of selective pressure. Since design of a selective environment for maintaining function of a circuit will be unique to every circuit, general design principles are needed for engineering evolutionary robust circuits that permit the long-term study or applied use of synthetic circuits. Results We first measured the stability of two BioBrick-assembled genetic circuits propagated in Escherichia coli over multiple generations and the mutations that caused their loss-of-function. The first circuit, T9002, loses function in less than 20 generations and the mutation that repeatedly causes its loss-of-function is a deletion between two homologous transcriptional terminators. To measure the effect between transcriptional terminator homology levels and evolutionary stability, we re-engineered six versions of T9002 with a different transcriptional terminator at the end of the circuit. When there is no homology between terminators, the evolutionary half-life of this circuit is significantly improved over 2-fold and is independent of the expression level. Removing homology between terminators and decreasing expression level 4-fold increases the evolutionary half-life over 17-fold. The second circuit, I7101, loses function in less than 50 generations due to a deletion between repeated operator sequences in the promoter. This circuit was re-engineered with different promoters from a promoter library and using a kanamycin resistance gene (kanR) within the circuit to put a selective pressure on the promoter. The evolutionary stability dynamics and loss-of-function mutations in all these circuits are described. We also found that on average, evolutionary half-life exponentially decreases with increasing expression levels. Conclusions A wide variety of loss-of-function mutations are observed in BioBrick-assembled genetic circuits including point mutations, small insertions and deletions, large deletions, and insertion sequence (IS) element insertions that often occur in the scar sequence between parts. Promoter mutations are selected for more than any other biological part. Genetic circuits can be re-engineered to be more evolutionary robust with a few simple design principles: high expression of genetic circuits comes with the cost of low evolutionary stability, avoid repeated sequences, and the use of inducible promoters increases stability. Inclusion of an antibiotic resistance gene within the circuit does not ensure evolutionary stability.
Collapse
Affiliation(s)
- Sean C Sleight
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
50
|
Ross JA, Wardle SJ, Haniford DB. Tn10/IS10 transposition is downregulated at the level of transposase expression by the RNA-binding protein Hfq. Mol Microbiol 2010; 78:607-21. [PMID: 20815820 DOI: 10.1111/j.1365-2958.2010.07359.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show in this work that disruption of the hfq gene in Escherichia coli causes a large increase in IS10 transposition when IS10 is present on a multi-copy plasmid. Hfq is an RNA-binding protein that regulates the expression of a large number of genes at the post-transcriptional level by promoting the pairing of mRNAs with partially complementary short RNAs. As the translation of IS10 transposase mRNA (RNA-IN) is inhibited by an IS10-encoded anti-sense RNA (RNA-OUT), it seemed likely that Hfq would negatively regulate Tn10/IS10 transposition by promoting anti-sense inhibition of RNA-IN translation. Consistent with this, we show that Hfq promotes pairing of RNA-IN and RNA-OUT in vitro and downregulates RNA-IN expression in vivo. However, we also show that Hfq negatively regulates Tn10 transposition when no functional anti-sense RNA is produced. Taken together, the results suggest that Hfq acts at two distinct steps to inhibit Tn10/IS10 transposition. This is the first example of Hfq regulating a bacterial transposition reaction.
Collapse
Affiliation(s)
- Joseph A Ross
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|