1
|
Kuhar S, Seo JH, Pasricha PJ, Camilleri M, Mittal R. Duodenogastric reflux in health and disease: insights from a computational fluid dynamics model of the stomach. Am J Physiol Gastrointest Liver Physiol 2025; 328:G411-G425. [PMID: 39873302 DOI: 10.1152/ajpgi.00241.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/13/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
The stomach is responsible for physically and chemically processing the ingested meal before controlled emptying into the duodenum through the pyloric sphincter. An incompetent pylorus allows reflux from the duodenum back into the stomach, and if the amount of reflux is large enough, it could alter the low-pH environment of the stomach and erode the mucosal lining of the lumen. In some cases, the regurgitated contents can also reach the esophagus, leading to additional complications. In this work, "StomachSim", an in silico model of the fluid dynamics of the stomach, is used to study the mechanism of duodenogastric reflux. The effects of variations in food properties and motility disorders on reflux are investigated. The simulations show that the primary driver of reflux is the relaxation of the antrum after a stomach contraction terminates near the pylorus. The region of the stomach walls exposed to the regurgitated contents depends significantly on the density of the stomach contents. For stomach contents of higher viscosity, the increased pressure required to maintain gastric emptying reduces the amount of duodenogastric reflux. Concomitant stomach motility disorders that weaken the relaxation of the walls also affect the amount of reflux. The study illustrates the utility of in silico models in analyzing the factors at play in gastrointestinal diseases.NEW & NOTEWORTHY An in silico model of the stomach is presented to study the phenomenon of duodenogastric reflux. We use the model to investigate the role of pyloric incompetence, food properties, and gastroparesis on reflux. This first-ever in silico study of duodenogastric reflux provides new insights into the mechanisms and factors implicated in this reflux and the sequelae of conditions that result from the exposure of the stomach lumen to bile.
Collapse
Affiliation(s)
- Sharun Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Pankaj Jay Pasricha
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, United States
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Lopez-Rodulfo IM, Stentoft EW, Martinez MM. Comparative assessment of polyphenol bioaccessibility in cold-pressed apple fractions using static and semi-dynamic digestion models. Food Res Int 2025; 202:115743. [PMID: 39967186 DOI: 10.1016/j.foodres.2025.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
The INFOGEST semi-dynamic digestion model more closely aligns the kinetics of nutrient digestion with structural changes in the food matrix during gastric digestion, which can significantly influence polyphenol bioaccessibility. In this study, the static and semi-dynamic INFOGEST models were compared to assess polyphenol bioaccessibility across various matrix scenarios, using different apple fractions. Each digesta, regardless of the model used, underwent re-solubilization, centrifugal filtration, and UHPLC-ESI-QTOF-MS/MS analysis to approximate transepithelial absorption and facilitate untargeted polyphenol screening and semi-quantification. The semi-dynamic model was initially optimized using whole apple. Overhead stirring with a paddle led to greater browning and degradation of phenolic acids and dihydrochalcones than magnetic stirring, the latter showing bolus stratification and closer physiological conditions for oxygenation and intragastric chyme homogenization. The suitability of a 2 kcal/min gastric emptying rate was tested with pomace, resulting in 8.25 min total gastric emptying time due to low caloric content. Compared to the gastric emptying time of whole apple (139.5 min), the caloric-driven emptying of pomace produced similar polyphenol bioaccessibility but a three-fold higher coefficient of variation (19.5 % vs. 69.4 %). Finally, using several apple fractions, the semi-dynamic setup with magnetic stirring and a fixed gastric emptying rate of 139.5 min showed greater extraction of hydroxybenzoic acids and dihydrochalcones from apple and of hydroxybenzoic and hydroxycinnamic acids from pomace than the static model. However, flavanols in juice degraded more extensively under semi-dynamic conditions. Minimal differences were observed between models for an apple polyphenol extract, indicating that in the absence of matrix, the static setup might be preferred.
Collapse
Affiliation(s)
- Ivan M Lopez-Rodulfo
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark
| | - Emil W Stentoft
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark; Food Technology Area, Department of Agricultural Engineering, University of Valladolid, Spain.
| |
Collapse
|
3
|
Butler Tjaden NE, Shannon SR, Seidel CW, Childers M, Aoto K, Sandell LL, Trainor PA. Rdh10-mediated Retinoic Acid Signaling Regulates the Neural Crest Cell Microenvironment During ENS Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634504. [PMID: 39896510 PMCID: PMC11785139 DOI: 10.1101/2025.01.23.634504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The enteric nervous system (ENS) is formed from vagal neural crest cells (NCC), which generate most of the neurons and glia that regulate gastrointestinal function. Defects in the migration or differentiation of NCC in the gut can result in gastrointestinal disorders such as Hirschsprung disease (HSCR). Although mutations in many genes have been associated with the etiology of HSCR, a significant proportion of affected individuals have an undetermined genetic diagnosis. Therefore, it's important to identify new genes, modifiers and environmental factors that regulate ENS development and disease. Rdh10 catalyzes the first oxidative step in the metabolism of vitamin A to its active metabolite, RA, and is therefore a central regulator of vitamin A metabolism and retinoic acid (RA) synthesis during embryogenesis. We discovered that retinol dehydrogenase 10 (Rdh10) loss-of-function mouse embryos exhibit intestinal aganglionosis, characteristic of HSCR. Vagal NCC form and migrate in Rdh10 mutant embryos but fail to invade the foregut. Rdh10 is highly expressed in the mesenchyme surrounding the entrance to the foregut and is essential between E7.5-E9.5 for NCC invasion into the gut. Comparative RNA-sequencing revealed downregulation of the Ret-Gdnf-Gfrα1 gene signaling network in Rdh10 mutants, which is critical for vagal NCC chemotaxis. Furthermore, the composition of the extracellular matrix through which NCC migrate is also altered, in part by increased collagen deposition. Collectively this restricts NCC entry into the gut, demonstrating that Rdh10-mediated vitamin A metabolism and RA signaling pleiotropically regulates the NCC microenvironment during ENS formation and in the pathogenesis of intestinal aganglionosis.
