1
|
Jiang Q, Hu R, Liu F, Huang F, Zhang L, Zhang H. Characterization of a Novel Oxidative Stress Responsive Transcription Regulator in Mycobacterium bovis. Biomedicines 2024; 12:1872. [PMID: 39200336 PMCID: PMC11351531 DOI: 10.3390/biomedicines12081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The antioxidant defense is critical for the survival of intracellular pathogens such as Mycobacterium tuberculosis complex (MTBC) species, including Mycobacterium bovis, which are often exposed to an oxidative environment caused by reactive oxygen species (ROS) in hosts. However, the signaling pathway in mycobacteria for sensing and responding to oxidative stress remains largely unclear. In this study, we characterize a TetR-type transcription regulator BCG_3893c, designated AotM, as a novel redox sensor in Mycobacterium bovis that increases mycobacterial tolerance to oxidative stress. AotM is required for the growth of M. bovis in the presence of 1 mM hydrogen peroxide. Loss of the aotM gene leads to altered transcriptional profiles with 352 genes significantly up-regulated and 25 genes significantly down-regulated. AotM recognizes a 14-bp palindrome sequence motif and negatively regulates the expression of a FAD-dependent oxidoreductase encoded by bcg_3892c. Overexpression of BCG_3892c increases intracellular ROS production and reduces the growth of M. bovis. In summary, we propose that AotM enhances the mycobacterial resistance against oxidative stress probably by inhibiting intracellular ROS production. Our findings reveal a novel underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Rong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Lei Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| |
Collapse
|
2
|
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants (Basel) 2023; 12:1273. [PMID: 37372003 DOI: 10.3390/antiox12061273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. Leptospira are diderm bacteria form the Spirochaetes phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in Leptospira virulence. In this review, we describe the ROS encountered by Leptospira in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in Leptospira adaptation to oxidative stress.
Collapse
Affiliation(s)
- Samuel G Huete
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| |
Collapse
|
3
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
4
|
Fassler R, Zuily L, Lahrach N, Ilbert M, Reichmann D. The Central Role of Redox-Regulated Switch Proteins in Bacteria. Front Mol Biosci 2021; 8:706039. [PMID: 34277710 PMCID: PMC8282892 DOI: 10.3389/fmolb.2021.706039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023] Open
Abstract
Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we focus on bacterial protein switches that are activated during exposure to oxidative stress. Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches and metal centers have been shown to be the primary targets of ROS. Cells take advantage of such reactivity to use these reactive sites as redox sensors to detect and combat oxidative stress conditions. This in turn may induce expression of genes involved in antioxidant strategies and thus protect the proteome against stress conditions. We further describe the well-characterized mechanism of selected proteins that are regulated by redox switches. We highlight the diversity of mechanisms and functions (as well as common features) across different switches, while also presenting integrative methodologies used in discovering new members of this family. Finally, we point to future challenges in this field, both in uncovering new types of switches, as well as defining novel additional functions.
Collapse
Affiliation(s)
- Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Zuily
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Marianne Ilbert
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Gaballa A, Su TT, Helmann JD. The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol 2021; 42:101935. [PMID: 33722570 PMCID: PMC8113031 DOI: 10.1016/j.redox.2021.101935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
The bacterial cytosol is generally a reducing environment with protein cysteine residues maintained in their thiol form. The low molecular weight thiol bacillithiol (BSH) serves as a general thiol reductant, analogous to glutathione, in a wide range of bacterial species. Proteins modified by disulfide bond formation with BSH (S-bacillithiolation) are reduced by the action of bacilliredoxins, BrxA and BrxB. Here, the YtxJ protein is identified as a monothiol bacilliredoxin, renamed BrxC, and is implicated in BSH removal from oxidized cytosolic proteins, including the glyceraldehyde 3-phosphate dehydrogenases GapA and GapB. BrxC can also debacillithiolate the mixed disulfide form of the bacilliredoxin BrxB. Bdr is a thioredoxin reductase-like flavoprotein with bacillithiol-disulfide (BSSB) reductase activity. Here, Bdr is shown to additionally function as a bacilliredoxin reductase. Bdr and BrxB function cooperatively to debacillithiolate OhrR, a transcription factor regulated by S-bacillithiolation on its sole cysteine residue. Collectively, these results expand our understanding of the BSH redox network comprised of three bacilliredoxins and a BSSB reductase that serve to counter the widespread protein S-bacillithiolation that results from conditions of disulfide stress. Bacillithiol is the major low molecular weight thiol in Bacillus subtilis. Oxidative stress leads to protein S-bacillithiolation. BrxC functions as a monothiol class bacilliredoxin. The Bdr bacillithiol disulfide reductase is also a bacilliredoxin.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Tina Tianjiao Su
