1
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5. Nat Commun 2025; 16:2580. [PMID: 40089503 PMCID: PMC11910620 DOI: 10.1038/s41467-025-57752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Here, we present a high resolution cryogenic-electron microscopy structure showing the phosphorylated 35-residue nuclear export signal of Pho4, which binds the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches. These findings characterize a mechanism of phosphate-specific recognition mediated by a non-classical signal distinct from that for Exportin-1. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Sanraj R Mittal
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Ashley B Niesman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Jenny Jiou
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Victoria, 302, Australia
| | - Binita Shakya
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Clinical, Diagnostic & Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, US
| | - Takuya Yoshizawa
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Ahmet E Cansizoglu
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA, 01821, US
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US.
| |
Collapse
|
2
|
Stochaj U. Yeast profilin mutants inhibit classical nuclear import and alter the balance between actin and tubulin levels. Biochem Cell Biol 2024; 102:206-212. [PMID: 38048555 DOI: 10.1139/bcb-2023-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Profilin is a small protein that controls actin polymerization in yeast and higher eukaryotes. In addition, profilin has emerged as a multifunctional protein that contributes to other processes in multicellular organisms. This study focuses on profilin (Pfy1) in the budding yeast Saccharomyces cerevisiae. The primary sequences of yeast Pfy1 and its metazoan orthologs diverge vastly. However, structural elements of profilin are conserved among different species. To date, the full spectrum of Pfy1 functions has yet to be defined. The current work explores the possible involvement of yeast profilin in nuclear protein import. To this end, a panel of well-characterized yeast profilin mutants was evaluated. The experiments demonstrate that yeast profilin (i) regulates nuclear protein import, (ii) determines the subcellular localization of essential nuclear transport factors, and (iii) controls the relative abundance of actin and tubulin. Together, these results define yeast profilin as a moonlighting protein that engages in multiple essential cellular activities.
Collapse
Affiliation(s)
- Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
3
|
Kodiha M, Azad N, Chu S, Crampton N, Stochaj U. Oxidative stress and signaling through EGFR and PKA pathways converge on the nuclear transport factor RanBP1. Eur J Cell Biol 2024; 103:151376. [PMID: 38011756 DOI: 10.1016/j.ejcb.2023.151376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Nuclear protein trafficking requires the soluble transport factor RanBP1. The subcellular distribution of RanBP1 is dynamic, as the protein shuttles between the nucleus and cytoplasm. To date, the signaling pathways regulating RanBP1 subcellular localization are poorly understood. During interphase, RanBP1 resides mostly in the cytoplasm. We show here that oxidative stress concentrates RanBP1 in the nucleus, and our study defines the underlying mechanisms. Specifically, RanBP1's cysteine residues are not essential for its oxidant-induced relocation. Furthermore, our pharmacological approaches uncover that signaling mediated by epidermal growth factor receptor (EGFR) and protein kinase A (PKA) control RanBP1 localization during stress. In particular, pharmacological inhibitors of EGFR or PKA diminish the oxidant-dependent relocation of RanBP1. Mutant analysis identified serine 60 and tyrosine 103 as regulators of RanBP1 nuclear accumulation during oxidant exposure. Taken together, our results define RanBP1 as a target of oxidative stress and a downstream effector of EGFR and PKA signaling routes. This positions RanBP1 at the intersection of important cellular signaling circuits.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Nabila Azad
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Siwei Chu
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Noah Crampton
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada.