Collapse
Affiliation(s)
- Naomi E. Butler Tjaden
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Gastroenterology, Hepatology & Nutrition, Children’s Hospital of Philadelphia, Philadelphia PA 19104
| | - Stephen R. Shannon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Melissa Childers
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu City, Shizuoka, Japan 431-3192
| | - Lisa L. Sandell
- University of Louisville, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40201, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Wang Z, Xu W, Liu D, Li X, Liu S, Wu X, Wang H. Impact of Food Physical Properties on Oral Drug Absorption: A Comprehensive Review. Drug Des Devel Ther 2025; 19:267-280. [PMID: 39834644 PMCID: PMC11745047 DOI: 10.2147/dddt.s497515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Food-Drug Interaction (FDI) refers to the phenomenon where food affects the pharmacokinetic or pharmacodynamic characteristics of a drug, significantly altering the drug's absorption rate or absorption extent. These Interactions are considered as a primary determinant in influencing the bioavailability of orally administered drugs within the gastrointestinal tract. The impact of food on drug absorption is complex and multifaceted, potentially involving alterations in gastrointestinal physiology, increases in splanchnic blood flow rates, and shifts in the gut microbiota's composition. Up to now, extensive research has focused on the interactions between food composition (such as proteins, fats, and vitamins) and drug absorption. In contrast, the impact of food physical properties (such as viscosity, volume, and pH) has received less attention in drug development. This article reviewed the impact of food properties on oral drug absorption based on a comprehensive literature search, focusing on the influence of food volume and food viscosity. From the perspective of pharmacokinetics, we examined interaction trends between food properties and drugs across different classification based on the Biopharmaceutics Classification System (BCS). In addition, we introduced the practical application of physiologically based pharmacokinetic (PBPK) modeling in predicting oral drug absorption under the influence of food Properties.
Collapse
Affiliation(s)
- Ziyang Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wen Xu
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Dan Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Xiuqi Li
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shupeng Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Bonifacie A, Aubry L, Sayd T, Bourillon S, Duval A, Kombolo M, Nassy G, Promeyrat A, Santé-Lhoutellier V, Théron L. Chemical effects of nitrite reduction during digestion of cured cooked and recooked meat on nitrosation, nitrosylation and oxidation. Food Res Int 2024; 195:114969. [PMID: 39277238 DOI: 10.1016/j.foodres.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Nitrites are food additives used in meatfor their bacteriological, technological and sensory properties.However, they are suspected to be involved in the formation of various mutagenic nitroso compounds (NOCs).With a view to reducing the use of nitrite in meat products to improve the healthiness thereof, the formation of NOCs was studied during dynamic in vitro digestion ofcooked and recooked meats preparedwith various levels of nitrite. Residual nitrite and nitrate and NOCs were evaluated in the gastric and ileal compartments.In the absence of added nitrite, basalnitrosation and nitrosylation were detected, probably due to the oxidation of ammonium salts present in the gastric fluid. Nitrosamines, nitrosyl heme and nitrosothiols displayed different kinetics of formation and degradation,reflecting a possible transfer of nitric oxide from one substrate to another. A protective effect of nitrite on lipid oxidation was also observed during digestion.
Collapse
Affiliation(s)
- Aline Bonifacie
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France; IFIP - Institut du Porc, 7 Avenue du Général De Gaulle, 94700 Maisons Alfort, France
| | - Laurent Aubry
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Thierry Sayd
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Sylvie Bourillon
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Angéline Duval
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Moïse Kombolo
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| | - Gilles Nassy
- IFIP - Institut du Porc, La motte au Vicomte, BP 35104, 35561 Le Rheu Cedex, France
| | - Aurélie Promeyrat
- IFIP - Institut du Porc, La motte au Vicomte, BP 35104, 35561 Le Rheu Cedex, France
| | - Véronique Santé-Lhoutellier
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France.