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Abstract
SIGNIFICANCE Iron is required for growth and is often redox active under cytosolic conditions. As a result of its facile redox chemistry, iron homeostasis is intricately involved with oxidative stress. Bacterial adaptation to iron limitation and oxidative stress often involves ferric uptake regulator (Fur) proteins: a diverse set of divalent cation-dependent, DNA-binding proteins that vary widely in both metal selectivity and sensitivity to metal-catalyzed oxidation. Recent Advances: Bacteria contain two Fur family metalloregulators that use ferrous iron (Fe2+) as their cofactor, Fur and PerR. Fur functions to regulate iron homeostasis in response to changes in intracellular levels of Fe2+. PerR also binds Fe2+, which enables metal-catalyzed protein oxidation as a mechanism for sensing hydrogen peroxide (H2O2). CRITICAL ISSUES To effectively regulate iron homeostasis, Fur has an Fe2+ affinity tuned to monitor the labile iron pool of the cell and may be under selective pressure to minimize iron oxidation, which would otherwise lead to an inappropriate increase in iron uptake under oxidative stress conditions. Conversely, Fe2+ is bound more tightly to PerR but exhibits high H2O2 reactivity, which enables a rapid induction of peroxide stress genes. FUTURE DIRECTIONS The features that determine the disparate reactivity of these proteins with oxidants are still poorly understood. A controlled, comparative analysis of the affinities of Fur/PerR proteins for their metal cofactors and their rate of reactivity with H2O2, combined with structure/function analyses, will be needed to define the molecular mechanisms that have facilitated this divergence of function between these two paralogous regulators.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University , Ithaca, New York
| |
Collapse
|
7
|
Gene Regulation by Redox-Sensitive Burkholderia thailandensis OhrR and Its Role in Bacterial Killing of Caenorhabditis elegans. Infect Immun 2018; 86:IAI.00322-18. [PMID: 29967095 DOI: 10.1128/iai.00322-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Fatty acid hydroperoxides are involved in host-pathogen interactions. In both plants and mammals, polyunsaturated fatty acids are liberated during infection and enzymatically oxidized to the corresponding toxic hydroperoxides during the defensive oxidative burst that is designed to thwart the infection. The bacterial transcription factor OhrR (organic hydroperoxide reductase regulator) is oxidized by organic hydroperoxides, as a result of which the ohr gene encoding organic hydroperoxide reductase is induced. This enzyme converts the hydroperoxides to less toxic alcohols. We show here that OhrR from Burkholderia thailandensis represses expression of ohr Gene expression is induced by cumene hydroperoxide and to a lesser extent by inorganic oxidants; however, Ohr contributes to degradation only of the organic hydroperoxide. B. thailandensis OhrR, which binds specific sites in both ohr and ohrR promoters, as evidenced by DNase I footprinting, belongs to the 2-Cys subfamily of OhrR proteins, and its oxidation leads to reversible disulfide bond formation between conserved N- and C-terminal cysteines in separate monomers. Oxidation of the N-terminal Cys is sufficient for attenuation of DNA binding in vitro, with complete restoration of DNA binding occurring on addition of a reducing agent. Surprisingly, both overexpression of ohr and deletion of ohr results in enhanced survival on exposure to organic hydroperoxide in vitro While Δohr cells are more virulent in a Caenorhabditis elegans model of infection, ΔohrR cells are less so. Taken together, our data suggest that B. thailandensis OhrR has several unconventional features and that both OhrR and organic hydroperoxides may contribute to virulence.
Collapse
|
8
|
Liu G, Liu X, Xu H, Liu X, Zhou H, Huang Z, Gan J, Chen H, Lan L, Yang CG. Structural Insights into the Redox-Sensing Mechanism of MarR-Type Regulator AbfR. J Am Chem Soc 2017; 139:1598-1608. [PMID: 28086264 DOI: 10.1021/jacs.6b11438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a master redox-sensing MarR-family transcriptional regulator, AbfR participates in oxidative stress responses and virulence regulations in Staphylococcus epidermidis. Here, we present structural insights into the DNA-binding mechanism of AbfR in different oxidation states by determining the X-ray crystal structures of a reduced-AbfR/DNA complex, an overoxidized (Cys13-SO2H and Cys13-SO3H) AbfR/DNA, and 2-disulfide cross-linked AbfR dimer. Together with biochemical analyses, our results suggest that the redox regulation of AbfR-sensing displays two novel features: (i) the reversible disulfide modification, but not the irreversible overoxidation, significantly abolishes the DNA-binding ability of the AbfR repressor; (ii) either 1-disulfide cross-linked or 2-disulfide cross-linked AbfR dimer is biologically significant. The overoxidized species of AbfR, resembling the reduced AbfR in conformation and retaining the DNA-binding ability, does not exist in biologically significant concentrations, however. The 1-disulfide cross-linked modification endows AbfR with significantly weakened capability for DNA-binding. The 2-disulfide cross-linked AbfR adopts a very "open" conformation that is incompatible with DNA-binding. Overall, the concise oxidation chemistry of the redox-active cysteine allows AbfR to sense and respond to oxidative stress correctly and efficiently.
