1
|
Yong JJM, Gao X, Prakash P, Ang JW, Lai SK, Chen MW, Neo JJL, Lescar J, Li HY, Preiser PR. Red blood cell signaling is functionally conserved in Plasmodium invasion. iScience 2024; 27:111052. [PMID: 39635131 PMCID: PMC11615254 DOI: 10.1016/j.isci.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
It is widely recognized that Plasmodium merozoites secrete ligands that interact with RBC receptors. Meanwhile the question on whether these interactions trigger RBC signals essential for invasion remains unresolved. There is evidence that Plasmodium falciparum parasites manipulate native RBC Ca2+ signaling to facilitate invasion. Here, we demonstrate a key role of RBC Ca2+ influx that is conserved across different Plasmodium species during invasion. RH5-basigin interaction triggers RBC cAMP increase to promote Ca2+ influx. The RBC signaling pathways can be blocked by a range of inhibitors during Plasmodium invasion, providing the evidence of a functionally conserved host cAMP-Ca2+ signaling that drives invasion and junction formation. Furthermore, RH5-basigin binding induces a pre-existing multimeric RBC membrane complex to undergo increased protein association containing the cAMP-inducing β-adrenergic receptor. Our work presents evidence of a conserved host cell signaling cascade necessary for Plasmodium invasion and will create opportunities to therapeutically target merozoite invasion.
Collapse
Affiliation(s)
- James Jia Ming Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaohong Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Prem Prakash
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jing Wen Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jason Jun Long Neo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
2
|
Lu J, Hu Z, Jiang H, Wen Z, Li H, Li J, Zeng K, Xie Y, Chen H, Su XZ, Cai C, Yu X. Dual nature of type I interferon responses and feedback regulations by SOCS1 dictate malaria mortality. J Adv Res 2024:S2090-1232(24)00370-9. [PMID: 39181199 DOI: 10.1016/j.jare.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Type I interferon (IFN-I, IFN-α/β), precisely controlled by multiple regulators, including suppressor of cytokine signaling 1 (SOCS1), is critical for host defense against pathogens. However, the impact of IFN-α/β on malaria parasite infections, beneficial or detrimental, remains controversial. OBJECTIVES The contradictory results are suspected to arise from differences in parasite species and host genetic backgrounds. To date, no prior study has employed a comparative approach utilizing two parasite models to investigate the underlying mechanisms of IFN-I response. Moreover, whether and how SOCS1 involves in the distinct IFN-α/β dynamics is still unclear. METHODS Here we perform single-cell RNA sequencing analyses (scRNA-seq) to dissect the dynamics of IFN-α/β responses against P. yoelii 17XL (17XL) and P. berghei ANKA (PbANKA) infections; conduct flow cytometry analysis and functional depletion to identify key cellular players induced by IFN-I; and establish mathematical models to explore the mechanisms underlying the differential IFN-I dynamics regulated by SOCS1. RESULTS 17XL stimulates an early protective but insufficient toll-like receptor 7 (TLR7)-interferon regulatory factor 7 (IRF7)-dependent IFN-α/β response, resulting in CD11ahiCD49dhiCD4+ T cell activation to enhance anti-malarial immunity. On the contrary, a late IFN-α/β induction through toll-like receptor 9 (TLR9)-IRF7/ stimulator of interferon genes (STING)- interferon regulatory factor 3 (IRF3) dependent pathways expands programmed cell death protein 1 (PD-1)+CD8+ T cells and impairs host immunity during PbANKA infection. Furthermore, functional assay and mathematical modeling show that SOCS1 significantly suppresses IFN-α/β production via negative feedback and incoherent feed-forward loops (I1-FFL). Additionally, differential activation patterns of various transcriptional factors (TFs) synergistically regulate the distinct IFN-I responses. CONCLUSION This study reveals the dual functions of IFN-I in anti-malarial immunity: Early IFN-α/β enhances immune responses against Plasmodium infection by promoting CD11ahiCD49dhiCD4+ T cell, while late IFN-α/β suppresses these response by expanding PD-1+CD8+ T cells. Moreover, both the SOCS1-related network motifs and TFs activation patterns contribute to determine distinct dynamics of IFN-I responses. Hence, our findings suggest therapies targeting SOCS1- or TFs-regulated IFN-I dynamics could be an efficacious approach for preventing malaria and enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Jiansen Lu
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiqiang Hu
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Huaji Jiang
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zebin Wen
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongyu Li
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361000, China
| | - Ke Zeng
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingchao Xie
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huadan Chen
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, Qinghai 810000, China.
