1
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
2
|
Liu Y, Sun C, Han L, Yu Y, Zhou H, Shao Q, Lou J, Zhao Y, Huang Y. Conformational Dynamics, Intramolecular Domain Conformation Signaling, and Activation of Apo-FimD Revealed by Single-Molecule Fluorescence Resonance Energy Transfer Studies. Biochemistry 2019; 58:1931-1941. [PMID: 30888187 DOI: 10.1021/acs.biochem.9b00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chaperone-usher secretion pathway is a conserved bacterial protein secretion system dedicated to the biogenesis of adhesive fibers. Usher, a multidomain-containing outer membrane protein, plays a central role in this process by acting as a molecular machine that recruits different chaperone-subunit complexes, catalyzes subunit polymerization, and forms a channel for secretion of the assembled subunits. While recent crystal structural studies have greatly advanced our understanding of the structure and function of ushers, the overall architecture of the full-length apo-usher, the molecular events that dictate conformational changes in usher during pilus biogenesis, and its activation by the specific chaperone-adhesin complex remain largely elusive. Using single-molecule fluorescence resonance energy transfer studies, we found that the substrate-free usher FimD (apo-FimD) adopts a contracted conformation that is distinct from its substrate-bound states; both the N-terminal domain (NTD) and the C-terminal domain (CTD) of apo-FimD are highly dynamic, and FimD coordinates its domain conformational changes via intramolecular domain conformation signaling. By combining these studies with in vitro photo-cross-linking studies, we further show that only the chaperone-bound adhesin (FimC:FimH) can be transferred to the CTD, dislocates the plug domain, and triggers conformational changes in the remaining FimD domains. Taken together, these studies delineate an overall architecture of the full-length apo-FimD, provide detailed mechanic insight into the activation of apo-FimD, and explain why FimD could adjust its conformational states to perform multiple functions in each cycle of pilus subunit addition and ensure that pilus assembly proceeds progressively in a cellular energy-free environment.
Collapse
Affiliation(s)
- Yanqing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100101 , China
| | - Chuanqi Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100101 , China
| | - Long Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100101 , China
| | - Yuqi Yu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Jizhong Lou
- University of Chinese Academy of Sciences , Beijing 100101 , China.,Key Laboratory of RNA Biology, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100101 , China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
3
|
Hospenthal MK, Waksman G. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0010-2018. [PMID: 30681068 PMCID: PMC11588285 DOI: 10.1128/microbiolspec.psib-0010-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
Chaperone-usher (CU) pili are long, supramolecular protein fibers tethered to the surface of numerous bacterial pathogens. These virulence factors function primarily in bacterial adhesion to host tissues, but they also mediate biofilm formation. Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the two best-studied CU pilus examples, and here we primarily focus on the former. UPEC can be transmitted to the urinary tract by fecal shedding. It can then ascend up the urinary tract and cause disease by invading and colonizing host tissues of the bladder, causing cystitis, and the kidneys, causing pyelonephritis. FimH is the subunit displayed at the tip of type 1 pili and mediates adhesion to mannosylated host cells via a unique catch-bond mechanism. In response to shear forces caused by urine flow, FimH can transition from a low-affinity to high-affinity binding mode. This clever allosteric mechanism allows UPEC cells to remain tightly attached during periods of urine flow, while loosening their grip to allow dissemination through the urinary tract during urine stasis. Moreover, the bulk of a CU pilus is made up of the rod, which can reversibly uncoil in response to urine flow to evenly spread the tensile forces over the entire pilus length. We here explore the novel structural and mechanistic findings relating to the type 1 pilus FimH catch-bond and rod uncoiling and explain how they function together to enable successful attachment, spread, and persistence in the hostile urinary tract.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
| |
Collapse
|
4
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Abstract
Escherichia coli bacterial cells produce multiple types of adhesion pili that mediate cell-cell and cell-host attachments. These pili (also called 'fimbriae') are large biopolymers that are comprised of subunits assembled via a sophisticated micro-machinery into helix-like structures that are anchored in the bacterial outer membrane. They are commonly essential for initiation of disease and thus provide a potential target for antibacterial prevention and treatment. To develop new therapeutics for disease prevention and treatment we need to understand the molecular mechanisms and the direct role of adhesion pili during pathogenesis. These helix-like pilus structures possess fascinating and unique biomechanical properties that have been thoroughly investigated using high-resolution imaging techniques, force spectroscopy and fluid flow chambers. In this chapter, we first discuss the structure of pili and the micro-machinery responsible for the assembly process. Thereafter, we present methods for measurement of the biomechanics of adhesion pili, including optical tweezers. Data demonstrate unique biomechanical properties of pili that allow bacteria to sustain binding during in vivo fluid shear forces. We thereafter summarize the current biomechanical findings related to adhesion pili and show that pili biomechanical properties are niche-specific. That is, the data suggest that there is an organ-specific adaptation of pili that facilitates infection of the bacteria's target tissue. Thus, pilus biophysical properties are an important part of Escherichia coli pathogenesis, allowing bacteria to overcome hydrodynamic challenges in diverse environments.