| | - Laetitia Théron
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualité des Produits Animaux, F-63122 Saint Genès-Champanelle, France
| |
Collapse
|
6
|
Feng J, Greco I, Ménard O, Lee J, Jeantet R, Dupont D, Le Feunteun S. Dynamic in vitro gastric digestion of skimmed milk using the NERDT, an advanced human biomimetic digestion system. Food Res Int 2024; 195:114898. [PMID: 39277214 DOI: 10.1016/j.foodres.2024.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024]
Abstract
The main objective of this study was to assess the ability of the NEar Real Digestive Tract (NERDT), a computer-controlled biomimetic in vitro digestion system that considers the biomechanics of the stomach, to reproduce physiologically relevant features of skimmed milk gastric digestion. A second objective was to evaluate the influence of pepsin on the gastric coagulation and emptying of milk proteins from experiments performed with and without pepsin. A mass balance model over the stomach, assuming a perfectly stirred reactor behaviour, has been developed. The results show that the NERDT can adequately reproduce the targeted kinetics of gastric acidification and emptying, with a sieving effect that naturally leads to a delayed emptying of caseins. Milk coagulated earlier and more chyme was emptied towards the end of the experiments in the presence of pepsin than without, hence illustrating the key influence of pepsin on the gastric coagulation of caseins and subsequent hydrolysis and emptying of dairy particles. Overall, this study shows that the NERDT can be adequately controlled to achieve desired gastric digestion conditions, and appears to be a very useful tool to further improve the knowledge of the gastric digestion behaviour of complex foods such as milk.
Collapse
Affiliation(s)
- Jiajun Feng
- INRAE, Institut Agro Rennes-Angers, UMR STLO, 35042 Rennes, France
| | - Ines Greco
- INRAE, Institut Agro Rennes-Angers, UMR STLO, 35042 Rennes, France
| | - Olivia Ménard
- INRAE, Institut Agro Rennes-Angers, UMR STLO, 35042 Rennes, France
| | - Jeehyun Lee
- INRAE, Institut Agro Rennes-Angers, UMR STLO, 35042 Rennes, France
| | - Romain Jeantet
- INRAE, Institut Agro Rennes-Angers, UMR STLO, 35042 Rennes, France
| | - Didier Dupont
- INRAE, Institut Agro Rennes-Angers, UMR STLO, 35042 Rennes, France
| | | |
Collapse
|
7
|
Mourabit S, Römer S, Bonner ER, Winter F, Tschollar J, Tzvetkov MV, Weitschies W, Engeli S, Tschollar W. Exopeptidase combination enhances the degradation of isotopically labelled gluten immunogenic peptides in humans. Front Immunol 2024; 15:1425982. [PMID: 39478856 PMCID: PMC11522800 DOI: 10.3389/fimmu.2024.1425982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Celiac disease is a common autoimmune-like enteropathy caused by an aberrant response to incompletely digested dietary gluten. Gluten immunogenic peptides including the immunodominant 33-mer are thought to be resistant to proteolytic digestion by human gastrointestinal peptidases. We developed a novel enzyme therapy approach to support gluten peptide digestion using a combination of two tandem-acting exopeptidases, AMYNOPEP, that complement the intrinsic enzymatic activity of intestinal brush border enterocytes. Methods We evaluated the effects of AMYNOPEP supplementation on 33-mer degradation in vitro and in vivo. In a cross-over clinical study, healthy volunteers with no gastrointestinal disorders were given stable isotope (SI) labelled 33-mer peptides in the presence of varying peptide substrates and caloric loads, with and without AMYNOPEP. 33-mer degradation products (SI-labelled single amino acids) were measured in the blood plasma using LC-MS/MS. Results AMYNOPEP achieved rapid, complete amino-to-carboxyl terminal degradation of the 33-mer in vitro, generating single amino acids and dipeptides. In healthy volunteers, AMYNOPEP supplementation significantly increased 33-mer degradation and absorption of SI-labelled amino acids even in the presence of competing substrates. Specifically, we observed a 2.8-fold increase in the Cmax of stable isotope-labelled amino acids in the presence of wheat gluten. The absorption kinetics of labelled amino acids derived from 33-mer digestion with AMYNOPEP closely resembled that of SI-labelled X-Proline dipeptides administered without enzyme supplementation, highlighting the rapid hydrolytic activity of AMYNOPEP on polypeptides. Conclusions AMYNOPEP achieved complete degradation of the 33-mer into single amino acids and dipeptides in vitro and significantly improved 33-mer degradation kinetics in healthy volunteers, as measured by labelled amino acid detection, warranting further investigation into the potential therapeutic benefits of exopeptidase combinations for patients with gluten-related health disorders including celiac disease.
Collapse
Affiliation(s)
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Fabian Winter
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Greifswald, Germany
| | | | - Mladen V. Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Werner Weitschies
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Greifswald, Germany
| | - Stefan Engeli
- Department of Clinical Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
8
|
Li C, Chen XD, Xiao J, Deng R, Jin Y. Impact of reduced gravity on food mixing and emptying in human stomach: A numerical simulation study. PHYSICS OF FLUIDS 2024; 36. [DOI: 10.1063/5.0208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gravitational conditions in space diverge significantly from those experienced on Earth, and these alterations may have significant effects on gastric digestion, ultimately affecting the health of astronauts. To understand these effects, the behavior of mixing and emptying in the human stomach under both reduced and normal gravity is investigated numerically. The solver utilized in this study is developed based on the open-source toolbox OpenFOAM. The gastric contents consist of water and a soluble food bolus characterized by a density of 1100 kg m−3, viscosity of 10−5 m2 s−1, and diffusivity of 3.09 × 10−9 m2 s−1. The effects of gravity magnitude, initial food bolus location, and terminal antral contractions (TACs) are studied. The numerical results demonstrate that the food retention rate can be increased by up to ∼20% in the initial 6 min as normal gravity is reduced to zero gravity. The numerical results support that gravity favors the emptying of the food through the pylorus. The distributions of food concentrations and pH are also significantly influenced by the gravity condition. Under zero gravity conditions, food in the distal stomach is quickly emptied due to the strong flow dynamics in the antrum. A delay of approximately 6 min is observed when the food bolus is initially located in the proximal stomach. TACs efficiently enhance the emptying and mixing of the food in the distal stomach, while their effects on the proximal stomach are marginal.