| | - Xiao Yu
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
3
|
Gupta S, Saini M, Joshi N, Shafi S, Najmi AK, Singh S. Antimalarial and Plasmodium falciparum serpentine receptor 12 targeting effect of FDA approved purinergic receptor antagonist. J Biomol Struct Dyn 2023; 41:9462-9475. [PMID: 36351236 DOI: 10.1080/07391102.2022.2142298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Intraerythrocytic stages of Plasmodium falciparum responsible for all clinical manifestations of malaria are regulated by array of signalling cascades that represent attractive targets for antimalarial therapy. G-protein coupled receptors (GPCRs) are druggable targets in the treatment of various pathological conditions, however, there is limited understanding about the role of GPCRs in malaria pathogenesis. In Plasmodium, serpentine receptors (PfSR1, PfSR10, PfSR12 and PfSR25) with GPCR-like membrane topology have been reported with the finite knowledge about their potential as antimalarial targets. We analyzed the localization of these receptors in malaria parasite by immunofluorescence assays. All four receptors were expressed in blood stages with PfSR12 expressing more in late intraerythrocytic stages. Further, we evaluated the druggability of PfSR12 using FDA-approved P2Y purinergic receptor antagonist, Prasugrel and its active metabolite R138727, which is proposed to be specific towards PfSR12. Interestingly, biophysical analysis indicated strong binding between PfSR12 and R138727 as compared to the prodrug Prasugrel. This binding interaction was further confirmed by thermal shift assay. Treatment of parasite with Prasugrel and R138727 resulted in growth inhibition of P. falciparum indicating an important role of purinergic signalling and PfSR12 in parasite survival. Next, progression studies indicated the inhibitory effect of Prasugrel begins in late erythrocyte stages corroborating with PfSR12 expression at these stages. Furthermore, Prasugrel also blocked in vivo growth of malaria parasite in a mouse experimental model. This study indicates the presence of P2Y type of purinergic signalling in growth and development of malaria parasite and suggests PfSR12, putative purinergic receptor druggability through Prasugrel.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Nishant Joshi
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Otsuki H, Kaneko O, Ito D, Kondo Y, Iriko H, Ishino T, Tachibana M, Tsuboi T, Torii M. Cysteine Residues in Region 6 of the Plasmodium yoelii Erythrocyte-Binding-like Ligand That Are Related to Its Localization and the Course of Infection. Biomolecules 2023; 13:458. [PMID: 36979393 PMCID: PMC10046610 DOI: 10.3390/biom13030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Plasmodium malaria parasites use erythrocyte-binding-like (EBL) ligands to invade erythrocytes in their vertebrate host. EBLs are released from micronemes, which are secretory organelles located at the merozoite apical end and bind to erythrocyte surface receptors. Because of their essential nature, EBLs have been studied as vaccine candidates, such as the Plasmodium vivax Duffy binding protein. Previously, we showed through using the rodent malaria parasite Plasmodium yoelii that a single amino acid substitution within the EBL C-terminal Cys-rich domain (region 6) caused mislocalization of this molecule and resulted in alteration of the infection course and virulence between the non-lethal 17X and lethal 17XL strains. In the present study, we generated a panel of transgenic P. yoelii lines in which seven of the eight conserved Cys residues in EBL region 6 were independently substituted to Ala residues to observe the consequence of these substitutions with respect to EBL localization, the infection course, and virulence. Five out of seven transgenic lines showed EBL mislocalizations and higher parasitemias. Among them, three showed increased virulence, whereas the other two did not kill the infected mice. The remaining two transgenic lines showed low parasitemias similar to their parental 17X strain, and their EBL localizations did not change. The results indicate the importance of Cys residues in EBL region 6 for EBL localization, parasite infection course, and virulence and suggest an association between EBL localization and the parasite infection course.
Collapse
Affiliation(s)
- Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon 791-0295, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon 791-0295, Japan
| |
Collapse
|
5
|
Plasmodium yoelii Erythrocyte-Binding-like Protein Modulates Host Cell Membrane Structure, Immunity, and Disease Severity. mBio 2020; 11:mBio.02995-19. [PMID: 31911494 PMCID: PMC6946805 DOI: 10.1128/mbio.02995-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies. Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoelliinigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro. The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies.
Collapse
|
6
|
Shears MJ, Sekhar Nirujogi R, Swearingen KE, Renuse S, Mishra S, Jaipal Reddy P, Moritz RL, Pandey A, Sinnis P. Proteomic Analysis of Plasmodium Merosomes: The Link between Liver and Blood Stages in Malaria. J Proteome Res 2019; 18:3404-3418. [PMID: 31335145 DOI: 10.1021/acs.jproteome.9b00324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.
Collapse
Affiliation(s)
- Melanie J Shears
- Department of Molecular Microbiology & Immunology , Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry , Johns Hopkins School of Medicine , 733 N. Broadway , Baltimore , Maryland 21205 , United States.,Institute of Bioinformatics , International Tech Park , Bangalore 560 066 , India
| | - Kristian E Swearingen
- Institute for Systems Biology , 401 Terry Avenue , North Seattle , Washington 98109 , United States
| | - Santosh Renuse
- Department of Biological Chemistry , Johns Hopkins School of Medicine , 733 N. Broadway , Baltimore , Maryland 21205 , United States
| | - Satish Mishra
- Department of Molecular Microbiology & Immunology , Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Panga Jaipal Reddy
- Institute for Systems Biology , 401 Terry Avenue , North Seattle , Washington 98109 , United States
| | - Robert L Moritz
- Institute for Systems Biology , 401 Terry Avenue , North Seattle , Washington 98109 , United States
| | - Akhilesh Pandey
- Department of Biological Chemistry , Johns Hopkins School of Medicine , 733 N. Broadway , Baltimore , Maryland 21205 , United States
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology , Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street , Baltimore , Maryland 21205 , United States
| |
Collapse
|
7
|
Scully EJ, Kanjee U, Duraisingh MT. Molecular interactions governing host-specificity of blood stage malaria parasites. Curr Opin Microbiol 2017; 40:21-31. [PMID: 29096194 DOI: 10.1016/j.mib.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 11/18/2022]
Abstract
Non-human primates harbor diverse species of malaria parasites, including the progenitors of Plasmodium falciparum and Plasmodium vivax. Cross-species transmission of some malaria parasites-most notably the macaque parasite, Plasmodium knowlesi-continues to this day, compelling the scientific community to ask whether these zoonoses could impede malaria control efforts by acting as a source of recurrent human infection. Host-restriction varies considerably among parasite species and is governed by both ecological and molecular variables. In particular, the efficiency of red blood cell invasion constitutes a prominent barrier to zoonotic emergence. Although proteins expressed upon the erythrocyte surface exhibit considerable diversity both within and among hosts, malaria parasites have adapted to this heterogeneity via the expansion of protein families associated with invasion, offering redundant mechanisms of host cell entry. This molecular toolkit may enable some parasites to circumvent host barriers, potentially yielding host shifts upon subsequent adaptation. Recent studies have begun to elucidate the molecular determinants of host-specificity, as well as the mechanisms that malaria parasites use to overcome these restrictions. We review recent studies concerning host tropism in the context of erythrocyte invasion by focusing on three malaria parasites that span the zoonotic spectrum: P. falciparum, P. knowlesi, and P. vivax.