Collapse
Affiliation(s)
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
6
|
Pham T, Werneburg GT, Henderson NS, Thanassi DG, Delcour AH. Effect of chaperone-adhesin complex on plug release by the PapC usher. FEBS Lett 2016; 590:2172-9. [PMID: 27313078 DOI: 10.1002/1873-3468.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/06/2022]
Abstract
The P pilus of uropathogenic Escherichia coli is a multisubunit fiber assembled at the outer membrane in a defined sequence by a chaperone/usher secretion system, comprising a periplasmic chaperone and a beta-barrel outer membrane protein, the PapC usher. To gain insight into the pilus biogenesis mechanism, we used patch clamp electrophysiology to investigate the effect of the initiating adhesin subunit, as it is delivered to PapC in a complex with the chaperone. We show that the chaperone-adhesin complex facilitates opening of the PapC pore and appears to engage within the PapC lumen, in agreement with prior biochemical and structural data.
Collapse
Affiliation(s)
- Thieng Pham
- Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Glenn T Werneburg
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, NY, USA
| | - Nadine S Henderson
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, NY, USA
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, NY, USA
| | - Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, TX, USA
| |
Collapse
|
7
|
Pham T, Henderson NS, Werneburg GT, Thanassi DG, Delcour AH. Electrostatic networks control plug stabilization in the PapC usher. Mol Membr Biol 2016; 32:198-207. [PMID: 27181766 DOI: 10.3109/09687688.2016.1160450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear. Two structural features within the β-barrel, an α-helix and β5-6 hairpin loop, may play roles in controlling plug stabilization. Here we have tested clusters of residues at the interface of the plug, barrel, α-helix and hairpin, which participate in electrostatic networks. To assess the roles of these residues in plug stabilization, we used patch-clamp electrophysiology to compare the activity of wild-type and mutant PapC channels containing alanine substitutions at these sites. Mutations interrupting each of two salt bridge networks were relatively ineffective in disrupting plug stabilization. However, mutation of two pairs of arginines located at the inner and the outer surfaces of the PD resulted in an enhanced propensity for plug displacement. One arginine pair involved in a repulsive interaction between the linkers that tether the plug to the β-barrel was particularly sensitive to mutation. These results suggest that plug displacement, which is necessary for pilus assembly and translocation, may require a weakening of key electrostatic interactions between the plug linkers, and the plug and the α-helix.
Collapse
Affiliation(s)
- Thieng Pham
- a Department of Biology and Biochemistry , University of Houston , Houston , TX and
| | - Nadine S Henderson
- b Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook , NY , USA
| | - Glenn T Werneburg
- b Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook , NY , USA
| | - David G Thanassi
- b Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook , NY , USA
| | - Anne H Delcour
- a Department of Biology and Biochemistry , University of Houston , Houston , TX and
| |
Collapse
|
8
|
Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane. Antimicrob Agents Chemother 2016; 60:2028-38. [PMID: 26824945 DOI: 10.1128/aac.02221-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly.