| |
Collapse
|
4
|
Takagi S, Kojima K, Ohashi S. Proteomic analysis on Aspergillus strains that are useful for industrial enzyme production. Biosci Biotechnol Biochem 2020; 84:2241-2252. [PMID: 32693695 DOI: 10.1080/09168451.2020.1794784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A simple intracellular proteomic study was conducted to investigate the biological activities of Aspergillus niger during industrial enzyme production. A strain actively secreting a heterologous enzyme was compared to a reference strain. In total, 1824 spots on 2-D gels were analyzed using MALDI-TOF MS, yielding 343 proteins. The elevated levels of UPR components, BipA, PDI, and calnexin, and proteins related to ERAD and ROS reduction, were observed in the enzyme-producer. The results suggest the occurrence of these responses in the enzyme-producers. Major glycolytic enzymes, Fba1, EnoA, and GpdA, were abundant but at a reduced level relative to the reference, indicating a potential repression of the glycolytic pathway. Interestingly, it was observed that a portion of over-expressed heterologous enzyme accumulated inside the cells and digested during fermentation, suggesting the secretion capacity of the strain was not enough for completing secretion. Newly identified conserved-proteins, likely in signal transduction, and other proteins were also investigated. Abbreviations: 2-D: two-dimensional; UPR: unfolded protein response; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; PDI: protein disulfide-isomerase; ROS: reactive oxygen species; RESS: Repression under Secretion Stress; CSAP: Conserved Small Abundant Protein; TCTP: translationally controlled tumor protein.
Collapse
Affiliation(s)
| | | | - Shinichi Ohashi
- Genome Biotechnology Laboratory, Kanazawa-Institute of Technology , Ishikawa, Japan
| |
Collapse
|
5
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Jones RD, Gardner RG. Protein quality control in the nucleus. Curr Opin Cell Biol 2016; 40:81-89. [PMID: 27015023 DOI: 10.1016/j.ceb.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 12/29/2022]
Abstract
The nucleus is the repository for the eukaryotic cell's genetic blueprint, which must be protected from harm to ensure survival. Multiple quality control (QC) pathways operate in the nucleus to maintain the integrity of the DNA, the fidelity of the DNA code during replication, its transcription into mRNA, and the functional structure of the proteins that are required for DNA maintenance, mRNA transcription, and other important nuclear processes. Although we understand a great deal about DNA and RNA QC mechanisms, we know far less about nuclear protein quality control (PQC) mechanisms despite that fact that many human diseases are causally linked to protein misfolding in the nucleus. In this review, we discuss what is known about nuclear PQC and we highlight new questions that have emerged from recent developments in nuclear PQC studies.
Collapse
Affiliation(s)
- Ramon D Jones
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Hu Z, Wang Y, Yu L, Mahanty SK, Mendoza N, Elion EA. Mapping regions in Ste5 that support Msn5-dependent and -independent nuclear export. Biochem Cell Biol 2016; 94:109-28. [PMID: 26824509 DOI: 10.1139/bcb-2015-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Careful control of the available pool of the MAPK scaffold Ste5 is important for mating-pathway activation and the prevention of inappropriate mating differentiation in haploid Saccharomyces cerevisiae. Ste5 shuttles constitutively through the nucleus, where it is degraded by a ubiquitin-dependent mechanism triggered by G1 CDK phosphorylation. Here we narrow-down regions of Ste5 that mediate nuclear export. Four regions in Ste5 relocalize SV40-TAgNLS-GFP-GFP from nucleus to cytoplasm. One region is N-terminal, dependent on exportin Msn5/Ste21/Kap142, and interacts with Msn5 in 2 hybrid assays independently of mating pheromone, Fus3, Kss1, Ptc1, the NLS/PM, and RING-H2. A second region overlaps the PH domain and Ste11 binding site and 2 others are on the vWA domain and include residues essential for MAPK activation. We find no evidence for dependence on Crm1/Xpo1, despite numerous potential nuclear export sequences (NESs) detected by LocNES and NetNES1.1 predictors. Thus, Msn5 (homolog of human Exportin-5) and one or more exportins or adaptor molecules besides Crm1/Xpo1 may regulate Ste5 through multiple recognition sites.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yunmei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sanjoy K Mahanty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Natalia Mendoza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
9
|
Vernekar DV, Bhargava P. Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1340-53. [PMID: 26423792 DOI: 10.1016/j.bbagrm.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Yeast Bud27, an unconventional prefoldin is reported to affect the expression of nutrient-responsive genes, translation initiation and assembly of the multi-subunit eukaryotic RNA polymerases (pols), at a late step. We found that Bud27 associates with pol III in active as well as repressed states. Pol III transcription and occupancy at the target genes reduce with the deletion of BUD27. It promotes the interaction of pol III with the chromatin remodeler RSC found on most of the pol III targets, and with the heat shock protein Ssa4, which helps in nuclear import of the assembled pol III. Under nutrient-starvation, Ssa4-pol III interaction increases, while pol III remains inside the nucleus. Bud27 but not Ssa4 is required for RSC-pol III interaction, which reduces under nutrient-starvation. In the bud27Δ cells, total protein level of the largest pol III subunit Rpc160 but not of Rpc128, Rpc34 and Rpc53 subunits is reduced. This is accompanied by lower transcription of RPC128 gene and lower RPC160 translation due to reduced association of mRNA with the ribosomes. The resultant alteration in the normal cellular ratio of the two largest subunits of pol III core leads to reduced association of other pol III subunits and hampers the normal assembly of pol III at an early step in the cytoplasm. Our results show that Bud27 is required in multiple activities responsible for pol III biogenesis and activity.