Collapse
Affiliation(s)
- Erik J Scully
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA 02138, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 651 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Hopp CS, Bennett BL, Mishra S, Lehmann C, Hanson KK, Lin JW, Rousseau K, Carvalho FA, van der Linden WA, Santos NC, Bogyo M, Khan SM, Heussler V, Sinnis P. Deletion of the rodent malaria ortholog for falcipain-1 highlights differences between hepatic and blood stage merozoites. PLoS Pathog 2017; 13:e1006586. [PMID: 28922424 PMCID: PMC5602738 DOI: 10.1371/journal.ppat.1006586] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/16/2017] [Indexed: 01/10/2023] Open
Abstract
Proteases have been implicated in a variety of developmental processes during the malaria parasite lifecycle. In particular, invasion and egress of the parasite from the infected hepatocyte and erythrocyte, critically depend on protease activity. Although falcipain-1 was the first cysteine protease to be characterized in P. falciparum, its role in the lifecycle of the parasite has been the subject of some controversy. While an inhibitor of falcipain-1 blocked erythrocyte invasion by merozoites, two independent studies showed that falcipain-1 disruption did not affect growth of blood stage parasites. To shed light on the role of this protease over the entire Plasmodium lifecycle, we disrupted berghepain-1, its ortholog in the rodent parasite P. berghei. We found that this mutant parasite displays a pronounced delay in blood stage infection after inoculation of sporozoites. Experiments designed to pinpoint the defect of berghepain-1 knockout parasites found that it was not due to alterations in gliding motility, hepatocyte invasion or liver stage development and that injection of berghepain-1 knockout merosomes replicated the phenotype of delayed blood stage growth after sporozoite inoculation. We identified an additional role for berghepain-1 in preparing blood stage merozoites for infection of erythrocytes and observed that berghepain-1 knockout parasites exhibit a reticulocyte restriction, suggesting that berghepain-1 activity broadens the erythrocyte repertoire of the parasite. The lack of berghepain-1 expression resulted in a greater reduction in erythrocyte infectivity in hepatocyte-derived merozoites than it did in erythrocyte-derived merozoites. These observations indicate a role for berghepain-1 in processing ligands important for merozoite infectivity and provide evidence supporting the notion that hepatic and erythrocytic merozoites, though structurally similar, are not identical. Malaria affects hundreds of millions of people and is the cause of hundreds of thousands of deaths each year. Infection begins with the inoculation of sporozoites into the skin during the bite of an infected mosquito. Sporozoites subsequently travel to the liver, where they invade and replicate in hepatocytes, eventually releasing the stage of the parasite that is infectious for red blood cells, termed merozoites. Hepatic merozoites initiate blood stage infection, the stage that is responsible for the clinical symptoms of malaria. The blood stage of the parasite grows through repeated rounds of invasion, development and egress of blood stage merozoites, which then continue the cycle. Proteases are among the enzymes that are essential for parasite survival and their functions range from invasion of red blood cells, to the breakdown of red cell hemoglobin, to the release of parasites from red cells. As the function of the cysteine protease falcipain-1 in the lifecycle of the human malaria parasite Plasmodium falciparum remains poorly understood, we decided to study berghepain-1, the orthologue of the rodent malaria parasite P. berghei by generating a berghepain-1 deletion parasite. Using this mutant, we demonstrate that berghepain-1 has a critical role in both hepatic and erythrocytic merozoite infectivity. Little is known about differences between these two types of merozoites and our data leads us to conclude that these merozoites are not identical.
Collapse
Affiliation(s)
- Christine S. Hopp
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (CSH); (BLB); (PS)
| | - Brandy L. Bennett
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (CSH); (BLB); (PS)
| | - Satish Mishra
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Kirsten K. Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Jing-wen Lin
- Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden ZA, The Netherlands
| | - Kimberly Rousseau
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Wouter A. van der Linden
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shahid M. Khan
- Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden ZA, The Netherlands
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (CSH); (BLB); (PS)
| |
Collapse
|
9
|
El-Sayed SAES, Rizk MA, Terkawi MA, Yokoyama N, Igarashi I. Molecular identification and antigenic characterization of Babesia divergens Erythrocyte Binding Protein (BdEBP) as a potential vaccine candidate. Parasitol Int 2017; 66:721-726. [PMID: 28743470 DOI: 10.1016/j.parint.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Host cell invasion is the only step where Babesia parasites are extracellular, and their survival is menaced during this step. Therefore, interfering with this critical stage is a target for an anti-Babesia intervention strategy. In this regard, recombinant protein encoding Babesia divergens Erythrocyte Binding Protein (BdEBP) was produced in Escherichia coli in the current study, and its antiserum was prepared in mice for further molecular characterization. Western blotting and indirect fluorescent antibody test (IFAT) revealed the specific reaction of the anti-rBdEBP serum with a corresponding authentic protein of B. divergens. Next, bovine RBCs were incubated with a B. divergens lysate, and anti-rBdEBP serum was produced in mice to detect the ability of BdEBP to bind with host cells. Bands corresponding to 29.6-kDa proteins in the protein-bound erythrocyte lysate were detected by specific immune rBdEBP using Western blotting. These results suggest that BdEBP is functional in the merozoite stage and may be involved in attachment to bovine RBCs. A significant inhibition of the in vitro growth of B. divergens culture treated with anti-rBdEBP serum was observed. Moreover, the efficacy of pre-incubated free merozoites to invade bovine erythrocytes was inhibited by 60% after incubation with 2mg/ml of anti-rBdEBP serum for 6h. The obtained data suggest the possible use of rBdEBP as a vaccine candidate against bovine babesiosis.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan.
| |
Collapse
|
10
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg 2015; 93:42-56. [PMID: 26259939 PMCID: PMC4574273 DOI: 10.4269/ajtmh.14-0841] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023] Open
Abstract
More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph D. Smith
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun 2013; 4:1638. [PMID: 23535659 DOI: 10.1038/ncomms2612] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/18/2013] [Indexed: 01/06/2023] Open
Abstract
The macaque malaria parasite Plasmodium knowlesi has recently emerged as an important zoonosis in Southeast Asia. Infections are typically mild but can cause severe disease, achieving parasite densities similar to fatal Plasmodium falciparum infections. Here we show that a primate-adapted P. knowlesi parasite proliferates poorly in human blood due to a strong preference for young red blood cells (RBCs). We establish a continuous in vitro culture system by using human blood enriched for young cells. Mathematical modelling predicts that parasite adaptation for invasion of older RBCs is a likely mechanism leading to high parasite densities in clinical infections. Consistent with this model, we find that P. knowlesi can adapt to invade a wider age range of RBCs, resulting in proliferation in normal human blood. Such cellular niche expansion may increase pathogenesis in humans and will be a key feature to monitor as P. knowlesi emerges in human populations.