Collapse
Affiliation(s)
- Guijie Liu
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xing Liu
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongjiao Xu
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xichun Liu
- Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhen Huang
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Jianhua Gan
- School of Life Sciences, Fudan University , Shanghai 200433, China
| | - Hao Chen
- Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Lefu Lan
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Cai-Guang Yang
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
9
|
Roussel C, Cesselin B, Cachon R, Gaudu P. Characterization of two Lactococcus lactis zinc membrane proteins, Llmg_0524 and Llmg_0526, and role of Llmg_0524 in cell wall integrity. BMC Microbiol 2015; 15:246. [PMID: 26519082 PMCID: PMC4628341 DOI: 10.1186/s12866-015-0587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its extraordinary chemical properties, the cysteine amino acid residue is often involved in protein folding, electron driving, sensing stress, and binding metals such as iron or zinc. Lactococcus lactis, a Gram-positive bacterium, houses around one hundred cysteine-rich proteins (with the CX2C motif) in the cytoplasm, but only a few in the membrane. RESULTS In order to understand the role played by this motif we focused our work on two membrane proteins of unknown function: Llmg_0524 and Llmg_0526. Each of these proteins has two CX2C motifs separated by ten amino-acid residues (CX2CX10CX2C). Together with a short intervening gene (llmg_0525), the genes of these two proteins form an operon, which is induced only during the early log growth phase. In both proteins, we found that the CX2CX10CX2C motif chelated a zinc ion via its cysteine residues, but the sphere of coordination was remarkably different in each case. In the case of Llmg_0524, two of the four cysteines were ligands of a zinc ion whereas in Llmg_0526, all four residues were involved in binding zinc. In both proteins, the cysteine-zinc complex was very stable at 37 °C or in the presence of oxidative agents, suggesting a probable role in protein stability. We found that the complete deletion of llmg_0524 increased the sensitivity of the mutant to cumene hydroperoxide whereas the deletion of the cysteine motif in Llmg_0524 resulted in a growth defect. The latter mutant was much more resistant to lysozyme than other strains. CONCLUSIONS Our data suggest that the CX2CX10CX2C motif is used to chelate a zinc ion but we cannot predict the number of cysteine residue involved as ligand of metal. Although no other motif is present in sequence to identify roles played by these proteins, our results indicate that Llmg_0524 contributes to the cell wall integrity.
Collapse
Affiliation(s)
- Célia Roussel
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Bénédicte Cesselin
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Rémy Cachon
- UMR A 02.102 Unité Procédés Alimentaires et Microbiologiques, AgroSup Dijon-Université de Bourgogne, 1-esplanade Erasme, F-21000, Dijon, France.
| | - Philippe Gaudu
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France. .,Institut Micalis UMR1319 et AgroParisTech, Domaine de Vilvert, 78352 Jouy-en-Josas, Cedex, France.
| |
Collapse
|
10
|
Gao YR, Feng N, Chen T, Li DF, Bi LJ. Structure of the MarR family protein Rv0880 from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2015; 71:741-5. [PMID: 26057805 PMCID: PMC4461340 DOI: 10.1107/s2053230x15007281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/11/2015] [Indexed: 11/11/2022] Open
Abstract
Rv0880 from the pathogen Mycobacterium tuberculosis is classified as a MarR family protein in the Pfam database. It consists of 143 amino acids and has an isoelectric point of 10.9. Crystals of Rv0880 belonged to space group P1, with unit-cell parameters a = 54.97, b = 69.60, c = 70.32 Å, α = 103.71, β = 111.06, γ = 105.83°. The structure of the MarR family transcription regulator Rv0880 was solved at a resolution of 2.0 Å with an R(cryst) and R(free) of 21.2 and 24.9%, respectively. The dimeric structure resembles that of other MarR proteins, with each subunit comprising a winged helix-turn-helix domain connected to an α-helical dimerization domain.