Collapse
|
9
|
Papenkort S, Borsdorf M, Kiem S, Böl M, Siebert T. Regional differences in stomach stretch during organ filling and their implications on the mechanical stress response. J Biomech 2024; 168:112107. [PMID: 38677029 DOI: 10.1016/j.jbiomech.2024.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.
Collapse
Affiliation(s)
- Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Mischa Borsdorf
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Yang S, Hu Z, Wu P, Kirk T, Chen XD. In vitro release and bioaccessibility of oral solid preparations in a dynamic gastrointestinal system simulating fasted and fed states: A case study of metformin hydrochloride tablets. Int J Pharm 2024; 652:123869. [PMID: 38296171 DOI: 10.1016/j.ijpharm.2024.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Food and formulation characteristics are crucial factors affecting the gastrointestinal release and absorption kinetics of oral solid preparations. In the present study, the dynamic continuous release and bioaccessibility of metformin hydrochloride immediate-release (IR) and sustained-release (SR) tablets were investigated in the dynamic human stomach-intestine (DHSI-IV) system simulating fasted and fed states in healthy adults. Both tablet formulations (particularly IR tablet) exhibited a postponed release in the fed state compared to the fasted state. Correspondingly, the bioaccessible fraction of metformin from IR tablets in the presence of high-fat meal was significantly reduced to 76.2 % of the fasted state. However, the in vitro bioaccessibility was less impaired by food for SR tablets with a fed/fasted ratio of 95.5 %. A convolution-based approach was used to convert in vitro bioaccessibility results to plasma concentration data. The predicted plasma concentration curve showed good agreement with human data in terms of pharmacokinetic (PK) parameters. In the fasted state, the predicted Cmax, Tmax and AUC0-24h of IR tablets were 943.9 ± 25.7 ng/mL, 2.0 ± 0.4 h and 7090.7 ± 112.0 ng.h/mL, respectively, mirroring values observed in healthy subjects. Overall, the DHSI-IV system has demonstrated potential to assess and predict the impact of meal intake on the in vivo release and absorption behaviors of oral solid preparations.
Collapse
Affiliation(s)
- Shilei Yang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province 215152, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province 215152, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Tim Kirk
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
11
|
Chen Z, Wang Y, Chen H, Law J, Pu H, Xie S, Duan F, Sun Y, Liu N, Yu J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun 2024; 15:644. [PMID: 38245517 PMCID: PMC10799857 DOI: 10.1038/s41467-024-44995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Magnetic soft robots have shown great potential for biomedical applications due to their high shape reconfigurability, motion agility, and multi-functionality in physiological environments. Magnetic soft robots with multi-layer structures can enhance the loading capacity and function complexity for targeted delivery. However, the interactions between soft entities have yet to be fully investigated, and thus the assembly of magnetic soft robots with on-demand motion modes from multiple film-like layers is still challenging. Herein, we model and tailor the magnetic interaction between soft film-like layers with distinct in-plane structures, and then realize multi-layer soft robots that are capable of performing agile motions and targeted adhesion. Each layer of the robot consists of a soft magnetic substrate and an adhesive film. The mechanical properties and adhesion performance of the adhesive films are systematically characterized. The robot is capable of performing two locomotion modes, i.e., translational motion and tumbling motion, and also the on-demand separation with one side layer adhered to tissues. Simulation results are presented, which have a good qualitative agreement with the experimental results. The feasibility of using the robot to perform multi-target adhesion in a stomach is validated in both ex-vivo and in-vivo experiments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Huayan Pu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shaorong Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
12
|
Kuhar S, Mittal R. Computational Models of the Fluid Mechanics of the Stomach. J Indian Inst Sci 2024; 104:65-76. [DOI: 10.1007/s41745-024-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 01/04/2025]
|
13
|
Sun W, Tribuzi G, Bornhorst GM. Particle size and water content impact breakdown and starch digestibility of chickpea snacks during in vitro gastrointestinal digestion. Food Res Int 2023; 173:113201. [PMID: 37803531 DOI: 10.1016/j.foodres.2023.113201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
Chickpeas are an agriculturally-important legume that are an excellent source of protein, fiber, and minerals. Developing chickpea-based snacks could provide consumers with snack products rich in protein and other nutrients. In this study, chickpea puree (high moisture content) and cracker (low moisture content) were each produced with large (7 mm sieve; coarse) or small (2 mm sieve; fine) particle size to investigate the impact of initial particle size and moisture content on particle breakdown, starch hydrolysis, and protein hydrolysis during in vitro digestion. All treatments underwent static in vitro oral digestion, dynamic gastric digestion in the Human Gastric Simulator (HGS), and static in vitro small intestinal digestion. The emptying rate from the HGS was significantly (p < 0.05) higher for fine puree compared to the other treatments, due to higher saturation ratio and smaller initial particle size. The reducing sugars and free amino groups released (representing starch and protein hydrolysis, respectively) from fine puree were higher than coarse puree, and fine cracker was higher than coarse cracker due to the influence of initial particle size. For example, after 360 min total in vitro digestion, the starch hydrolysis of the fine cracker (48.1 ± 3.2%) was significantly higher than (p < 0.05) the coarse cracker (36.3 ± 5.8%). Overall, crackers had higher protein and starch hydrolysis compared to puree in the liquid phase during digestion. The study showed that both the smaller initial particle size and drying significantly (p < 0.05) increased the particle size reduction during gastric digestion and starch and protein digestibility in chickpea-based snacks.