Collapse
|
13
|
Huang X, Liew K, Natalang O, Siau A, Zhang N, Preiser PR. The role of serine-type serine repeat antigen in Plasmodium yoelii blood stage development. PLoS One 2013; 8:e60723. [PMID: 23634205 PMCID: PMC3636278 DOI: 10.1371/journal.pone.0060723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 03/01/2013] [Indexed: 11/28/2022] Open
Abstract
A key step for the survival of the malaria parasite is the release from and subsequent invasion of erythrocytes by the merozoite. Differences in the efficiency of these two linked processes have a direct impact on overall parasite burden in the host and thereby virulence. A number of parasite proteases have recently been shown to play important roles during both merozoite egress as well as merozoite invasion. The rodent malaria parasite Plasmodium yoelii has been extensively used to investigate the mechanisms of parasite virulence in vivo and a number of important proteins have been identified as being key contributors to pathology. Here we have utilized transcriptional comparisons to identify two protease-like SERAs as playing a potential role in virulence. We show that both SERAs are non-essential for blood stage development of the parasite though they provide a subtle but important growth advantage in vivo. In particular SERA2 appears to be an important factor in enabling the parasite to fully utilize the whole age repertoire of circulating erythrocytes. This work for the first time demonstrates the subtle contributions different protease-like SERAs make to provide the parasite with a maximal capacity to successfully maintain an infection in the host.
Collapse
Affiliation(s)
- Ximei Huang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kingsley Liew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Onguma Natalang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Neng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter Rainer Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
14
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Mbengue A, Audiger N, Vialla E, Dubremetz JF, Braun-Breton C. NovelPlasmodium falciparum Maurer's clefts protein families implicated in the release of infectious merozoites. Mol Microbiol 2013; 88:425-42. [DOI: 10.1111/mmi.12193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
|
16
|
Hayton K, Dumoulin P, Henschen B, Liu A, Papakrivos J, Wellems TE. Various PfRH5 polymorphisms can support Plasmodium falciparum invasion into the erythrocytes of owl monkeys and rats. Mol Biochem Parasitol 2013; 187:103-10. [PMID: 23305874 DOI: 10.1016/j.molbiopara.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022]
Abstract
Aotus nancymaae, the owl monkey, provides a useful laboratory model for research to develop drugs and vaccines against human falciparum malaria; however, many Plasmodium falciparum parasites are unable to invade A. nancymaae erythrocytes, rendering the parasites noninfective to the monkeys. In previous work, we identified a key polymorphism that determined the inheritance of erythrocyte invasion in a genetic cross of two P. falciparum clones that were virulent (GB4) or noninfective (7G8) to A. nancymaae. This polymorphism, an isoleucine-to-lysine polymorphism at position 204 (I204K) of the GB4 erythrocyte binding protein PfRH5, was nevertheless not found in several other P. falciparum lines that could also invade A. nancymaae erythrocytes. Alternative PfRH5 polymorphisms occur at different positions in these virulent parasites, and additional polymorphisms are found in P. falciparum parasites that cannot infect A. nancymaae. By allelic replacement methods, we have introduced the polymorphisms of these A. nancymaae-virulent or noninfective parasites at codons 204, 347, 358, 362, 410, and 429 of the endogenous PfRH5 gene in the noninfective 7G8 line. 7G8 transformants expressing the polymorphisms of the A. nancymaae-virulent parasites show neuraminidase-sensitive (sialic acid-dependent) invasion into the monkey erythrocytes, whereas 7G8 transformants expressing the PfRH5 alleles of noninfective parasites show little or no invasion of these erythrocytes. Parasites harboring PfRH5 polymorphisms 204K or 204R are also able to invade rat erythrocytes and are differentially sensitive to the removal of surface sialic acids by neuraminidase. These studies offer insights into the PfRH5 receptor-binding domain and interactions that support the invasion of various primate and rodent erythrocytes by P. falciparum.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
17
|
Gunalan K, Gao X, Yap SSL, Huang X, Preiser PR. The role of the reticulocyte-binding-like protein homologues of Plasmodium in erythrocyte sensing and invasion. Cell Microbiol 2012; 15:35-44. [PMID: 23046317 DOI: 10.1111/cmi.12038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022]
Abstract
Malaria remains a serious public health problem with significant morbidity and mortality accounting for nearly 20% of all childhood deaths in Africa. The cyclical invasion, cytoadherence and destruction of the host's erythrocyte by the parasite are responsible for the observed disease pathology. The invasive form of the parasite, the merozoite, uses a complex set of interactions between parasite ligands and erythrocyte receptors that leads to the formation of a tight junction and ultimately successful erythrocyte invasion. Understanding the molecular mechanism underlying host cell recognition and invasion is crucial for the development of a targeted intervention strategy. Two parasite protein families termed reticulocyte-binding-like protein homologues (RBL) and the erythrocyte-binding-like (EBL) protein family are conserved in all Plasmodium species and have been shown to play an important role in host cell recognition and invasion. Over the last few years significant new insights have been gained in understanding the function of the RBL family and this review attempts to provide an update with a specific focus on the role of RBL in signal transduction pathways during invasion.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
18
|
Babesia bovis biological clones and the inter-strain allelic diversity of the Bv80 gene support subpopulation selection as a mechanism involved in the attenuation of two virulent isolates. Vet Parasitol 2012; 190:391-400. [PMID: 22820058 DOI: 10.1016/j.vetpar.2012.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 05/27/2012] [Accepted: 06/28/2012] [Indexed: 11/20/2022]
Abstract
The virulence phenotype of Babesia bovis subpopulations was evaluated using biological clones derived from the high-virulence BboS2P and the low-virulence BboR1A strain and two original virulent isolates, BboL15 and BboL17, multiplied extensively in vitro or attenuated by successive passages in splenectomized calves. The virulence phenotype was assessed both by inoculation of normal Holstein adult steers and by analyses of polymorphic fragments of the single-copy Bv80 gene as a subpopulation marker. BboS2P and its nine derived clones contained a single 750 bp fragment with identical nucleotide sequences and numbers of repeats. A single fragment of approximately 850 bp was observed in BboR1A and its derived clones (Ca3B1, Ca2B1). Ca3B1 and Ca2B1 were differentiated by a stable deletion of 15 contiguous nucleotides in the Bv80 allele of Ca3B1. Both alleles were identified in the parental strain. Original isolates BboL15 and BboL17 contained two Bv80 fragments of different sizes. Interestingly, the heavy and light fragments persisted in the in vivo-attenuated strains and the virulent in vitro-multiplied strains, respectively. Despite the inter-strain allelic diversity of the Bv80 gene, the fragments had identical nucleotide sequences and numbers of repeats compared to their respective parental Bv80 genes. The high-virulence and low-virulence phenotypes remained unchanged after they were multiplied in vitro. In conclusion, the polymorphic B. bovis Bv80 gene, was a useful marker for differentiating subpopulations with different phenotypes. The brevity of the procedure to isolate one parasite from the original isolate or strain before in vitro cloning and the fact that the continuous in vitro multiplication did not modify the virulence phenotype of B. bovis clones strongly suggest that the in vivo-attenuated subpopulations existed in the original isolates before they were selected by passages in splenectomized calves.