Collapse
Affiliation(s)
- Yun-Rong Gao
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Na Feng
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, People’s Republic of China
| | - De-Feng Li
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Li-Jun Bi
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| |
Collapse
|
11
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
12
|
Gaballa A, Chi BK, Roberts AA, Becher D, Hamilton CJ, Antelmann H, Helmann JD. Redox regulation in Bacillus subtilis: The bacilliredoxins BrxA(YphP) and BrxB(YqiW) function in de-bacillithiolation of S-bacillithiolated OhrR and MetE. Antioxid Redox Signal 2014; 21:357-67. [PMID: 24313874 PMCID: PMC4076974 DOI: 10.1089/ars.2013.5327] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS In bacillithiol (BSH)-utilizing organisms, protein S-bacillithiolation functions as a redox switch in response to oxidative stress and protects critical Cys residues against overoxidation. In Bacillus subtilis, both the redox-sensing repressor OhrR and the methionine synthase MetE are redox controlled by S-bacillithiolation in vivo. Here, we identify pathways of protein de-bacillithiolation and test the hypothesis that YphP(BrxA) and YqiW(BrxB) act as bacilliredoxins (Brx) to remove BSH from OhrR and MetE mixed disulfides. RESULTS We present evidence that the BrxA and BrxB paralogs have de-bacillithiolation activity. This Brx activity results from attack of the amino-terminal Cys residue in a CGC motif on protein BSH-mixed disulfides. B. subtilis OhrR DNA-binding activity is eliminated by S-thiolation on its sole Cys residue. Both the BrxA and BrxB bacilliredoxins mediate de-bacillithiolation of OhrR accompanied by the transfer of BSH to the amino-terminal cysteine of their CGC active site motif. In vitro studies demonstrate that BrxB can restore DNA-binding activity to OhrR which is S-bacillithiolated, but not to OhrR that is S-cysteinylated. MetE is most strongly S-bacillithiolated at Cys719 in vitro and can be efficiently de-bacillithiolated by both BrxA and BrxB. INNOVATION AND CONCLUSION We demonstrate that BrxA and BrxB function in the reduction of BSH mixed protein disulfides with two natural substrates (MetE, OhrR). These results provide biochemical evidence for a new class of bacterial redox-regulatory proteins, the bacilliredoxins, which function analogously to glutaredoxins. Bacilliredoxins function in concert with other thiol-disulfide oxidoreductases to maintain redox homeostasis in response to disulfide stress conditions.
Collapse
Affiliation(s)
- Ahmed Gaballa
- 1 Department of Microbiology, Cornell University , Ithaca, New York
| | | | | | | | | | | | | |
Collapse
|
13
|
Sharma SV, Arbach M, Roberts AA, Macdonald CJ, Groom M, Hamilton CJ. Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other firmicutes. Chembiochem 2013; 14:2160-8. [PMID: 24115506 PMCID: PMC4065351 DOI: 10.1002/cbic.201300404] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 11/28/2022]
Abstract
Bacillithiol (BSH) is the major low-molecular-weight (LMW) thiol in many low-G+C Gram-positive bacteria (Firmicutes). Evidence now emerging suggests that BSH functions as an important LMW thiol in redox regulation and xenobiotic detoxification, analogous to what is already known for glutathione and mycothiol in other microorganisms. The biophysical properties and cellular concentrations of such LMW thiols are important determinants of their biochemical efficiency both as biochemical nucleophiles and as redox buffers. Here, BSH has been characterised and compared with other LMW thiols in terms of its thiol pKa , redox potential and thiol-disulfide exchange reactivity. Both the thiol pKa and the standard thiol redox potential of BSH are shown to be significantly lower than those of glutathione whereas the reactivities of the two compounds in thiol-disulfide reactions are comparable. The cellular concentration of BSH in Bacillus subtilis varied over different growth phases and reached up to 5 mM, which is significantly greater than previously observed from single measurements taken during mid-exponential growth. These results demonstrate that the biophysical characteristics of BSH are distinctively different from those of GSH and that its cellular concentrations can reach levels much higher than previously reported.
Collapse
Affiliation(s)
- Sunil V Sharma
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (UK)
| | | | | | | | | | | |
Collapse
|
14
|
Gaballa A, Antelmann H, Hamilton CJ, Helmann JD. Regulation of Bacillus subtilis bacillithiol biosynthesis operons by Spx. MICROBIOLOGY-SGM 2013; 159:2025-2035. [PMID: 23894131 DOI: 10.1099/mic.0.070482-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacillithiol is the major low molecular mass thiol produced by many firmicutes bacteria, including the model organism Bacillus subtilis and pathogens such as Bacillus anthracis and Staphylococcus aureus. We have previously shown that four genes (bshA, bshB1, bshB2 and bshC) are involved in bacillithiol biosynthesis. Here, we report that these four genes are encoded within three, unlinked operons all expressed from canonical σ(A)-dependent promoters as determined by 5'RACE (rapid amplification of cDNA ends). The bshA and bshB1 genes are embedded within a seven-gene operon additionally including mgsA, encoding methylglyoxal synthase, and the essential genes cca and birA, encoding tRNA nucleotidyltransferase (CCA transferase) and biotin-protein ligase, respectively. The bshB2 gene is co-transcribed with unknown function genes, while bshC is expressed both as part of a two-gene operon (with the upstream putative pantothenate biosynthesis gene ylbQ) and from its own promoter. All three operons are expressed at a reduced level in an spx null mutant, consistent with a direct role of Spx as a transcriptional activator for these operons, and all three operons are induced by the thiol oxidant diamide. In contrast with other Spx-regulated genes characterized to date, the effects of Spx on basal expression and diamide-stimulated expression appear to be independent of Cys10 in the redox centre of Spx. Consistent with the role of Spx as an activator of bacillithiol biosynthetic genes, cellular levels of bacillithiol are reduced several-fold in an spx null mutant.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Haike Antelmann
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
| | - Chris J Hamilton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE Oxidative stress is widely invoked in inflammation, aging, and complex diseases. To avoid unwanted oxidations, the redox environment of cellular compartments needs to be tightly controlled. The complementary action of oxidoreductases and of high concentrations of low-molecular-weight (LMW) nonprotein thiols plays an essential role in maintaining the redox potential of the cell in balance. RECENT ADVANCES While LMW thiols are central players in an extensive range of redox regulation/metabolism processes, not all organisms use the same thiol cofactors to this effect, as evidenced by the recent discovery of mycothiol (MSH) and bacillithiol (BSH) among different gram-positive bacteria. CRITICAL ISSUES LMW thiol-disulfide exchange processes and their cellular implications are often oversimplified, as only the biology of the free thiols and their symmetrical disulfides is considered. In bacteria under oxidative stress, especially where concentrations of different LMW thiols are comparable [e.g., BSH, coenzyme A (CoA), and cysteine (Cys) in many low-G+C gram-positive bacteria (Firmicutes)], mixed disulfides (e.g., CoASSB and CySSCoA) must surely be major thiol-redox metabolites that need to be taken into consideration. FUTURE DIRECTIONS There are many microorganisms whose LMW thiol-redox buffers have not yet been identified (either bioinformatically or experimentally). Many elements of BSH and MSH redox biochemistry remain to be explored. The fundamental biophysical properties, thiol pK(a) and redox potential, have not yet been determined, and the protein interactome in which the biothiols MSH and BSH are involved needs further exploration.