Collapse
Affiliation(s)
- Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
10
|
Determinants of tolerance to inhibitors in hardwood spent sulfite liquor in genome shuffled Pachysolen tannophilus strains. Antonie van Leeuwenhoek 2015; 108:811-34. [PMID: 26231071 DOI: 10.1007/s10482-015-0537-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
Genome shuffling was used to obtain Pachysolen tannophilus mutants with improved tolerance to inhibitors in hardwood spent sulfite liquor (HW SSL). Genome shuffled strains (GHW301, GHW302 and GHW303) grew at higher concentrations of HW SSL (80 % v/v) compared to the HW SSL UV mutant (70 % v/v) and the wild-type (WT) strain (50 % v/v). In defined media containing acetic acid (0.70-0.90 % w/v), GHW301, GHW302 and GHW303 exhibited a shorter lag compared to the acetic acid UV mutant, while the WT did not grow. Genome shuffled strains produced more ethanol than the WT at higher concentrations of HW SSL and an aspen hydrolysate. To identify the genetic basis of inhibitor tolerance, whole genome sequencing was carried out on GHW301, GHW302 and GHW303 and compared to the WT strain. Sixty single nucleotide variations were identified that were common to all three genome shuffled strains. Of these, 40 were in gene sequences and 20 were within 5 bp-1 kb either up or downstream of protein encoding genes. Based on the mutated gene products, mutations were grouped into functional categories and affected a variety of cellular functions, demonstrating the complexity of inhibitor tolerance in yeast. Sequence analysis of UV mutants (UAA302 and UHW303) from which GHW301, GHW302 and GHW303 were derived, confirmed the success of our cross-mating based genome shuffling strategy. Whole-genome sequencing analysis allowed identification of potential gene targets for tolerance to inhibitors in lignocellulosic hydrolysates.
Collapse
|
11
|
Huang HY, Hopper AK. Separate responses of karyopherins to glucose and amino acid availability regulate nucleocytoplasmic transport. Mol Biol Cell 2014; 25:2840-52. [PMID: 25057022 PMCID: PMC4161518 DOI: 10.1091/mbc.e14-04-0948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The subcellular distribution of yeast β-importins inverts upon acute glucose deprivation, likely due to collapse of the RanGTP nuclear–cytoplasmic gradient. This redistribution of β-importins likely results in rapid widespread alterations of the traffic of macromolecules between the nucleus and cytoplasm in response to glucose limitation. The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, OH 43210 Graduate Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, OH 43210
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
12
|
Msn5p Is Involved in Formaldehyde Resistance but Not in Oxidative Stress Response in the Methylotrophic YeastCandida boidinii. Biosci Biotechnol Biochem 2014; 76:299-304. [DOI: 10.1271/bbb.110679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Gallagher PS, Oeser ML, Abraham AC, Kaganovich D, Gardner RG. Cellular maintenance of nuclear protein homeostasis. Cell Mol Life Sci 2014; 71:1865-79. [PMID: 24305949 PMCID: PMC3999211 DOI: 10.1007/s00018-013-1530-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/04/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
The accumulation and aggregation of misfolded proteins is the primary hallmark for more than 45 human degenerative diseases. These devastating disorders include Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Over 15 degenerative diseases are associated with the aggregation of misfolded proteins specifically in the nucleus of cells. However, how the cell safeguards the nucleus from misfolded proteins is not entirely clear. In this review, we discuss what is currently known about the cellular mechanisms that maintain protein homeostasis in the nucleus and protect the nucleus from misfolded protein accumulation and aggregation. In particular, we focus on the chaperones found to localize to the nucleus during stress, the ubiquitin-proteasome components enriched in the nucleus, the signaling systems that might be present in the nucleus to coordinate folding and degradation, and the sites of misfolded protein deposition associated with the nucleus.