Collapse
|
19
|
Attenuation of virulence in an apicomplexan hemoparasite results in reduced genome diversity at the population level. BMC Genomics 2011; 12:410. [PMID: 21838895 PMCID: PMC3166950 DOI: 10.1186/1471-2164-12-410] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022] Open
Abstract
Background Virulence acquisition and loss is a dynamic adaptation of pathogens to thrive in changing milieus. We investigated the mechanisms of virulence loss at the whole genome level using Babesia bovis as a model apicomplexan in which genetically related attenuated parasites can be reliably derived from virulent parental strains in the natural host. We expected virulence loss to be accompanied by consistent changes at the gene level, and that such changes would be shared among attenuated parasites of diverse geographic and genetic background. Results Surprisingly, while single nucleotide polymorphisms in 14 genes distinguished all attenuated parasites from their virulent parental strains, all non-synonymous changes resulted in no deleterious amino acid modification that could consistently be associated with attenuation (or virulence) in this hemoparasite. Interestingly, however, attenuation significantly reduced the overall population's genome diversity with 81% of base pairs shared among attenuated strains, compared to only 60% of base pairs common among virulent parental parasites. There were significantly fewer genes that were unique to their geographical origins among the attenuated parasites, resulting in a simplified population structure among the attenuated strains. Conclusions This simplified structure includes reduced diversity of the variant erythrocyte surface 1 (ves) multigene family repertoire among attenuated parasites when compared to virulent parental strains, possibly suggesting that overall variance in large protein families such as Variant Erythrocyte Surface Antigens has a critical role in expression of the virulence phenotype. In addition, the results suggest that virulence (or attenuation) mechanisms may not be shared among all populations of parasites at the gene level, but instead may reflect expansion or contraction of the population structure in response to shifting milieus.
Collapse
|
20
|
Grüber A, Gunalan K, Ramalingam JK, Manimekalai MSS, Grüber G, Preiser PR. Structural characterization of the erythrocyte binding domain of the reticulocyte binding protein homologue family of Plasmodium yoelii. Infect Immun 2011; 79:2880-8. [PMID: 21482683 PMCID: PMC3191949 DOI: 10.1128/iai.01326-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Invasion of the host cell by the malaria parasite is a key step for parasite survival and the only stage of its life cycle where the parasite is extracellular, and it is therefore a target for an antimalaria intervention strategy. Multiple members of the reticulocyte binding protein homologues (RH) family are found in all plasmodia and have been shown to bind to host red blood cells directly. In the study described here, we delineated the erythrocyte binding domain (EBD) of one member of the RH family, termed Py235, from Plasmodium yoelii. Moreover, we have obtained the low-resolution structure of the EBD using small-angle X-ray scattering. Comparison of the EDB structure to other characterized Plasmodium receptor binding domains suggests that there may be an overall structural conservation. These findings may help in developing new approaches to target receptor ligand interactions mediated by parasite proteins.
Collapse
Affiliation(s)
- Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jeya Kumar Ramalingam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
21
|
Bapat D, Huang X, Gunalan K, Preiser PR. Changes in parasite virulence induced by the disruption of a single member of the 235 kDa rhoptry protein multigene family of Plasmodium yoelii. PLoS One 2011; 6:e20170. [PMID: 21625465 PMCID: PMC3098881 DOI: 10.1371/journal.pone.0020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Invasion of the erythrocyte by the merozoites of the malaria parasite is a
complex process involving a range of receptor-ligand interactions. Two protein
families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding
Protein Homologues (RH) play an important role in host cell recognition by the
merozoite. In the rodent malaria parasite, Plasmodium yoelii,
the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are
members of the RH. In P. yoelii Py235 as well as a single
member of EBL have been shown to be key mediators of virulence enabling the
parasite to invade a wider range of host erythrocytes. One member of Py235,
PY01365 is most abundantly transcribed in parasite
populations and the protein specifically binds to erythrocytes and is recognized
by the protective monoclonal antibody 25.77, suggesting a key role of this
particular member in virulence. Recent studies have indicated that overall
levels of Py235 expression are essential for parasite virulence. Here we show
that disruption of PY01365 in the virulent YM line directly
impacts parasite virulence. Furthermore the disruption of
PY01365 leads to a reduction in the number of schizonts
that express members of Py235 that react specifically with the mcAb 25.77.
Erythrocyte binding assays show reduced binding of Py235 to red blood cells in
the PY01365 knockout parasite as compared to YM. While our
results identify PY01365 as a mediator of parasite virulence,
they also confirm that other members of Py235 are able to substitute for
PY01365.
Collapse
Affiliation(s)
- Devaki Bapat
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
Basak S, Gayen S, Ramalingam JK, Grüber A, Preiser PR, Grüber G. NMR solution structure of NBD94(483-502) of the nucleotide-binding domain of the Plasmodium yoelii reticulocyte-binding protein Py235. FEMS Microbiol Lett 2011; 318:152-8. [PMID: 21366672 DOI: 10.1111/j.1574-6968.2011.02253.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Invasion of the erythrocyte by the invasive form of the malaria parasite, the merozoite, is a complex process involving numerous parasite proteins. The reticulocyte-binding protein homologues (RH) family of merozoite proteins has been previously shown to play an important role in the invasion process. Previously, it has been shown that the RH proteins of Plasmodium yoelii, Py235, play a role as an ATP/ADP sensor. Binding of Py235 to the erythrocyte surface is increased in the presence of ATP, while ADP has an inhibitory effect. The sensor domain of Py235 is called NBD94 and the segment that has been shown to covalently bind the adenine nucleotide is made up by the residues (483) FNEIKEKLKHYNFDDFVKEE(502) . Here, we report on the solution nuclear magnetic resonance structure of this peptide (NBD94(483-502) ) showing the presence of an α-helix between amino acid residues 485 and 491. The N- and C-terminal segments of the structure bend at tyrosine 493, a residue important for ATP binding. Importantly, erythrocyte-binding assays demonstrate that NBD94(483-502) can directly interfere with the binding of native Py235 to erythrocytes, suggesting a direct role of this region in erythrocyte binding. The data will provide the foundation for future studies to identify new compounds that directly interfere with the invasion process.