Collapse
Affiliation(s)
- Weiyi Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| | - Giustino Tribuzi
- Department of Food Science and Technology, Center for Agricultural Sciences, Federal University of Santa Catarina, Florainópolis, SC, Brazil
| | - Gail M Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA; Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
14
|
Nadia J, Singh H, Bornhorst GM. Evaluation of the performance of the human gastric simulator using durum wheat-based foods of contrasting food structure. Food Funct 2023. [PMID: 37427445 DOI: 10.1039/d3fo00740e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The selection of gastric digestion parameters in food digestion studies using in vitro models is critical to properly represent structural changes in the stomach. This study aimed to evaluate the performance of digestion in the human gastric simulator (HGS) using generalized in vitro gastric digestion parameters (secretion rate of 4.1 mL min-1, gastric emptying rate of 5.68 g min-1) that were derived from a previous in vivo study using six starch-rich foods. Two of the six foods used in the in vivo study (cooked durum wheat porridge/semolina and pasta) were digested in the HGS for up to 240 min, then the properties of the emptied and remaining digesta were measured. The properties of the in vitro remaining digesta were compared to those measured in vivo (growing pig stomach). The trends in the gastric breakdown rate and mechanisms, dry matter emptying kinetics, and starch hydrolysis of pasta and semolina were similar to those of in vivo. Gastric breakdown and dilution kinetics in vitro and in vivo were well-related but did not have a 1 : 1 correlation, whereas gastric acidification kinetics in the HGS deviated from that observed in vivo. The results suggest that generalized digestion parameters could be used to predict the effect of food structure on in vivo gastric breakdown and emptying, but care should be taken in interpretation of results, as the gastric acidification process was different from what was observed in vivo. This information will help refine in vitro digestion model parameters to provide more physiologically-relevant data in future studies.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| |
Collapse
|
15
|
Manca M, Zhang C, Vasconcelos de Melo Freire R, Scheffold F, Salentinig S. Single particle investigation of triolein digestion using optical manipulation, polarized video microscopy, and SAXS. J Colloid Interface Sci 2023; 649:1039-1046. [PMID: 37406476 DOI: 10.1016/j.jcis.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
HYPOTHESIS Understanding how soft colloids, such as food emulsion droplets, transform based on their environment is critical for various applications, including drug and nutrient delivery and biotechnology. However, the mechanisms behind colloidal transformations within individual oil droplets still need to be better understood. EXPERIMENTS This study employs optical micromanipulation with microfluidics and polarized optical video microscopy to investigate the pancreatic lipase- and pH-triggered colloidal transformations in a single triolein droplet. Small-angle X-ray scattering (SAXS) provides complementary statistical insights and allows for detailed structural assignment. FINDINGS Optical video microscopy recorded the transformation of individual triolein emulsion droplets, with the smooth surface of these spherical particles becoming rough and the entire volume eventually being affected. The polarized microscopy revealed the coexistence of at least two distinct structures in a single particle during digestion, with their ratio and distribution altered by pH. The SAXS analysis assigned the optical anisotropy to emulsified inverse hexagonal- and multilamellar phases, coexisting with isotropic structures such as the micellar cubic phase. These results can help understand the phase transformations inside an emulsion droplet during triglyceride digestion and guide the design of advanced food emulsions.
Collapse
Affiliation(s)
- Marco Manca
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | | | - Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
16
|
Papenkort S, Borsdorf M, Böl M, Siebert T. A geometry model of the porcine stomach featuring mucosa and muscle layer thicknesses. J Mech Behav Biomed Mater 2023; 142:105801. [PMID: 37068433 DOI: 10.1016/j.jmbbm.2023.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
The stomach is a vital organ responsible for food storage, digestion, and transport. Stomach diseases are of great economic and medical importance and require a large number of bariatric surgeries every year. To improve medical interventions, in silico modeling of the gastrointestinal tract has gained popularity in recent years to study stomach functioning. Because of the great structural and nutritional similarity between the porcine and human stomach, the porcine stomach is a suitable surrogate for the development and validation of gastric models. This study presents a realistic 3D geometry model of the porcine stomach based on a photogrammetric reconstruction of a real organ. Layer thicknesses of the stomach wall's mucosa and tunica muscularis were determined by more than 1900 manual measurements at different locations. Layer thickness distributions show mean mucosal and muscle thicknesses of 2.29 ± 0.45 mm and 2.83 ± 0.99 mm, respectively. In general, layer thicknesses increase from fundus (mucosa: 1.82 ± 0.19 mm, muscle layer: 2.59 ± 0.32 mm) to antrum (mucosa: 2.69 ± 0.31 mm, muscle layer: 3.73 ± 1.05 mm). The analysis of stomach asymmetry with respect to an idealized symmetrical stomach model, an approach often used in the literature, revealed volumetric deviations of 45%, 15%, and 92% for the antrum, corpus, and fundus, respectively. The present work also suggests an algorithm for the computation of longitudinal and circumferential directions at local points. These directions are useful for the implementation of material anisotropy. In addition, we present data on the passive pressure-volume relationship of the organ and perform an exemplary finite-element simulation, where we demonstrate the applicability of the model. We encourage others to utilize the geometry model featuring profound asymmetry for future model-based investigations on stomach functioning.