Collapse
|
9
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
10
|
The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nat Struct Mol Biol 2015; 22:540-6. [PMID: 26052892 PMCID: PMC4496297 DOI: 10.1038/nsmb.3044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
The chaperone-usher (CU) pathway assembles organelles termed pili or
fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic
Escherichia coli are prototypical structures assembled by
the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic
chaperone and an outer membrane protein termed the usher (FimD). We show that
the FimD C-terminal domains provide the high-affinity substrate binding site,
but that these domains are masked in the resting usher. Domain masking requires
the FimD plug domain, which serves as a switch controlling usher activation. We
demonstrate that usher molecules can act in trans for pilus
biogenesis, providing conclusive evidence for a functional usher oligomer. These
results reveal mechanisms by which molecular machines such as the usher regulate
and harness protein-protein interactions, and suggest that ushers may interact
in a cooperative manner during pilus assembly in bacteria.
Collapse
|
11
|
Busch A, Phan G, Waksman G. Molecular mechanism of bacterial type 1 and P pili assembly. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2013.0153. [PMID: 25624519 DOI: 10.1098/rsta.2013.0153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of adhesive surface structures called pili or fimbriae ('bacterial hair') is an important contributor towards bacterial pathogenicity and persistence. To fight often chronic or recurrent bacterial infections such as urinary tract infections, it is necessary to understand the molecular mechanism of the nanomachines assembling such pili. Here, we focus on the so far best-known pilus assembly machinery: the chaperone-usher pathway producing the type 1 and P pili, and highlight the most recently acquired structural knowledge. First, we describe the subunits' structure and the molecular role of the periplasmic chaperone. Second, we focus on the outer-membrane usher structure and the catalytic mechanism of usher-mediated pilus biogenesis. Finally, we describe how the detailed understanding of the chaperone-usher pathway at a molecular level has paved the way for the design of a new generation of bacterial inhibitors called 'pilicides'.
Collapse
Affiliation(s)
- Andreas Busch
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gilles Phan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
12
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
13
|
Allen WJ, Phan G, Hultgren SJ, Waksman G. Dissection of pilus tip assembly by the FimD usher monomer. J Mol Biol 2013; 425:958-67. [PMID: 23295826 PMCID: PMC3650583 DOI: 10.1016/j.jmb.2012.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 01/08/2023]
Abstract
Type 1 pili are representative of a class of bacterial surface structures assembled by the conserved chaperone/usher pathway and used by uropathogenic Escherichia coli to attach to bladder cells during infection. The outer membrane assembly platform-the usher-is critical for the formation of pili, catalysing the polymerisation of pilus subunits and enabling the secretion of the nascent pilus. Despite extensive structural characterisation of the usher, a number of questions about its mechanism remain, notably its oligomerisation state, and how it orchestrates the ordered assembly of pilus subunits. We demonstrate here that the FimD usher is able to catalyse in vitro pilus assembly effectively in its monomeric form. Furthermore, by establishing the kinetics of usher-catalysed reactions between various pilus subunits, we establish a complete kinetic model of tip fibrillum assembly, able to account for the order of subunits in native type 1 pili.
Collapse
Affiliation(s)
- William J. Allen
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gilles Phan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Scott J. Hultgren
- Center for Women's Infectious Disease Research, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
- Corresponding author.
| |
Collapse
|
14
|
Morrissey B, Leney AC, Toste Rêgo A, Phan G, Allen WJ, Verger D, Waksman G, Ashcroft AE, Radford SE. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS. Mol Cell Proteomics 2012; 11:M111.015289. [PMID: 22371487 PMCID: PMC3394950 DOI: 10.1074/mcp.m111.015289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/23/2012] [Indexed: 01/12/2023] Open
Abstract
The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species.