Collapse
Affiliation(s)
- Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein. PLoS Pathog 2011; 7:e1001288. [PMID: 21379566 PMCID: PMC3040676 DOI: 10.1371/journal.ppat.1001288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
Collapse
|
24
|
DeSimone TM, Jennings CV, Bei AK, Comeaux C, Coleman BI, Refour P, Triglia T, Stubbs J, Cowman AF, Duraisingh MT. Cooperativity between Plasmodium falciparum adhesive proteins for invasion into erythrocytes. Mol Microbiol 2010; 72:578-89. [PMID: 19400777 DOI: 10.1111/j.1365-2958.2009.06667.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum is the most virulent of the Plasmodium species infective to humans. Different P. falciparum strains vary in their dependence on erythrocyte receptors for invasion and their ability to switch in their utilization of different receptor repertoires. Members of the reticulocyte-binding protein-like (RBL) family of invasion ligands are postulated to play a central role in defining ligand-receptor interactions, known as invasion pathways. Here we report the targeted gene disruption of PfRh2b and PfRh2a in W2mef, a parasite strain that is heavily dependent on sialic-acid receptors for invasion, and show that the PfRh2b ligand is functional in this parasite background. Like the parental line, parasites lacking either PfRh2a or PfR2b can switch to a sialic acid-independent invasion pathway. However, both of the switched lines exhibit a reduced efficiency for invasion into sialic acid-depleted cells, suggesting a role for both PfRh2b and PfRh2a in invasion via sialic acid-independent receptors. We also find a strong selective pressure for the reconstitution of PfRh2b expression at the expense of PfRh2a. Our results reveal the importance of genetic background in ligand-receptor usage by P. falciparum parasites, and suggest that the co-ordinate expression of PfRh2a, PfRh2b together mediate efficient sialic acid-independent erythrocyte invasion.
Collapse
|
25
|
Dvorin JD, Bei AK, Coleman BI, Duraisingh MT. Functional diversification between two related Plasmodium falciparum merozoite invasion ligands is determined by changes in the cytoplasmic domain. Mol Microbiol 2010; 75:990-1006. [PMID: 20487292 DOI: 10.1111/j.1365-2958.2009.07040.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenesis of Plasmodium falciparum depends on efficient invasion into host erythrocytes. Parasite ligands encoded by multi-gene families interact with erythrocyte receptors. P. falciparum reticulocyte binding protein homologues (PfRhs) are expressed at the apical surface of invasive merozoites and have divergent ectodomains that are postulated to bind different erythrocyte receptors. Variant expression of these paralogues results in the use of alternative invasion pathways. Two PfRh proteins, PfRh2a and PfRh2b, are identical for 2700 N-terminal amino acids and differ only in a C-terminal 500 amino acid region, which includes a unique ectodomain, transmembrane domain and cytoplasmic domain. Despite their similarity, PfRh2b is required for a well-defined invasion pathway while PfRh2a is not required or sufficient for this pathway. Mapping the genomic region encoding these proteins revealed a recombinogenic locus with PfRh2a and PfRh2b in a head-to-head orientation. We have generated viable PfRh2a/2b chimeric parasites to identify the regions required for alternative invasion pathway utilization. We find that the differential ability to use these pathways is conferred by the cytoplasmic domains of PfRh2a and PfRh2b, not the ectodomain or transmembrane regions. Our results highlight the importance of the cytoplasmic domain for functional diversification of a major adhesive ligand family in malaria parasites.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Jemmely NY, Niang M, Preiser PR. Small variant surface antigens and Plasmodium evasion of immunity. Future Microbiol 2010; 5:663-82. [PMID: 20353305 DOI: 10.2217/fmb.10.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antigenic variation at the Plasmodium-infected erythrocyte surface plays a critical role in malaria disease severity and host immune evasion. Our current understanding of the role of Plasmodium variant surface antigens in antigenic variation and immune evasion is largely limited to the extensive work carried out on the Plasmodium falciparum var gene family. Although homologues of var genes are not present in other malaria species, small variant gene families comprising the rif and stevor genes in P. falciparum and the pir genes in Plasmodium vivax, Plasmodium knowlesi and the rodent malaria Plasmodium chabaudi, Plasmodium berghei and Plasmodium yoelii also show features suggesting a role in antigenic variation and immune evasion. In this article, we highlight our current understanding of these variant antigens and provide insights on the mechanisms developed by malaria parasites to effectively avoid the host immune response and establish chronic infection.
Collapse
Affiliation(s)
- Noelle Yvonne Jemmely
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
27
|
Culleton R, Kaneko O. Erythrocyte binding ligands in malaria parasites: intracellular trafficking and parasite virulence. Acta Trop 2010; 114:131-7. [PMID: 19913491 DOI: 10.1016/j.actatropica.2009.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
The intracellular trafficking of an Erythrocyte Binding Like (EBL) ligand has recently been shown to dramatically affect the multiplication rate and virulence of the rodent malaria parasite Plasmodium yoelii yoelii. In this review, we describe the current understanding of the role of EBL and other erythrocyte binding ligands in erythrocyte invasion, and discuss the mechanisms by which they may control multiplication rates and virulence in malaria parasites.
Collapse
|
28
|
Grüber A, Manimekalai MSS, Balakrishna AM, Hunke C, Jeyakanthan J, Preiser PR, Grüber G. Structural determination of functional units of the nucleotide binding domain (NBD94) of the reticulocyte binding protein Py235 of Plasmodium yoelii. PLoS One 2010; 5:e9146. [PMID: 20161776 PMCID: PMC2818847 DOI: 10.1371/journal.pone.0009146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94) of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH. METHODOLOGY/PRINCIPAL FINDINGS In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94(444-547), NBD94(566-663) and NBD94(674-793), respectively. Using fluorescence correlation spectroscopy NBD94(444-547) has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94(444-547) in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 A in length. The high quality of the constructs, forming the hinge-region, NBD94(566-663) and NBD94(674-793) enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94(566-663) consists of two helices with 97.8 A and 48.6 A in length, linked by a loop. By comparison, the low resolution structure of NBD94(674-793) in solution represents a chair-like shape with three architectural segments. CONCLUSIONS These structures give the first insight into how nucleotide binding impacts on the overall structure of RH and demonstrates the potential use of this region as a novel drug target.