Collapse
Affiliation(s)
- Pamela S Gallagher
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
14
|
Cho HS, Shimazu T, Toyokawa G, Daigo Y, Maehara Y, Hayami S, Ito A, Masuda K, Ikawa N, Field HI, Tsuchiya E, Ohnuma SI, Ponder BA, Yoshida M, Nakamura Y, Hamamoto R. Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B. Nat Commun 2012; 3:1072. [PMID: 22990868 PMCID: PMC3658001 DOI: 10.1038/ncomms2074] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/20/2012] [Indexed: 01/17/2023] Open
Abstract
Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A. Enhanced HSP70 methylation was detected in various types of human cancer by immunohistochemical analysis, although the methylation was barely detectable in corresponding non-neoplastic tissues. Interestingly, methylated HSP70 predominantly localizes to the nucleus of cancer cells, whereas most of the HSP70 protein locates to the cytoplasm. Nuclear HSP70 directly interacts with Aurora kinase B (AURKB) in a methylation-dependent manner and promotes AURKB activity in vitro and in vivo. We also find that methylated HSP70 has a growth-promoting effect in cancer cells. Our findings demonstrate a crucial role of HSP70 methylation in human carcinogenesis.
Collapse
Affiliation(s)
- Hyun-Soo Cho
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- These authors contributed equally to this work
| | - Tadahiro Shimazu
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako
351-0198, Japan
- These authors contributed equally to this work
| | - Gouji Toyokawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka
812-8582, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Department of Medical Oncology, Shiga University of Medical Science, Otsu
520-2192, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka
812-8582, Japan
| | - Shinya Hayami
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako
351-0198, Japan
| | - Ken Masuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
| | - Noriko Ikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
| | - Helen I. Field
- Department of Genetics, University of Cambridge, Downing Street, Cambridge
CB2 3EH, UK
| | - Eiju Tsuchiya
- Department of Pathology, Saitama Cancer Center, 818 Komuro, Inamachi, Kita-Adachi, Saitama
362-0806, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa
241-0815, Japan
| | - Shin-ichi Ohnuma
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London
EC1V 9EL, UK
| | - Bruce A.J. Ponder
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge
CB2 0RE, UK
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako
351-0198, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Section of Hematology/Oncology, The University of Chicago, 900 E 57th Street, KCBD6126, Chicago, Illinois
60637, USA
| | - Ryuji Hamamoto
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo
108-8639, Japan
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge
CB2 0RE, UK
| |
Collapse
|
15
|
Nuclear transport: a switch for the oxidative stress-signaling circuit? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:208650. [PMID: 22028962 PMCID: PMC3195498 DOI: 10.1155/2012/208650] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 01/01/2023]
Abstract
Imbalances in the formation and clearance of reactive oxygen species (ROS) can lead to oxidative stress and subsequent changes that affect all aspects of physiology. To limit and repair the damage generated by ROS, cells have developed a multitude of responses. A hallmark of these responses is the activation of signaling pathways that modulate the function of downstream targets in different cellular locations. To this end, critical steps of the stress response that occur in the nucleus and cytoplasm have to be coordinated, which makes the proper communication between both compartments mandatory. Here, we discuss the interdependence of ROS-mediated signaling and the transport of macromolecules across the nuclear envelope. We highlight examples of oxidant-dependent nuclear trafficking and describe the impact of oxidative stress on the transport apparatus. Our paper concludes by proposing a cellular circuit of ROS-induced signaling, nuclear transport and repair.