Collapse
MESH Headings
- Adhesins, Escherichia coli/chemistry
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/metabolism
- Bacterial Adhesion
- Binding Sites
- Binding, Competitive
- Escherichia coli/pathogenicity
- Escherichia coli/physiology
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Models, Molecular
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Periplasmic Proteins/chemistry
- Periplasmic Proteins/genetics
- Periplasmic Proteins/metabolism
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Bethny Morrissey
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Aneika C. Leney
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Ana Toste Rêgo
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Gilles Phan
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - William J. Allen
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Denis Verger
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Gabriel Waksman
- §Institute of Structural and Molecular Biology, Birkbeck College and University College London, London, WC1E 7HX, UK
| | - Alison E. Ashcroft
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E. Radford
- From the ‡Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, The University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
15
|
Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MBA, Pinkner JS, Ford B, Kay CWM, Li H, Hultgren SJ, Thanassi DG, Waksman G. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 2011; 474:49-53. [PMID: 21637253 PMCID: PMC3162478 DOI: 10.1038/nature10109] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 04/13/2011] [Indexed: 11/29/2022]
Abstract
Type 1 pili are the archetypal representative of a widespread class of adhesive multisubunit fibres in Gram-negative bacteria. During pilus assembly, subunits dock as chaperone-bound complexes to an usher, which catalyzes their polymerization and mediates pilus translocation across the outer membrane. We report the crystal structure of the full-length FimD usher bound to the FimC:FimH chaperone:adhesin complex and that of the unbound form of the FimD translocation domain. The FimD:FimC:FimH structure shows FimH inserted inside the FimD 24-stranded β-barrel translocation channel. FimC:FimH is held in place through interactions with the two C-terminal periplasmic domains of FimD, a binding mode confirmed in solution by electron paramagnetic resonance spectroscopy. To accommodate FimH, the usher plug domain is displaced from the barrel lumen to the periplasm, concomitant with a dramatic conformational change in the β-barrel. The N-terminal domain of FimD is observed in an ideal position to catalyse incorporation of a newly recruited chaperone:subunit complex. The FimD:FimC:FimH structure provides unique insights into the pilus subunit incorporation cycle, and captures the first view of a protein transporter in the act of secreting its cognate substrate.
Collapse
Affiliation(s)
- Gilles Phan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Geibel S, Waksman G. Crystallography and Electron Microscopy of Chaperone/Usher Pilus Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:159-74. [PMID: 21557063 DOI: 10.1007/978-94-007-0940-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Sebastian Geibel
- Institute of Structural Molecular Biology, Birkbeck and University College London, London, UK.
| | | |
Collapse
|
17
|
Henderson NS, Ng TW, Talukder I, Thanassi DG. Function of the usher N-terminus in catalysing pilus assembly. Mol Microbiol 2010; 79:954-67. [PMID: 21299650 DOI: 10.1111/j.1365-2958.2010.07505.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The chaperone/usher (CU) pathway is a conserved bacterial secretion system that assembles adhesive fibres termed pili or fimbriae. Pilus biogenesis by the CU pathway requires a periplasmic chaperone and an outer membrane (OM) assembly platform termed the usher. The usher catalyses formation of subunit-subunit interactions to promote polymerization of the pilus fibre and provides the channel for fibre secretion. The mechanism by which the usher catalyses pilus assembly is not known. Using the P and type 1 pilus systems of uropathogenic Escherichia coli, we show that a conserved N-terminal disulphide region of the PapC and FimD ushers, as well as residue F4 of FimD, are required for the catalytic activity of the ushers. PapC disulphide loop mutants were able to bind PapDG chaperone-subunit complexes, but did not assemble PapG into pilus fibres. FimD disulphide loop and F4 mutants were able to bind chaperone-subunit complexes and initiate assembly of pilus fibres, but were defective for extending the pilus fibres, as measured using in vivo co-purification and in vitro pilus polymerization assays. These results suggest that the catalytic activity of PapC is required to initiate pilus biogenesis, whereas the catalytic activity of FimD is required for extension of the pilus fibre.
Collapse
Affiliation(s)
- Nadine S Henderson
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | |
Collapse
|
18
|
Conserved Hydrophobic Clusters on the Surface of the Caf1A Usher C-Terminal Domain Are Important for F1 Antigen Assembly. J Mol Biol 2010; 403:243-59. [DOI: 10.1016/j.jmb.2010.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 11/24/2022]
|
19
|
Li Q, Ng TW, Dodson KW, So SSK, Bayle KM, Pinkner JS, Scarlata S, Hultgren SJ, Thanassi DG. The differential affinity of the usher for chaperone-subunit complexes is required for assembly of complete pili. Mol Microbiol 2010; 76:159-72. [PMID: 20199591 DOI: 10.1111/j.1365-2958.2010.07089.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Attachment to host cells via adhesive surface structures is a prerequisite for the pathogenesis of many bacteria. Uropathogenic Escherichia coli assemble P and type 1 pili for attachment to the host urothelium. Assembly of these pili requires the conserved chaperone/usher pathway, in which a periplasmic chaperone controls the folding of pilus subunits and an outer membrane usher provides a platform for pilus assembly and secretion. The usher has differential affinity for pilus subunits, with highest affinity for the tip-localized adhesin. Here, we identify residues F21 and R652 of the P pilus usher PapC as functioning in the differential affinity of the usher. R652 is important for high-affinity binding to the adhesin whereas F21 is important for limiting affinity for the PapA major rod subunit. PapC mutants in these residues are specifically defective for pilus assembly in the presence of PapA, demonstrating that differential affinity of the usher is required for assembly of complete pili. Analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis. Thus, the differential affinity of the usher may be critical to ensure assembly of functional pilus fibres.