Collapse
Affiliation(s)
- Koen Van Laer
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | | | | |
Collapse
|
16
|
Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin. PLoS One 2012; 7:e47090. [PMID: 23071722 PMCID: PMC3469484 DOI: 10.1371/journal.pone.0047090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/10/2012] [Indexed: 12/17/2022] Open
Abstract
Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.
Collapse
|
17
|
Cheng Z, Wu J, Setterdahl A, Reddie K, Carroll K, Hammad LA, Karty JA, Bauer CE. Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain. Mol Microbiol 2012; 85:734-46. [PMID: 22715852 DOI: 10.1111/j.1365-2958.2012.08135.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting-II complex. Fluorescence anisotropy-based DNA-binding analysis demonstrates that oxidized CrtJ exhibits ~20-fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz-2, a sulfenic acid (-SOH)-specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix-turn-helix (HTH) motif. In vivo labelling with 4-(3-azidopropyl)cyclohexane-1,3-dione (DAz-2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~60-fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~4-fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH-motif leads to differential effects on gene expression.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.
Collapse
|
19
|
Zhou P, Liu L, Tong H, Dong X. Role of operon aaoSo-mutT in antioxidant defense in Streptococcus oligofermentans. PLoS One 2012; 7:e38133. [PMID: 22666463 PMCID: PMC3364214 DOI: 10.1371/journal.pone.0038133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 05/04/2012] [Indexed: 11/28/2022] Open
Abstract
Previously, we have found that an insertional inactivation of aaoSo, a gene encoding L-amino acid oxidase (LAAO), causes marked repression of the growth of Streptococcus oligofermentans. Here, we found that aaoSo and mutT, a homolog of pyrophosphohydrolase gene of Escherichia coli, constituted an operon. Deletion of either gene did not impair the growth of S. oligofermentans, but double deletion of both aaoSo and mutT was lethal. Quantitative PCR showed that the transcript abundance of mutT was reduced for 13-fold in the aaoSo insertional mutant, indicating that gene polarity derived from the inactivation of aaoSo attenuated the expression of mutT. Enzymatic assays were conducted to determine the biochemical functions of LAAO and MutT of S. oligofermentans. The results indicated that LAAO functioned as an aminoacetone oxidase [47.75 nmol H2O2 (min·mg protein)–1]; and MutT showed the pyrophosphohydrolase activity, which removed mutagens such as 8-oxo-dGTP. Like paraquat, aaoSo mutations increased the expression of SOD, and addition of aminoacetone (final concentration, 5 mM) decreased the mutant’s growth by 11%, indicating that the aaoSo mutants are under ROS stress. HPLC did reveal elevated levels of cytoplasmic aminoacetone in both the deletion and insertional gene mutants of aaoSo. Electron spin resonance spectroscopy showed increased hydroxyl radicals in both types of aaoSo mutant. This demonstrated that inactivation of aaoSo caused the elevation of the prooxidant aminoacetone, resulting the cellular ROS stress. Our study indicates that the presence of both LAAO and MutT can prevent endogenous metabolites-generated ROS and mutagens. In this way, we were able to determine the role of the aaoSo-mutT operon in antioxidant defense in S. oligofermentans.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huichun Tong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XD); (HT)
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XD); (HT)
| |
Collapse
|
20
|
Sharma SV, Jothivasan VK, Newton GL, Upton H, Wakabayashi JI, Kane MG, Roberts AA, Rawat M, La Clair JJ, Hamilton CJ. Chemical and Chemoenzymatic Syntheses of Bacillithiol: A Unique Low-Molecular-Weight Thiol amongst Low G + C Gram-Positive Bacteria. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Roos G, Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 2011; 51:314-26. [PMID: 21605662 DOI: 10.1016/j.freeradbiomed.2011.04.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/31/2011] [Accepted: 04/17/2011] [Indexed: 01/17/2023]
Abstract
Protein sulfenic acid formation has long been regarded as unwanted damage caused by reactive oxygen species (ROS). However, over the past 10 years, accumulating evidence has shown that the reversible oxidation of cysteine thiol groups to sulfenic acid functions as a redox-based signal transduction mechanism. Here, we review the mechanisms of sulfenic acid formation by ROS. We present some of the most important roles played by sulfenic acids in living cells as well as the pathways that regulate sulfenic acid formation. We highlight the experimental tools that have been developed to study the cellular sulfenome and show how computational approaches might help to better understand the mechanisms of sulfenic acid formation.