Collapse
Affiliation(s)
- Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | |
Collapse
|
29
|
Howitt CA, Wilinski D, Llinás M, Templeton TJ, Dzikowski R, Deitsch KW. Clonally variant gene families in Plasmodium falciparum share a common activation factor. Mol Microbiol 2009; 73:1171-85. [PMID: 19708920 DOI: 10.1111/j.1365-2958.2009.06846.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genome of the malaria parasite Plasmodium falciparum contains several multicopy gene families, including var, rifin, stevor and Pfmc-2TM. These gene families undergo expression switching and appear to play a role in antigenic variation. It has recently been shown that forcing parasites to express high copy numbers of transcriptionally active, episomal var promoters led to gradual downregulation and eventual silencing of the entire var gene family, suggesting that a limiting titratable factor plays a role in var gene activation. Through similar experiments using rifin, stevor or Pfmc-2TM episomal promoters we show that promoter titration can be used as a general method to downregulate multicopy gene families in P. falciparum. Additionally, we show that promoter titration with var, rifin, stevor or Pfmc-2TM episomal promoters results in downregulation of expression not only of the family to which the episomal promoter belongs, but also members of the other gene families, suggesting that the var-specific titratable factor previously described is shared by all four families. Further, transcriptionally active promoters from different families colocalize within the same subnuclear expression site, indicating that the role that nuclear architecture plays in var gene regulation also likely applies to the other multicopy gene families of P. falciparum.
Collapse
Affiliation(s)
- Cali A Howitt
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gene encoding erythrocyte binding ligand linked to blood stage multiplication rate phenotype in Plasmodium yoelii yoelii. Proc Natl Acad Sci U S A 2009; 106:7161-6. [PMID: 19359470 DOI: 10.1073/pnas.0811430106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variation in the multiplication rate of blood stage malaria parasites is often positively correlated with the severity of the disease they cause. The rodent malaria parasite Plasmodium yoelii yoelii has strains with marked differences in multiplication rate and pathogenicity in the blood. We have used genetic analysis by linkage group selection (LGS) to identify genes that determine differences in multiplication rate. Genetic crosses were generated between genetically unrelated, fast- (17XYM) and slowly multiplying (33XC) clones of P. y. yoelii. The uncloned progenies of these crosses were placed under multiplication rate selection in blood infections in mice. The selected progenies were screened for reduction in intensity of quantitative genetic markers of the slowly multiplying parent. A small number of strongly selected markers formed a linkage group on P. y. yoelii chromosome 13. Of these, that most strongly selected marked the gene encoding the P. yoelii erythrocyte binding ligand (pyebl), which has been independently identified by Otsuki and colleagues [Otsuki H, et al. (2009) Proc Natl Acad Sci USA 106:10.1073/pnas.0811313106] as a major determinant of virulence in these parasites. In an analysis of a previous genetic cross in P. y. yoelii, pyebl alleles of fast- and slowly multiplying parents segregated with the fast and slow multiplication rate phenotype in the cloned recombinant progeny, implying the involvement of the pyebl locus in determining the multiplication rate. Our genome-wide LGS analysis also indicated effects of at least 1 other locus on multiplication rate, as did the findings of Otsuki and colleagues on virulence in P. y. yoelii.
Collapse
|
31
|
Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence. Proc Natl Acad Sci U S A 2009; 106:7167-72. [PMID: 19346470 DOI: 10.1073/pnas.0811313106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major virulence determinant of the rodent malaria parasite, Plasmodium yoelii, has remained unresolved since the discovery of the lethal line in the 1970s. Because virulence in this parasite correlates with the ability to invade different types of erythrocytes, we evaluated the potential role of the parasite erythrocyte binding ligand, PyEBL. We found 1 amino acid substitution in a domain responsible for intracellular trafficking between the lethal and nonlethal parasite lines and, furthermore, that the intracellular localization of PyEBL was distinct between these lines. Genetic modification showed that this substitution was responsible not only for PyEBL localization but also the erythrocyte-type invasion preference of the parasite and subsequently its virulence in mice. This previously unrecognized mechanism for altering an invasion phenotype indicates that subtle alterations of a malaria parasite ligand can dramatically affect host-pathogen interactions and malaria virulence.
Collapse
|
32
|
Dzikowski R, Deitsch KW. Genetics of antigenic variation in Plasmodium falciparum. Curr Genet 2009; 55:103-10. [PMID: 19242694 DOI: 10.1007/s00294-009-0233-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 01/21/2023]
Abstract
Malaria caused by the protozoan parasite Plasmodium falciparum is characterized by long-term, persistent infections that can last for many months. The ability of this parasite to avoid clearance by the human immune system is dependent on its capacity to continuously alter the surface exposed antigenic proteins that that are vulnerable to antibody recognition and attack, a process called antigenic variation. Significant work in recent years has contributed to our understanding of the mechanisms underlying this process, including the genes encoding the antigenic proteins and the DNA sequence elements that control their expression. In addition, the epigenetic "marks" that are associated with activation and silencing of individual genes have been extensively characterized. These studies have led to a model that includes multiple layers of regulation that ultimately lead to the tight coordination of expression of the genes responsible for antigenic variation by malaria parasites. Here we review some more recent data that adds additional complexity to our understanding of these regulatory layers.
Collapse
Affiliation(s)
- Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
33
|
Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults. PLoS One 2008; 3:e3557. [PMID: 18958285 PMCID: PMC2570335 DOI: 10.1371/journal.pone.0003557] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/01/2022] Open
Abstract
Background Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. Methods A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. Results Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. Conclusion Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.