Collapse
|
17
|
Impact of elderly gastrointestinal alterations on gastric emptying and enzymatic hydrolysis of skim milk: An in vitro study using a dynamic stomach system. Food Chem 2023; 402:134365. [DOI: 10.1016/j.foodchem.2022.134365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
|
18
|
Klemm L, Seydewitz R, Siebert T, Böl M. Three-dimensional multi-field modelling of gastric arrhythmias and their effects on antral contractions. Comput Biol Med 2023; 153:106488. [PMID: 36592609 DOI: 10.1016/j.compbiomed.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
The contraction activation of smooth muscle in the stomach wall (SW) is coordinated by slow electrical waves. The interstitial cells of Cajal (ICC), specialised pacemaker cells, initiate and propagate these slow waves. By establishing an electrically coupled network, each ICC adjusts its intrinsic pacing frequency to a single dominant frequency, to be a key aspect in modelling the electrophysiology of gastric tissue. In terms of modelling, additional fields associated with electrical activation, such as voltage-dependent calcium influx and the resulting deformation, have hardly been considered so far. Here we present a three-dimensional model of the electro-chemomechanical activation of gastric smooth muscle contractions. To reduce computational costs, an adaptive multi-scale discretisation strategy for the temporal resolution of the electric field is used. The model incorporates a biophysically based model of gastric ICC pacemaker activity that aims to simulate stable entrainment and physiological conduction velocities of the electrical slow waves. Together with the simulation of concomitant gastric contractions and the inclusion of a mechanical feedback mechanism, the model is used to study dysrhythmias of gastric slow waves induced by abnormal stretching of the antral SW. The model is able to predict the formation of stretch-induced gastric arrhythmias, such as the emergence of an ectopic pacemaker in the gastric antrum. The results show that the ectopic event is accompanied by smooth muscle contraction and, although it disrupts the normal propagation pattern of gastric slow electrical waves, it can also catalyse the process of handling indigestible materials that might otherwise injure the gastric SW.
Collapse
Affiliation(s)
- Lisa Klemm
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Robert Seydewitz
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart D-70569, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| |
Collapse
|
19
|
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc’h N. Apparent jejunal amino acid digestibility, gut morphology, and the expression of intestinal amino acid transporters in pigs fed protein or free amino acids. J Anim Sci 2023; 101:skac417. [PMID: 36583730 PMCID: PMC9904176 DOI: 10.1093/jas/skac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022] Open
Abstract
Dietary amino acids (AA) supplied as protein or in free form are not only digested and absorbed at different rates but can also induce differences in the intestinal physiology of pigs. We compared the apparent jejunal AA digestibility, intestinal morphology, and gene expression of AA transporters of pigs fed diets providing different forms of AA. Thirty growing pigs (33.7 ± 4.1 kg) were fed one of three experimental diets that provided AA either as protein from feather meal (INT), as free AA and small peptides obtained by extensive acid hydrolysis of feathers (HYD), or as a mix of individual purified AA with the same AA profile as HYD (FAA). Pigs were fed the same quantity of feed, energy, and AA. After 14 d, pigs were slaughtered 3 h after feeding a meal with indigestible markers. Digesta and tissue were collected from different sections of the small intestine. Jejunal digesta was used to measure apparent jejunal digestibility of AA. Samples of the duodenum, jejunum, and ileum were used to measure intestinal morphology and the gene expression of intestinal AA transporters. The measured apparent jejunal digestibility of AA of INT was lower compared to HYD and FAA (P < 0.05). The apparent jejunal digestibility of Cys, Gly, His, Met, and Pro was lower for FAA compared to HYD (P < 0.05). This may be due to the small peptides in HYD, which are absorbed faster than individual AA. The villi area in the ileum of HYD fed pigs was the highest (P < 0.05) among the treatments, which may be associated with the reabsorption of endogenous proteins, which occurs mostly in the ileum. In the duodenum, HYD and FAA had lower expression of PepT1 (P < 0.01) probably due to the rapid transit time of digesta compared to INT fed pigs. Pigs fed HYD expressed more ASCT2 (P = 0.02) and CAT-1 (P = 0.04) in the jejunum compared to the pigs fed the other diets. The expression of these transporters along the intestine depended on the relative abundance of readily absorbable dietary AA. Results showed that dietary AA form can have an influence on the morphology and on the expression of different AA transporters along the different sections of the small intestine.