Collapse
Affiliation(s)
- Goedele Roos
- Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology, VIB, B-1050 Brussels, Belgium
| | | |
Collapse
|
22
|
Reyes AM, Hugo M, Trostchansky A, Capece L, Radi R, Trujillo M. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Free Radic Biol Med 2011; 51:464-73. [PMID: 21571062 DOI: 10.1016/j.freeradbiomed.2011.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 11/17/2022]
Abstract
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~10(3) times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pK(a) reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~10(8) and 10(5) M(-1) s(-1), respectively, at pH 7.4 and 25°C) were much faster than expected according to the Brønsted relationship with leaving-group pK(a). A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.
Collapse
Affiliation(s)
- Aníbal M Reyes
- Departamento de Bioquímica, Universidad de la República, 11800 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
23
|
Sharma SV, Jothivasan VK, Newton GL, Upton H, Wakabayashi JI, Kane MG, Roberts AA, Rawat M, La Clair JJ, Hamilton CJ. Chemical and Chemoenzymatic syntheses of bacillithiol: a unique low-molecular-weight thiol amongst low G + C Gram-positive bacteria. Angew Chem Int Ed Engl 2011; 50:7101-4. [PMID: 21751306 DOI: 10.1002/anie.201100196] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/22/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Sunil V Sharma
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| |
Collapse
|
25
|
Fontenelle C, Blanco C, Arrieta M, Dufour V, Trautwetter A. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BMC Microbiol 2011; 11:100. [PMID: 21569462 PMCID: PMC3107159 DOI: 10.1186/1471-2180-11-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/13/2011] [Indexed: 12/18/2022] Open
Abstract
Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.
Collapse
Affiliation(s)
- Catherine Fontenelle
- UMR CNRS 6026, DUALS, Université de Rennes I, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| | | | | | | | | |
Collapse
|
26
|
Abstract
Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression.
Collapse
Affiliation(s)
- Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
| | | |
Collapse
|
27
|
Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants. J Bacteriol 2011; 193:1981-90. [PMID: 21335456 DOI: 10.1128/jb.01402-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mshA::Tn5 mutant of Mycobacterium smegmatis does not produce mycothiol (MSH) and was found to markedly overproduce both ergothioneine and an ~15-kDa protein determined to be organic hydroperoxide resistance protein (Ohr). An mshA(G32D) mutant lacking MSH overproduced ergothioneine but not Ohr. Comparison of the mutant phenotypes with those of the wild-type strain indicated the following: Ohr protects against organic hydroperoxide toxicity, whereas ergothioneine does not; an additional MSH-dependent organic hydroperoxide peroxidase exists; and elevated isoniazid resistance in the mutant is associated with both Ohr and the absence of MSH. Purified Ohr showed high activity with linoleic acid hydroperoxide, indicating lipid hydroperoxides as the likely physiologic targets. The reduction of oxidized Ohr by NADH was shown to be catalyzed by lipoamide dehydrogenase and either lipoamide or DlaT (SucB). Since free lipoamide and lipoic acid levels were shown to be undetectable in M. smegmatis, the bound lipoyl residues of DlaT are the likely source of the physiological dithiol reductant for Ohr. The pattern of occurrence of homologs of Ohr among bacteria suggests that the ohr gene has been distributed by lateral transfer. The finding of multiple Ohr homologs with various sequence identities in some bacterial genomes indicates that there may be multiple physiologic targets for Ohr proteins.
Collapse
|
28
|
Chi BK, Albrecht D, Gronau K, Becher D, Hecker M, Antelmann H. The redox-sensing regulator YodB senses quinones and diamide via
a thiol-disulfide switch in Bacillus subtilis. Proteomics 2010; 10:3155-64. [DOI: 10.1002/pmic.201000230] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Analyses of the regulatory mechanism and physiological roles of Pseudomonas aeruginosa OhrR, a transcription regulator and a sensor of organic hydroperoxides. J Bacteriol 2010; 192:2093-101. [PMID: 20139188 DOI: 10.1128/jb.01510-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ohrR encodes an organic hydroperoxide sensor and a transcriptional repressor that regulates organic hydroperoxide-inducible expression of a thiol peroxidase gene, ohr, and itself. OhrR binds directly to the operators and represses transcription of these genes. Exposure to an organic hydroperoxide leads to oxidation of OhrR and to subsequent structural changes that result in the loss of the repressor's ability to bind to the operators that allow expression of the target genes. Differential induction of ohrR and ohr by tert-butyl hydroperoxide suggests that factors such as the repressor's dissociation constants for different operators and the chemical nature of the inducer contribute to OhrR-dependent organic hydroperoxide-inducible gene expression. ohrR and ohr mutants show increased and decreased resistance to organic hydroproxides, respectively, compared to a parental strain. Moreover, the ohrR mutant had a reduced-virulence phenotype in the Pseudomonas aeruginosa-Caenorhabditis elegans pathogenicity model.