Collapse
|
34
|
Ramalingam JK, Hunke C, Gao X, Grüber G, Preiser PR. ATP/ADP binding to a novel nucleotide binding domain of the reticulocyte-binding protein Py235 of Plasmodium yoelii. J Biol Chem 2008; 283:36386-96. [PMID: 18957411 DOI: 10.1074/jbc.m803102200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which a malaria merozoite recognizes a suitable host cell is mediated by a cascade of receptor-ligand interactions. In addition to the availability of the appropriate receptors, intracellular ATP plays an important role in determining whether erythrocytes are suitable for merozoite invasion. Recent work has shown that ATP secreted from erythrocytes signals a number of cellular processes. To determine whether ATP signaling might be involved in merozoite invasion, we investigated whether known plasmodium invasion proteins contain nucleotide binding motifs. Domain mapping identified a putative nucleotide binding region within all members of the reticulocyte-binding protein homologue (RBL) family analyzed. A representative domain, termed here nucleotide binding domain 94 (NBD94), was expressed and demonstrated to specifically bind to ATP. Nucleotide affinities of NBD94 were determined by fluorescence correlation spectroscopy, where an increase in the binding of ATP is observed compared with ADP analogues. ATP binding was reduced by the known F1F0-ATP synthase inhibitor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Fluorescence quenching and circular dichroism spectroscopy of NBD94 after binding of different nucleotides provide evidence for structural changes in this protein. Our data suggest that different structural changes induced by ATP/ADP binding to RBL could play an important role during the invasion process.
Collapse
Affiliation(s)
- Jeya Kumar Ramalingam
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
35
|
The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci U S A 2008; 105:16290-5. [PMID: 18852452 DOI: 10.1073/pnas.0807404105] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax causes over 100 million clinical infections each year. Primarily because of the lack of a suitable culture system, our understanding of the biology of this parasite lags significantly behind that of the more deadly species P. falciparum. Here, we present the complete transcriptional profile throughout the 48-h intraerythrocytic cycle of three distinct P. vivax isolates. This approach identifies strain specific patterns of expression for subsets of genes predicted to encode proteins associated with virulence and host pathogen interactions. Comparison to P. falciparum revealed significant differences in the expression of genes involved in crucial cellular functions that underpin the biological differences between the two parasite species. These data provide insights into the biology of P. vivax and constitute an important resource for the development of therapeutic approaches.
Collapse
|
36
|
Gao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, Rajamanonmani R, Lescar J, Bozdech Z, Preiser PR. Antibodies targeting the PfRH1 binding domain inhibit invasion of Plasmodium falciparum merozoites. PLoS Pathog 2008; 4:e1000104. [PMID: 18617995 PMCID: PMC2438614 DOI: 10.1371/journal.ppat.1000104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 06/13/2008] [Indexed: 11/18/2022] Open
Abstract
Invasion by the malaria merozoite depends on recognition of specific erythrocyte surface receptors by parasite ligands. Plasmodium falciparum uses multiple ligands, including at least two gene families, reticulocyte binding protein homologues (RBLs) and erythrocyte binding proteins/ligands (EBLs). The combination of different RBLs and EBLs expressed in a merozoite defines the invasion pathway utilized and could also play a role in parasite virulence. The binding regions of EBLs lie in a conserved cysteine-rich domain while the binding domain of RBL is still not well characterized. Here, we identify the erythrocyte binding region of the P. falciparum reticulocyte binding protein homologue 1 (PfRH1) and show that antibodies raised against the functional binding region efficiently inhibit invasion. In addition, we directly demonstrate that changes in the expression of RBLs can constitute an immune evasion mechanism of the malaria merozoite.
Collapse
Affiliation(s)
- Xiaohong Gao
- Division of Genomics & Genetics, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect Immun 2008; 76:3329-36. [PMID: 18474651 DOI: 10.1128/iai.01460-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human parasite Plasmodium falciparum has the potential to express a vast repertoire of variant proteins on the surface of the infected red blood cell (iRBC). Variation in the expression pattern of these proteins is linked to antigenic variation and thereby evasion of host antibody-mediated immunity. The genes in the stevor multigene family code for small variant antigens that are expressed in blood-stage parasites where they can be detected in membranous structures called Maurer's clefts (MC). Some studies have indicated that STEVOR protein may also be trafficked to the iRBC membrane. To address the location of STEVOR protein in more detail, we have analyzed expression in several cultured parasite lines and in parasites obtained directly from patients. We detected STEVOR expression in a higher proportion of parasites recently isolated from patients than in cultured parasite lines and show that STEVOR is trafficked in schizont-stage parasites from the MC to the RBC cytosol and the iRBC membrane. Furthermore, STEVOR protein is also detected at the apical end of merozoites. Importantly, we show that culture-adapted parasites do not require STEVOR for survival. These findings provide new insights into the role of the stevor multigene family during both the schizont and merozoite stages of the parasite and highlight the importance of studying freshly isolated parasites, rather than parasite lines maintained in culture, when investigating potential mediators of host-parasite interactions.
Collapse
|
38
|
Iyer J, Grüner AC, Rénia L, Snounou G, Preiser PR. Invasion of host cells by malaria parasites: a tale of two protein families. Mol Microbiol 2007; 65:231-49. [PMID: 17630968 DOI: 10.1111/j.1365-2958.2007.05791.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malaria parasites are obligate intracellular parasites whose invasive stages select and invade the unique host cell in which they can develop with exquisite specificity and efficacy. Most studies aimed at elucidating the molecules and the mechanisms implicated in the selection and invasion processes have been conducted on the merozoite, the stage that invades erythrocytes to perpetuate the pathological cycles of parasite multiplication in the blood. Bioinformatic analysis has helped identify the members of two parasite protein families, the reticulocyte-binding protein homologues (RBL) and erythrocyte binding like (EBL), in recently sequenced genomes of different Plasmodium species. In this article we review data from classical studies and gene disruption experiments that are helping to illuminate the role of these proteins in the selection-invasion processes. The manner in which subsets of proteins from each of the families act in concert suggests a model to explain the ability of the parasites to use alternate pathways of invasion. Future perspectives and implications are discussed.
Collapse
Affiliation(s)
- Jayasree Iyer
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
39
|
Iyer JK, Amaladoss A, Genesan S, Preiser PR. Variable expression of the 235 kDa rhoptry protein of Plasmodium yoeliimediate host cell adaptation and immune evasion. Mol Microbiol 2007. [DOI: 10.1111/j.1365-2958.2007.05920.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|