Collapse
Affiliation(s)
- Francis Amann Eugenio
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| | | | | | | | - Nathalie Le Floc’h
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| |
Collapse
|
20
|
Wang Y, Takano T, Zhou Y, Wang R, Toshimitsu T, Sashihara T, Tanokura M, Miyakawa T, Nakajima-Adachi H, Hachimura S. Orally administered Lactiplantibacillus plantarum OLL2712 decreased intestinal permeability, especially in the ileum: Ingested lactic acid bacteria alleviated obesity-induced inflammation by collaborating with gut microbiota. Front Immunol 2023; 14:1123052. [PMID: 36911680 PMCID: PMC9995389 DOI: 10.3389/fimmu.2023.1123052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chronic inflammation caused by dietary obesity has been considered to induce lifestyle-related diseases and functional ingredients with anti-inflammatory effects are attracting attention. Although multiple studies on obesity had proved the anti-inflammatory effects of ingestion of lactic acid bacteria (LAB) and other functional ingredients on adipose tissue, the precise effects on the intestine, especially on the individual intestinal segments have not been made clear. In this study, we elucidated the mechanisms of Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) OLL2712 in suppressing obesity-induced inflammation using high fat diet (HFD)-fed mice obesity model. Methods We orally administered heat-treated LAB to HFD-fed mice model, and investigated the inflammatory changes in adipose tissue and intestinal immune cells. We also analyzed gut microbiota, and evaluated the inflammation and permeability of the duodenum, jejunum, ileum and colon; four intestinal segments differing in gut bacteria composition and immune response. Results After 3-week LAB administration, the gene expression levels of proinflammatory cytokines were downregulated in adipose tissue, colon, and Peyer's patches (PP)-derived F4/80+ cells. The LAB treatment alleviated obesity-related gut microbiota imbalance. L. plantarum OLL2712 treatment helps maintain intestinal barrier function, especially in the ileum, possibly by preventing ZO-1 and Occludin downregulation. Discussion Our results suggest that the oral administration of the LAB strain regulated the gut microbiota, suppressed intestinal inflammation, and improved the gut barrier, which could inhibit the products of obesity-induced gut dysbiosis from translocating into the bloodstream and the adipose tissue, through which the LAB finally alleviated the inflammation caused by dietary obesity. Barrier improvement was observed, especially in the ileum, suggesting collaborative modulation of the intestinal immune responses by ingested LAB and microbiota.
Collapse
Affiliation(s)
- Yimei Wang
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan
| | - Yingyu Zhou
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Rong Wang
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | - Masaru Tanokura
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan.,Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Satoshi Hachimura
- Research Center for Food Safety, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Liu Z, Suolang Q, Wang J, Li L, Luo Z, Shang P, Chen XD, Wu P. Formation of structured clots, gastric emptying and hydrolysis kinetics of yak milk during in vitro dynamic gastrointestinal digestion: Impact of different heat treatments. Food Res Int 2022; 162:111958. [DOI: 10.1016/j.foodres.2022.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
|
22
|
Digestion of meat proteins in a human-stomach: A CFD simulation study. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Effect of the Production Parameters and In Vitro Digestion on the Content of Polyphenolic Compounds, Phenolic Acids, and Antiradical Properties of Innovative Snacks Enriched with Wild Garlic ( Allium ursinum L.) Leaves. Int J Mol Sci 2022; 23:ijms232214458. [PMID: 36430937 PMCID: PMC9692538 DOI: 10.3390/ijms232214458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
A new type of corn snack has been created containing additions of wild garlic (Allium ursinum L.). This medicinal and dietary plant has a long tradition of use in folk medicine. However, studies on wild garlic composition and activity are fairly recent and scarce. This research aimed to investigate the influence of the screw speed and A. ursinum amounts on the antiradical properties as well as the content of polyphenolic compounds and individual phenolic acids of innovative snacks enriched with wild garlic leaves. The highest radical scavenging activity and content of polyphenols and phenolic acids were found in the snacks enriched with 4% wild garlic produced using screw speed 120 rpm. The obtained findings demonstrated that snacks enriched with wild garlic are a rich source of polyphenolic compounds. Since the concentration of such compounds is affected by many factors, e.g., plant material, presence of other compounds, and digestion, the second aim of this study was to determine radical scavenging activity, the content of polyphenols, and individual phenolic acids of snacks after in vitro simulated gastrointestinal digestion. Using an in vitro two-stage model, authors noted a significant difference between the concentration of polyphenolic compounds and the polyphenol content of the plant material before digestion.