Collapse
|
30
|
Duarte V, Latour JM. PerR vs OhrR: selective peroxide sensing in Bacillus subtilis. ACTA ACUST UNITED AC 2010; 6:316-23. [DOI: 10.1039/b915042k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Mesa S, Reutimann L, Fischer HM, Hennecke H. Posttranslational control of transcription factor FixK2, a key regulator for the Bradyrhizobium japonicum-soybean symbiosis. Proc Natl Acad Sci U S A 2009; 106:21860-5. [PMID: 19955406 PMCID: PMC2799828 DOI: 10.1073/pnas.0908097106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Indexed: 12/23/2022] Open
Abstract
Rhizobial FixK-like proteins play essential roles in activating genes for endosymbiotic life in legume root nodules, such as genes for micro-oxic respiration. In the facultative soybean symbiont, Bradyrhizobium japonicum, the FixK(2) protein is the key player in a complex regulatory network. The fixK(2) gene itself is activated by the 2-component regulatory system FixLJ in response to a moderate decrease of the oxygen tension, and the FixK(2) protein distributes and amplifies this response to the level of approximately 200 target genes. Unlike other members of the cAMP receptor protein family, to which FixK(2) belongs, the FixK(2) protein does not appear to be modulated by small effector molecules. Here, we show that a critical, single cysteine residue (C183) near the DNA-binding domain of FixK(2) confers sensitivity to oxidizing agents and reactive oxygen species. Oxidation-dependent inactivation occurs not only in vitro, as shown with cell-free transcription assays, but also in vivo, as shown by microarray-assisted transcriptome analysis of the FixK(2) regulon. The oxidation mechanism may involve a reversible dimerization by intermolecular disulfide-bridge formation and a direct, irreversible oxidation at the cysteine thiol, depending on the oxidizing agent. Mutational exchange of C183 to alanine renders FixK(2) resistant to oxidation, yet allows full activity, shown again both in vitro and in vivo. We hypothesize that posttranslational modification by reactive oxygen species is a means to counterbalance the cellular pool of active FixK(2), which would otherwise fill unrestrictedly through FixLJ-dependent synthesis.
Collapse
Affiliation(s)
- Socorro Mesa
- ETH, Institute of Microbiology, CH-8093 Zürich, Switzerland
| | | | | | - Hauke Hennecke
- ETH, Institute of Microbiology, CH-8093 Zürich, Switzerland
| |
Collapse
|
32
|
Abstract
The spore-forming bacterium and model prokaryotic genetic system, Bacillus subtilis, is extremely useful in the study of oxidative stress management through proteomic and genome-wide transcriptomic analyses, as well as through detailed structural studies of the regulatory factors that govern the oxidative stress response. The factors that sense oxidants and induce expression of protective activities include the PerR and OhrR proteins, which show acute discrimination for their peroxide stimuli, whereas the general stress control factor, the RNA polymerase sigma(B) subunit and the thiol-based sensor Spx, govern the protective response to oxidants under multiple stress conditions. Some specific and some redundant protective mechanisms are mobilized at different stages of the Bacillus developmental cycle to deal with vulnerable cells in stationary-phase conditions and during spore germination and outgrowth. An important unknown is the nature and influence of the low-molecular-weight thiols that mediate the buffering of the redox environment.
Collapse
Affiliation(s)
- Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
33
|
Diamide triggers mainly S Thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2009; 191:7520-30. [PMID: 19837798 DOI: 10.1128/jb.00937-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.
Collapse
|
34
|
Poor CB, Chen PR, Duguid E, Rice PA, He C. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 2009; 284:23517-24. [PMID: 19586910 PMCID: PMC2749125 DOI: 10.1074/jbc.m109.015826] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/17/2009] [Indexed: 12/16/2022] Open
Abstract
SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys(13), to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys(13) sulfenic acid modification is stabilized through two hydrogen bonds with surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys(13) sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.