Collapse
|
16
|
Belanger KD, Griffith AL, Baker HL, Hansen JN, Kovacs LAS, Seconi JS, Strine AC. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae. DNA Cell Biol 2011; 30:641-51. [PMID: 21332387 DOI: 10.1089/dna.2010.1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.
Collapse
|
17
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
18
|
Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Nuclear redox signaling. Antioxid Redox Signal 2010; 12:713-42. [PMID: 19737086 DOI: 10.1089/ars.2009.2609] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species have been described to modulate proteins within the cell, a process called redox regulation. However, the importance of compartment-specific redox regulation has been neglected for a long time. In the early 1980s and 1990s, many in vitro studies introduced the possibility that nuclear redox signaling exists. However, the functional relevance for that has been greatly disregarded. Recently, it has become evident that nuclear redox signaling is indeed one important signaling mechanism regulating a variety of cellular functions. Transcription factors, and even kinases and phosphatases, have been described to be redox regulated in the nucleus. This review describes several of these proteins in closer detail and explains their functions resulting from nuclear localization and redox regulation. Moreover, the redox state of the nucleus and several important nuclear redox regulators [Thioredoxin-1 (Trx-1), Glutaredoxins (Grxs), Peroxiredoxins (Prxs), and APEX nuclease (multifunctional DNA-repair enzyme) 1 (APEX1)] are introduced more precisely, and their necessity for regulation of transcription factors is emphasized.
Collapse
Affiliation(s)
- Margarete Lukosz
- Molecular Cell & Aging Research, IUF (Institute for Molecular Preventive Medicine), At the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Tucker SL, Besi MI, Galhano R, Franceschetti M, Goetz S, Lenhert S, Osbourn A, Sesma A. Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. THE PLANT CELL 2010; 22:953-72. [PMID: 20348434 PMCID: PMC2861474 DOI: 10.1105/tpc.109.066340] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 02/25/2010] [Accepted: 03/10/2010] [Indexed: 05/20/2023]
Abstract
Magnaporthe oryzae is the most important fungal pathogen of rice (Oryza sativa). Under laboratory conditions, it is able to colonize both aerial and underground plant organs using different mechanisms. Here, we characterize an infection-related development in M. oryzae produced on hydrophilic polystyrene (PHIL-PS) and on roots. We show that fungal spores develop preinvasive hyphae (pre-IH) from hyphopodia (root penetration structures) or germ tubes and that pre-IH also enter root cells. Changes in fungal cell wall structure accompanying pre-IH are seen on both artificial and root surfaces. Using characterized mutants, we show that the PMK1 (for pathogenicity mitogen-activated protein kinase 1) pathway is required for pre-IH development. Twenty mutants with altered pre-IH differentiation on PHIL-PS identified from an insertional library of 2885 M. oryzae T-DNA transformants were found to be defective in pathogenicity. The phenotypic analysis of these mutants revealed that appressorium, hyphopodium, and pre-IH formation are genetically linked fungal developmental processes. We further characterized one of these mutants, M1373, which lacked the M. oryzae ortholog of exportin-5/Msn5p (EXP5). Mutants lacking EXP5 were much less virulent on roots, suggesting an important involvement of proteins and/or RNAs transported by EXP5 during M. oryzae root infection.