Collapse
Affiliation(s)
- Qinyuan Li
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Structural homology between the C-terminal domain of the PapC usher and its plug. J Bacteriol 2010; 192:1824-31. [PMID: 20118254 DOI: 10.1128/jb.01677-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P pili are extracellular appendages responsible for the targeting of uropathogenic Escherichia coli to the kidney. They are assembled by the chaperone-usher (CU) pathway of pilus biogenesis involving two proteins, the periplasmic chaperone PapD and the outer membrane assembly platform, PapC. Many aspects of the structural biology of the Pap CU pathway have been elucidated, except for the C-terminal domain of the PapC usher, the structure of which is unknown. In this report, we identify a stable and folded fragment of the C-terminal region of the PapC usher and determine its structure using both X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. These structures reveal a beta-sandwich fold very similar to that of the plug domain, a domain of PapC obstructing its translocation domain. This structural similarity suggests similar functions in usher-mediated pilus biogenesis, playing out at different stages of the process. This structure paves the way for further functional analysis targeting surfaces common to both the plug and the C-terminal domain of PapC.
Collapse
|
21
|
Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 2010; 425:475-88. [PMID: 20070257 DOI: 10.1042/bj20091518] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gram-negative bacteria have evolved diverse secretion systems/machineries to translocate substrates across the cell envelope. These various machineries fulfil a wide variety of functions but are also essential for pathogenic bacteria to infect human or plant cells. Secretion systems, of which there are seven, utilize one of two secretion mechanisms: (i) the one-step mechanism, whereby substrates are translocated directly from the bacterial cytoplasm to the extracellular medium or into the eukaryotic target cell; (ii) the two-step mechanism, whereby substrates are first translocated across the bacterial inner membrane; once in the periplasm, substrates are targeted to one of the secretion systems that mediate transport across the outer membrane and released outside the bacterial cell. The present review provides an example for each of these two classes of secretion systems and contrasts the various solutions evolved to secrete substrates.
Collapse
|
22
|
Zav'yalov V, Zavialov A, Zav'yalova G, Korpela T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 2009; 34:317-78. [PMID: 20070375 DOI: 10.1111/j.1574-6976.2009.00201.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the γ3- and κ-monophyletic groups, respectively, while gene clusters belonging to the γ1-, γ2-, γ4-, and π-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins.
Collapse
|
23
|
Mapingire OS, Henderson NS, Duret G, Thanassi DG, Delcour AH. Modulating effects of the plug, helix, and N- and C-terminal domains on channel properties of the PapC usher. J Biol Chem 2009; 284:36324-36333. [PMID: 19850919 DOI: 10.1074/jbc.m109.055798] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperone/usher system is one of the best characterized pathways for protein secretion and assembly of cell surface appendages in Gram-negative bacteria. In particular, this pathway is used for biogenesis of the P pilus, a key virulence factor used by uropathogenic Escherichia coli to adhere to the host urinary tract. The P pilus individual subunits bound to the periplasmic chaperone PapD are delivered to the outer membrane PapC usher, which serves as an assembly platform for subunit incorporation into the pilus and secretion of the pilus fiber to the cell surface. PapC forms a dimeric, twin pore complex, with each monomer composed of a 24-stranded transmembrane beta-barrel channel, an internal plug domain that occludes the channel, and globular N- and C-terminal domains that are located in the periplasm. Here we have used planar lipid bilayer electrophysiology to characterize the pore properties of wild type PapC and domain deletion mutants for the first time. The wild type pore is closed most of the time but displays frequent short-lived transitions to various open states. In comparison, PapC mutants containing deletions of the plug domain, an alpha-helix that caps the plug domain, or the N- and C-terminal domains form channels with higher open probability but still exhibiting dynamic behavior. Removal of the plug domain results in a channel with extremely large conductance. These observations suggest that the plug gates the usher channel closed and that the periplasmic domains and alpha-helix function to modulate the gating activity of the PapC twin pore.