Collapse
Affiliation(s)
| | | | - Erica Duguid
- From the Departments of Chemistry and
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Phoebe A. Rice
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Chuan He
- From the Departments of Chemistry and
| |
Collapse
|
35
|
Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, Helmann JD, Fahey RC. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 2009; 5:625-7. [PMID: 19578333 PMCID: PMC3510479 DOI: 10.1038/nchembio.189] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
Abstract
Glutathione is a nearly ubiquitous low-molecular-weight thiol and antioxidant, although it is conspicuously absent from most Gram-positive bacteria. We identify here the structure of bacillithiol, a novel and abundant thiol produced by Bacillus species, Staphylococcus aureus, and Deinococcus radiodurans. Bacillithiol is the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid and likely functions as an antioxidant. Bacillithiol, like structurally similar mycothiol, may serve as a substitute for glutathione.
Collapse
Affiliation(s)
- Gerald L Newton
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eiamphungporn W, Soonsanga S, Lee JW, Helmann JD. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res 2009; 37:1174-81. [PMID: 19129220 PMCID: PMC2651793 DOI: 10.1093/nar/gkn1052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacillus subtilis OhrR is a dimeric repressor that senses organic peroxides and regulates the expression of the OhrA peroxiredoxin. Derepression results from oxidation of an active site cysteine which ultimately results in formation of a mixed disulfide with a low molecular weight thiol, a cyclic sulfenamide, or overoxidation to the sulfinic or sulfonic acids. We expressed a single-chain OhrR (scOhrR) in which the two monomers were connected by a short amino-acid linker. scOhrR variants containing only one active site cysteine were fully functional as repressors and still responded, albeit with reduced efficacy, to organic peroxides in vivo. Biochemical analyses indicate that oxidation at a single active site is sufficient for derepression regardless of the fate of the active site cysteine. scOhrR with only one active site cysteine in the amino-terminal domain is inactivated at rates comparable to wild-type whereas when the active site is in the carboxyl-terminal domain the protein is inactivated much more slowly. The incomplete derepression noted for single active site variants of scOhrR in vivo is consistent with the hypothesis that protein reduction regenerates active repressor and that, in the cell, oxidation of the second active site may also contribute to derepression.
Collapse
|
37
|
The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc Natl Acad Sci U S A 2008; 105:14832-7. [PMID: 18812515 DOI: 10.1073/pnas.0805489105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intrinsic antimicrobial resistance of the opportunistic human pathogen Pseudomonas aeruginosa is compounded in mutant strains that overexpress multidrug efflux pumps such as the prominent drug-proton antiporter, MexAB-OprM. The primary regulator of the mexAB-oprM operon is the MarR family repressor, MexR. An additional repressor, NalC, also regulates mexAB-oprM by controlling expression of ArmR, an antirepressor peptide that is hypothesized to prevent the binding of MexR to its cognate DNA operator via an allosteric protein-peptide interaction. To better understand how ArmR modulates MexR, we determined the MexR-binding region of ArmR as its C-terminal 25 residues and solved the crystal structure of MexR in a 2:1 complex with this ArmR fragment at 1.8 A resolution. This structure reveals that the C-terminal residues of ArmR form a kinked alpha-helix, which occupies a pseudosymmetrical and largely hydrophobic binding cavity located at the centre of the MexR dimer. Although the ArmR-binding cavity partially overlaps with the small molecule effector-binding sites of other MarR family members, it possesses a larger and more complex binding surface to accommodate the greater size and specific physicochemical properties of a peptide effector. Comparison with the structure of apo-MexR reveals that ArmR stabilizes a dramatic conformational change that is incompatible with DNA-binding. Thus, this work defines the structural mechanism by which ArmR allosterically derepresses MexR-controlled gene expression in P. aeruginosa and reveals important insights into the regulation of multidrug resistance.
Collapse
|
38
|
Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor. J Bacteriol 2008; 190:5738-45. [PMID: 18586944 DOI: 10.1128/jb.00576-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OhrR proteins can be divided into two groups based on their inactivation mechanism: 1-Cys (represented by Bacillus subtilis OhrR) and 2-Cys (represented by Xanthomonas campestris OhrR). A conserved cysteine residue near the amino terminus is present in both groups of proteins and is initially oxidized to the sulfenic acid. The B. subtilis 1-Cys OhrR protein is subsequently inactivated by formation of a mixed-disulfide bond with low-molecular-weight thiols or by cysteine overoxidation to sulfinic and sulfonic acids. In contrast, the X. campestris 2-Cys OhrR is inactivated when the initially oxidized cysteine sulfenate forms an intersubunit disulfide bond with a second Cys residue from the other subunit of the protein dimer. Here, we demonstrate that the 1-Cys B. subtilis OhrR can be converted into a 2-Cys OhrR by introducing another cysteine residue in either position 120 or position 124. Like the X. campestris OhrR protein, these mutants (G120C and Q124C) are inactivated by intermolecular disulfide bond formation. Analysis of oxidized 2-Cys variants both in vivo and in vitro indicates that intersubunit disulfide bond formation can occur simultaneously at both active sites in the protein dimer. Rapid formation of intersubunit disulfide bonds protects OhrR against irreversible overoxidation in the presence of strong oxidants much more efficiently than do the endogenous low-molecular-weight thiols.
Collapse
|