Collapse
Affiliation(s)
- Sara L. Tucker
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Maria I. Besi
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Rita Galhano
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marina Franceschetti
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stephan Goetz
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Steven Lenhert
- Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen 76344, Germany
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ane Sesma
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
20
|
Crampton N, Kodiha M, Shrivastava S, Umar R, Stochaj U. Oxidative stress inhibits nuclear protein export by multiple mechanisms that target FG nucleoporins and Crm1. Mol Biol Cell 2009; 20:5106-16. [PMID: 19828735 PMCID: PMC2793288 DOI: 10.1091/mbc.e09-05-0397] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/01/2009] [Accepted: 10/06/2009] [Indexed: 12/25/2022] Open
Abstract
Nuclear transport of macromolecules is regulated by the physiological state of the cell and thus sensitive to stress. To define the molecular mechanisms that control nuclear export upon stress, cells were exposed to nonlethal concentrations of the oxidant diethyl maleate (DEM). These stress conditions inhibited chromosome region maintenance-1 (Crm1)-dependent nuclear export and increased the association between Crm1 and Ran. In addition, we identified several repeat-containing nucleoporins implicated in nuclear export as targets of oxidative stress. As such, DEM treatment reduced Nup358 levels at the nuclear envelope and redistributed Nup98. Furthermore, oxidative stress led to an increase in the apparent molecular masses of Nup98, Nup214, and Nup62. Incubation with phosphatase or beta-N-acetyl-hexosaminidase showed that oxidative stress caused the phosphorylation of Nup98, Nup62, and Nup214 as well as O-linked N-acetylglucosamine modification of Nup62 and Nup214. These oxidant-induced changes in nucleoporin modification correlated first with the increased binding of Nup62 to the exporter Crm1 and second with the reduced interaction of Nup62 with other FxFG-containing nucleoporins. Together, oxidative stress up-regulated the binding of Crm1 to Ran and affected multiple repeat-containing nucleoporins by changing their localization, phosphorylation, O-glycosylation, or interaction with other transport components. We propose that the combination of these events contributes to the stress-dependent regulation of Crm1-mediated protein export.
Collapse
Affiliation(s)
- Noah Crampton
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Mohamed Kodiha
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| | | | - Rehan Umar
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6
| |
Collapse
|
21
|
Eswara MB, McGuire AT, Pierce JB, Mangroo D. Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:5007-25. [PMID: 19812255 PMCID: PMC2785743 DOI: 10.1091/mbc.e09-06-0490] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/18/2009] [Accepted: 09/25/2009] [Indexed: 11/11/2022] Open
Abstract
Utp9p is a nucleolar protein that is part of a subcomplex containing several U3 snoRNA-associated proteins including Utp8p, which is a protein that shuttles aminoacyl-tRNAs from the nucleolus to the nuclear tRNA export receptors Los1p and Msn5p in Saccharomyces cerevisiae. Here we show that Utp9p is also an intranuclear component of the Msn5p-mediated nuclear tRNA export pathway. Depletion of Utp9p caused nuclear accumulation of mature tRNAs derived from intron-containing precursors, but not tRNAs made from intronless pre-tRNAs. Utp9p binds tRNA directly and saturably, and copurifies with Utp8p, Gsp1p, and Msn5p, but not with Los1p or aminoacyl-tRNA synthetases. Utp9p interacts directly with Utp8p, Gsp1p, and Msn5p in vitro. Furthermore, Gsp1p forms a complex with Msn5p and Utp9p in a tRNA-dependent manner. However, Utp9p does not shuttle between the nucleus and the cytoplasm. Because tRNA splicing occurs in the cytoplasm and the spliced tRNAs are retrograded back to the nucleus, we propose that Utp9p facilitates nuclear reexport of retrograded tRNAs. Moreover, the data suggest that Utp9p together with Utp8p translocate aminoacyl-tRNAs from the nucleolus to Msn5p and assist with formation of the Msn5p-tRNA-Gsp1p-GTP export complex.
Collapse
Affiliation(s)
- Manoja B.K. Eswara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrew T. McGuire
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacqueline B. Pierce
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dev Mangroo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
22
|
Tapia H, Morano KA. Hsp90 nuclear accumulation in quiescence is linked to chaperone function and spore development in yeast. Mol Biol Cell 2009; 21:63-72. [PMID: 19889838 PMCID: PMC2801720 DOI: 10.1091/mbc.e09-05-0376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein chaperone Hsp90 and its co-chaperone Sba1/p23 are found to accumulate in the nucleus of haploid yeast cells as glucose is exhausted and in sporulating diploids. Novel and existing Hsp90 mutants exhibit defects in nuclear translocation and spore development, linking these two phenomena. The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Δ cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the α/β importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.