Collapse
Affiliation(s)
- Owen S Mapingire
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Nadine S Henderson
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Guillaume Duret
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - David G Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794.
| | - Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204.
| |
Collapse
|
24
|
Waksman G, Hultgren SJ. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 2009; 7:765-74. [PMID: 19820722 DOI: 10.1038/nrmicro2220] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The chaperone-usher (CU) pathway of pilus biogenesis is the most widespread of the five pathways that assemble adhesive pili at the surface of Gram-negative bacteria. Recent progress in the study of the structural biology of the CU pathway has unravelled the molecular basis of chaperone function and elucidated the mechanisms of fibre assembly at the outer membrane, leading to a comprehensive description of each step in the biogenesis pathway. Other studies have provided the molecular basis of host recognition by CU pili. The knowledge that has been gathered about both the assembly of and host recognition by CU pili has been harnessed to design promising antibiotic compounds.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London, UK.
| | | |
Collapse
|
25
|
Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci U S A 2009; 106:7403-7. [PMID: 19380723 DOI: 10.1073/pnas.0902789106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ushers constitute a family of bacterial outer membrane proteins responsible for the assembly and secretion of surface organelles such as the pilus. The structure at 3.15-A resolution of the usher pyelonephritis-associated pili C (PapC) translocation domain reveals a 24-stranded kidney-shaped beta-barrel, occluded by an internal plug domain. The dimension of the pore allows tandem passage of individual folded pilus subunits in an upright pilus growth orientation, but is insufficient for accommodating donor strand exchange. The molecular packing revealed by the crystal structure shows that 2 PapC molecules in head-to-head orientation interact via exposed beta-strand edges, which could be the preferred dimer interaction in solution. In vitro reconstitution of fiber assemblies suggest that PapC monomers may be sufficient for fiber assembly and secretion; both the plug domain and the C-terminal domain of PapC are required for filament assembly, whereas the N-terminal domain is mainly responsible for recruiting the chaperone-subunit complexes to the usher. The plug domain has a dual function: gating the beta-pore and participating in pilus assembly.
Collapse
|
26
|
Li H, Thanassi DG. Use of a combined cryo-EM and X-ray crystallography approach to reveal molecular details of bacterial pilus assembly by the chaperone/usher pathway. Curr Opin Microbiol 2009; 12:326-32. [PMID: 19356973 DOI: 10.1016/j.mib.2009.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 12/31/2022]
Abstract
Many bacteria assemble hair-like fibers termed pili or fimbriae on their cell surface. These fibers mediate adhesion to various surfaces, including host cells, and play crucial roles in pathogenesis. Pili are polymers composed of thousands of individual subunit proteins. Understanding how these subunit proteins cross the bacterial envelope and correctly assemble at the cell surface is important not only for basic biology but also for the development of novel antimicrobial agents. The chaperone/usher pilus biogenesis pathway is one of the best-understood protein secretion systems, thanks largely to innovative efforts in biophysical techniques such as X-ray crystallography and cryo-electron microscopy. Such a combined approach holds promise for further elucidating remaining questions regarding the multi-step and highly dynamic pilus assembly process, as well as for studying other protein secretion and organelle biogenesis systems.