Collapse
Affiliation(s)
- Hugo Tapia
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
23
|
Nuclear export of Ho endonuclease of yeast via Msn5. Curr Genet 2008; 54:271-81. [PMID: 18807043 DOI: 10.1007/s00294-008-0216-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
Exportin-5, an evolutionarily conserved nuclear export factor of the beta-karyopherin family, exports phosphorylated proteins and small noncoding RNAs. Msn5, the yeast ortholog, exports primarily phosphorylated cargoes including Ho endonuclease and a number of transcription factors and regulatory proteins. The Msn5-mediated nuclear export of Ho is dependent on phosphorylation of Thr225 by kinases of the DNA damage response pathway. Although Msn5 has been the object of many studies, no NES sequence capable of binding the exportin and/or of leading to Msn5-dependent export of a heterologous protein has been identified. Here we report identification of a 13-residue Ho sequence that interacts with Msn5 in vitro and directs Msn5-dependent nuclear export of GFP in vivo. A single point mutation in this 13-mer Ho NES abrogates both interaction with Msn5 and nuclear export of Ho and of GFP. However, this mutation, or of T225A, both of which abrogate nuclear export of Ho, does not interfere with its interaction with Msn5 implying that the exportin makes multiple contacts with its cargo. This can explain the lack of a conserved NES in Msn5 cargoes. Our results identify essential criteria for Msn5-mediated nuclear export of Ho: phosphorylation on HoT225, and interaction with the 13-mer Ho NES sequence.
Collapse
|
24
|
Heo J. Redox regulation of Ran GTPase. Biochem Biophys Res Commun 2008; 376:568-72. [PMID: 18796295 DOI: 10.1016/j.bbrc.2008.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington,700 Planetarium Place, Arlington, TX 76019, USA.
| |
Collapse
|
25
|
Towpik J, Graczyk D, Gajda A, Lefebvre O, Boguta M. Derepression of RNA polymerase III transcription by phosphorylation and nuclear export of its negative regulator, Maf1. J Biol Chem 2008; 283:17168-74. [PMID: 18445601 DOI: 10.1074/jbc.m709157200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is the global repressor of RNA polymerase III (Pol III) in yeast Saccharomyces cerevisiae. Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Under repressive conditions on nonfermentable carbon sources, Maf1 is dephosphorylated and located predominantly in the nucleus. When cells were shifted to glucose medium, Maf1 became phosphorylated and concomitantly relocated to the cytoplasm. This relocation was dependent on Msn5, a carrier responsible for export of several other phosphoproteins out of the nucleus. Using coimmunoprecipitation, Maf1 was found to interact with Msn5. When msn5-Delta cells were transferred to glucose, Maf1 remained in the nucleus. Remarkably, despite constitutive presence in the nucleus, Maf1 was dephosphorylated and phosphorylated normally in the msn5-Delta mutant, and Pol III was under proper regulation. That phosphorylation of Maf1 and Pol III derepression are tightly linked was shown by studying tRNA transcription in Maf1 mutants with an altered pattern of phosphorylation. In summary, we conclude that phosphorylation of Maf1 inside the nucleus acts both directly by decreasing of Maf1-mediated repression of Pol III and indirectly by stimulation of Msn5 binding and export of nuclear Maf1 to the cytoplasm.
Collapse
Affiliation(s)
- Joanna Towpik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiñskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
26
|
Tkach JM, Glover JR. Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells. Traffic 2007; 9:39-56. [PMID: 17973656 DOI: 10.1111/j.1600-0854.2007.00666.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hsp104 is a molecular chaperone in yeast that restores solubility and activity to inactivated proteins after severe heat shock. We investigated the mechanisms that influence Hsp104 subcellular distribution in both unstressed and heat-shocked cells. In unstressed cells, Hsp104 and a green fluorescent protein-Hsp104 fusion protein were detected in both the nucleus and the cytoplasm. We demonstrate that a 17-amino-acid sequence of Hsp104 nuclear localization sequence 17 (NLS17) is sufficient to target a reporter molecule to the nucleus and is also necessary for normal Hsp104 subcellular distribution. The nuclear targeting function of NLS17 is genetically dependent on KAP95 and KAP121. In addition, wild-type Hsp104, but not an NLS17-mutated Hsp104 variant, accumulated in the nucleus of cells depleted for the general export factor Xpo1. Interestingly, severe, nonlethal heat shock enhances the nuclear levels of Hsp104 in an NLS17-independent manner. Under these conditions, we demonstrate that karyopherin-mediated nuclear transport is impaired, while the integrity of the nuclear-cytoplasmic barrier remains intact. Based on these observations, we propose that Hsp104 continues to access the nucleus during severe heat shock using a karyopherin-independent mechanism.
Collapse
Affiliation(s)
- Johnny M Tkach
- Department of Biochemistry, University of Toronto, Room 5302, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
27
|
Kodiha M, Rassi JG, Brown CM, Stochaj U. Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK-->ERK1/2 pathway. Am J Physiol Cell Physiol 2007; 293:C1427-36. [PMID: 17728396 DOI: 10.1152/ajpcell.00176.2007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) serves as an energy sensor and is at the center of control for a large number of metabolic reactions, thereby playing a crucial role in Type 2 diabetes and other human diseases. AMPK is present in the nucleus and cytoplasm; however, the mechanisms that regulate the intracellular localization of AMPK are poorly understood. We have now identified several factors that control the distribution of AMPK. Environmental stress regulates the intracellular localization of AMPK, and upon recovery from heat shock or oxidant exposure AMPK accumulates in the nuclei. We show that under normal growth conditions AMPK shuttles between the nucleus and the cytoplasm, a process that depends on the nuclear exporter Crm1. However, nucleocytoplasmic shuttling does not take place in high-density cell cultures, for which AMPK is confined to the cytoplasm. Furthermore, we demonstrate that signaling through the mitogen-activated protein kinase kinase (MEK)-->extracellular signal-regulated kinase 1/2 (ERK1/2) cascade plays a crucial role in controlling the proper localization of AMPK. As such, pharmacological inhibitors that interfere with this pathway alter AMPK distribution under nonstress conditions. Taken together, our studies identify novel links between the physiological state of the cell, the activation of MEK-->ERK1/2 signaling, and the nucleocytoplasmic distribution of AMPK. This sets the stage to develop new strategies to regulate the intracellular localization of AMPK and thereby the modification of targets that are relevant to human disease.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology, McGill University, Montreal H3G 1Y6, Canada
| | | | | | | |
Collapse
|
28
|
Quan X, Yu J, Bussey H, Stochaj U. The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1052-61. [PMID: 17544521 DOI: 10.1016/j.bbamcr.2007.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, four members of the importin-beta family of nuclear carriers, Xpo1p/Crm1p, Cse1p, Msn5p and Los1p, function as exporters of protein and tRNA. Under normal growth conditions GFP-tagged exporters are predominantly associated with nuclei. The presence of Snf1 kinase, a key regulator of cell growth and a metabolic sensor, controls the localization of GFP-exporters. Additional glucose-dependent, but Snf1-independent, mechanisms regulate carrier distribution and a switch from fermentable to non-fermentable carbon sources relocates all of the carriers, suggesting a link to the nutritional status of the cell. Moreover, stress controls the proper localization of GFP-exporters, which mislocalize upon exposure to heat, ethanol and starvation. Stress may activate the MAPK cell integrity cascade, and we tested the role of this pathway in exporter localization. Under non-stress conditions, the proper distribution of GFP-Cse1p and Xpo1p/Crm1p-GFP requires kinases of the cell integrity cascade. By contrast, Msn5p-GFP and Los1p-GFP rely on the MAPK module to relocate to the cytoplasm when cells are stressed with ethanol. Our results indicate that the association of nuclear exporters with nuclei is controlled by multiple mechanisms that are organized in a hierarchical fashion and linked to the physiological state of the cell.
Collapse
Affiliation(s)
- XinXin Quan
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|