Collapse
Affiliation(s)
- Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | |
Collapse
|
27
|
Caf1A usher possesses a Caf1 subunit-like domain that is crucial for Caf1 fibre secretion. Biochem J 2009; 418:541-51. [PMID: 19032149 DOI: 10.1042/bj20080992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chaperone/usher pathway controls assembly of fibres of adhesive organelles of Gram-negative bacteria. The final steps of fibre assembly and fibre translocation to the cell surface are co-ordinated by the outer membrane proteins, ushers. Ushers consist of several soluble periplasmic domains and a single transmembrane β-barrel. Here we report isolation and structural/functional characterization of a novel middle domain of the Caf1A usher from Yersinia pestis. The isolated UMD (usher middle domain) is a highly soluble monomeric protein capable of autonomous folding. A 2.8 Å (1 Å=0.1 nm) resolution crystal structure of UMD revealed that this domain has an immunoglobulin-like fold similar to that of donor-strand-complemented Caf1 fibre subunit. Moreover, these proteins displayed significant structural similarity. Although UMD is in the middle of the predicted amphipathic β-barrel of Caf1A, the usher still assembled in the membrane in the absence of this domain. UMD did not bind Caf1M–Caf1 complexes, but its presence was shown to be essential for Caf1 fibre secretion. The study suggests that UMD may play the role of a subunit-substituting protein (dummy subunit), plugging or priming secretion through the channel in the Caf1A usher. Comparison of isolated UMD with the recent structure of the corresponding domain of PapC usher revealed high similarity of the core structures, suggesting a universal structural adaptation of FGL (F1G1 long) and FGS (F1G1 short) chaperone/usher pathways for the secretion of different types of fibres. The functional role of two topologically different states of this plug domain suggested by structural and biochemical results is discussed.
Collapse
|
28
|
Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 2009; 27:2271-80. [PMID: 18668121 PMCID: PMC2500206 DOI: 10.1038/emboj.2008.155] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 07/07/2008] [Indexed: 11/22/2022] Open
Abstract
Bacteria commonly expose non-flagellar proteinaceous appendages on their outer surfaces. These extracellular structures, called pili or fimbriae, are employed in attachment and invasion, biofilm formation, cell motility or protein and DNA transport across membranes. Over the past 15 years, the power of molecular and structural techniques has revolutionalized our understanding of the biogenesis, structure, function and mode of action of these bacterial organelles. Here, we review the five known classes of Gram-negative non-flagellar appendages from a biosynthetic and structural point of view.
Collapse
|
29
|
Meng G, Fronzes R, Chandran V, Remaut H, Waksman G. Protein oligomerization in the bacterial outer membrane (Review). Mol Membr Biol 2009; 26:136-45. [PMID: 19225986 DOI: 10.1080/09687680802712422] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of homo-oligomeric assemblies is a well-established characteristic of many soluble proteins and enzymes. Oligomerization has been shown to increase protein stability, allow allosteric cooperativity, shape reaction compartments and provide multivalent interaction sites in soluble proteins. In comparison, our understanding of the prevalence and reasons behind protein oligomerization in membrane proteins is relatively sparse. Recent progress in structural biology of bacterial outer membrane proteins has suggested that oligomerization may be as common and versatile as in soluble proteins. Here we review the current understanding of oligomerization in the bacterial outer membrane from a structural and functional point of view.
Collapse
Affiliation(s)
- Guoyu Meng
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | | | | | | | | |
Collapse
|
30
|
Knight SD, Bouckaert J. Structure, Function, and Assembly of Type 1 Fimbriae. GLYCOSCIENCE AND MICROBIAL ADHESION 2009; 288:67-107. [DOI: 10.1007/128_2008_13] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
The 'P-usher', a novel protein transporter involved in fimbrial assembly and TpsA secretion. EMBO J 2008; 27:2669-80. [PMID: 18833195 DOI: 10.1038/emboj.2008.197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/05/2008] [Indexed: 11/08/2022] Open
Abstract
We identified a new bacterial transporter, the Pseudomonas aeruginosa CupB3 protein, which is an outer membrane usher involved in pili assembly. In CupB3, the usher domain has fused during evolution with a POTRA (polypeptide-transport-associated)-like domain found in TpsB transporters of two-partner secretion systems. In TpsBs, the POTRA captures the TpsA passenger, which is then transported across the outer membrane through the TpsB beta-barrel. We named CupB3 a 'P-usher' for POTRA-like domain-containing usher. We showed that CupB3 assembles CupB1 fimbrial subunits into pili and secretes CupB5, a TpsA-like protein. The CupB3 usher domain has the function of a TpsB beta-barrel in CupB5 translocation. We revealed that the POTRA-like domain is neither essential for CupB1 fimbriae assembly nor for cell surface exposition of CupB5, but is crucial to coordinate bona fide transport of CupB1 and CupB5 through the usher domain. The P-usher defines a novel transport pathway involving a molecular machine made with old spare parts.
Collapse
|
32
|
Munera D, Palomino C, Fernández LÁ. Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly inEscherichia colifollowing the initial binding of the adhesin to FimD usher. Mol Microbiol 2008; 69:911-25. [DOI: 10.1111/j.1365-2958.2008.06325.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Abstract
The chaperone/usher pathway is responsible for the assembly of adhesive pili on the surface of gram-negative pathogenic bacteria. In this issue, Remaut et al. (2008) present the crystal structure of the PapC usher translocation domain and images of the FimD usher bound to a pilus translocation intermediate. These new structures provide the first detailed view of a translocase in action.
Collapse
Affiliation(s)
- Robert Daniels
- Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden
| | | |
Collapse
|
34
|
Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, Li H. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 2008; 133:640-52. [PMID: 18485872 PMCID: PMC3036173 DOI: 10.1016/j.cell.2008.03.033] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/22/2008] [Accepted: 03/28/2008] [Indexed: 11/19/2022]
Abstract
Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform--the usher--is revealed by the crystal structure of the translocation domain of the P pilus usher PapC and single particle cryo-electron microscopy imaging of the FimD usher bound to a translocating type 1 pilus assembly intermediate. These structures provide molecular snapshots of a twinned-pore translocation machinery in action. Unexpectedly, only one pore is used for secretion, while both usher protomers are used for chaperone-subunit complex recruitment. The translocating pore itself comprises 24 beta strands and is occluded by a folded plug domain, likely gated by a conformationally constrained beta-hairpin. These structures capture the secretion of a virulence factor across the outer membrane of gram-negative bacteria.
Collapse
Affiliation(s)
- Han Remaut
- Institute of Structural Molecular Biology, University College London and Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom
- These authors contributed equally to this work
| | - Chunyan Tang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- These authors contributed equally to this work
| | - Nadine S. Henderson
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5120, USA
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tao Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5120, USA
| | - Gabriel Waksman
- Institute of Structural Molecular Biology, University College London and Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom
| | - Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
35
|
Abstract
In a time of emerging bacterial resistance there is a vital need for new targets and strategies in antibacterial therapy. Using uropathogenic Escherichia coli as a model pathogen we have developed a class of compounds, pilicides, which inhibit the formation of virulence-associated organelles termed pili. The pilicides interfere with a highly conserved bacterial assembly and secretion system called the chaperone-usher pathway, which is abundant in a vast number of Gram-negative pathogens and serves to assemble multi-protein surface fibers (pili/fimbriae). This class of compounds provides a platform to gain insight into important biological processes such as the molecular mechanisms of the chaperone-usher pathway and the sophisticated function of pili. Pili are primarily involved in bacterial adhesion, invasion and persistence to host defenses. On this basis, pilicides can aid the development of new antibacterial agents.
Collapse
Affiliation(s)
- Veronica Aberg
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden.
| | | |
Collapse
|
36
|
Munera D, Hultgren S, Fernández LA. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol Microbiol 2007; 64:333-46. [PMID: 17378923 DOI: 10.1111/j.1365-2958.2007.05657.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we discover that a specific recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is essential for the biogenesis of type 1 pili in Escherichia coli. These filamentous organelles are assembled by the chaperone-usher pathway, in which binary complexes between fimbrial subunits and the periplasmic chaperone FimC are recognized by the outer membrane protein FimD (the usher). FimH adhesin initiates fimbriae polymerization and is the first subunit incorporated in the filament. Accordingly, FimD shows higher affinity for the FimC/FimH complex although the structural basis of this specificity is unknown. We have analysed the assembly into fimbria, and the interaction with FimD in vivo, of FimH variants in which the N-terminal lectin domain of FimH was deleted or substituted by different immunoglobulin (Ig) domains, or in which these Ig domains were fused to the N-terminus of full-length FimH. From these data, along with the analysis of a FimH mutant with a single amino acid change (G16D) in the N-terminal lectin domain, we conclude that the lectin domain of FimH is recognized by FimD usher as an essential step for type 1 pilus biogenesis.
Collapse
Affiliation(s)
- Diana Munera
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
37
|
Structure and Assembly of Yersinia pestis F1 Antigen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:74-87. [DOI: 10.1007/978-0-387-72124-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|