Collapse
|
24
|
Hashem R, Kazemi S, Stommel M, Cheng LK, Xu W. SoRSS: A Soft Robot for Bio-Mimicking Stomach Anatomy and Motility. Soft Robot 2022. [DOI: 10.1089/soro.2021.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ryman Hashem
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
| | - Shahab Kazemi
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
| | - Martin Stommel
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
- Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Leo K. Cheng
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
- Riddet Institute Centre of Research Excellence (CoRE), Palmerston North, New Zealand
| |
Collapse
|
25
|
Kuhar S, Lee JH, Seo JH, Pasricha PJ, Mittal R. Effect of stomach motility on food hydrolysis and gastric emptying: Insight from computational models. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:111909. [PMID: 36407285 PMCID: PMC9667910 DOI: 10.1063/5.0120933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The peristaltic motion of stomach walls combines with the secretion of digestive enzymes to initiate the process that breaks down food. In this study, the mixing, breakdown, and emptying of a liquid meal containing protein is simulated in a model of a human stomach. In this model, pepsin, the gastric enzyme responsible for protein hydrolysis, is secreted from the proximal region of the stomach walls and allowed to react with the contents of the stomach. The velocities of the retropulsive jet induced by the peristaltic motion, the emptying rate, and the extent of hydrolysis are quantified for a control case as well as for three other cases with reduced motility of the stomach, which may result from conditions such as diabetes mellitus. This study quantifies the effect of stomach motility on the rate of food breakdown and its emptying into the duodenum and we correlate these observations with the mixing in the stomach induced by the wall motion.
Collapse
Affiliation(s)
- Sharun Kuhar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Rajat Mittal
- Author to whom correspondence should be addressed:
| |
Collapse
|
26
|
Development of a small intestinal simulator to assess the intestinal mixing and transit as affected by digesta viscosity. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Development of an in vitro distal gastric simulator to mimic the mechanical action of the human stomach. Food Res Int 2022; 161:111902. [DOI: 10.1016/j.foodres.2022.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
|
28
|
Li S, Ye S, Jin H, Shang L, Li J, Liang H, Li B. Sodium caseinate enhances the effect of konjac flour on delaying gastric emptying based on a dynamic in vitro human stomach-IV (DIVHS-IV) system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5849-5857. [PMID: 35426148 DOI: 10.1002/jsfa.11934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the context of the increasing prevalence of overweight and obesity worldwide, satiety-enhancing foods may help people control their energy intake and weight. In this study, an advanced near-real human gastric simulator equipped with a dynamic in vitro human stomach-IV (DIVHS-IV) system was used to determine the gastric digestion and gastric retention ratio of konjac flour (KF)/sodium caseinate (SC) mixtures with different ratios. RESULTS The apparent viscosity, viscoelastic properties, confocal laser scanning microscopy (CLSM) of the digested products were collected and analyzed to further study the effect of SC on the physical properties of KF during digestion. The results showed that the addition of SC could enhance the effect of KF on delaying gastric emptying in vitro. Besides, the addition of SC was shown to weaken the effect of gastric juice on the dilution of gastric contents by forming SC gel blocks in the acid environment. In particular, the synergistic gastric emptying delaying effect was the strongest in the KF/SC mixture containing 1% KF and 8% SC, and obvious massive aggregates were observed. CONCLUSION The combination of 1% KF and 8% SC was shown to synergistically delay gastric emptying and potentially enhance the sense of fullness. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Longchen Shang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Functional Food Engineering and Technology Research Center of Hubei Province, 430068, Wuhan, China
| |
Collapse
|
29
|
He X, Yang M, Yuan F, Singh H, Ye A. High-pressure processing of bovine milk: Effects on the coagulation of protein and fat globules during dynamic in vitro gastric digestion. Curr Res Food Sci 2022; 5:1530-1538. [PMID: 36161223 PMCID: PMC9489539 DOI: 10.1016/j.crfs.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
The effect of high-pressure processing (HPP) on the digestion behavior of skim and whole bovine milks was investigated using a human gastric simulator. Both milks formed clots during gastric digestion. HPP treatment led to the formation of a coagulum with a fragmented and crumbled structure, compared with the coagulum formed from untreated milk. At pressures over 400 MPa, more intense pressure resulted in looser and more fragmented gastric clot structures. The weight of the dried clots and the moisture content in the clots of the skim milk treated at 600 MPa were significantly lower and higher than that of untreated skim milk, respectively. The looser and more fragmented gastric clot structures consequently led to faster hydrolysis of the proteins by pepsin during gastric digestion. The denaturation of the whey proteins induced by HPP may have also altered the resistance of α-lactalbumin and β-lactoglobulin in the HPP-treated milk samples to pepsin hydrolysis. This study provides insights into the differences among untreated skim milk, untreated whole milk and HPP-treated milk under in vitro gastric digestion conditions. The structure of the clots formed in the gastric environment affects their breakdown and consequently their emptying rate into the intestine.
Collapse
Affiliation(s)
- Xiaoye He
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, 100081, PR China
| | - Mengxiao Yang
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Fang Yuan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
30
|
Ye Q, Ding M, Zhang P, Wu P, Wang Y, Selomulya C, Chen XD. Visual Monitoring of Disintegration of Solid Oral Dosage Forms in Simulated Gastric Fluids Using Low-Field NMR Imaging. AAPS PharmSciTech 2022; 23:246. [PMID: 36050431 DOI: 10.1208/s12249-022-02401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Compared to traditional drug release monitoring with manual sampling and testing procedures, low-field nuclear magnetic resonance (LF-NMR) imaging is a one-step, visual, non-destructive, and non-invasive measurement method. Here, we reported the application of LF-NMR to image the morphology, component, sub-diffusion, and spatial distribution of a solid oral formulation, Biyankang tablets, during dissolution in vitro. The drug ingredients with characteristic relaxation times were distinguished and localized based on the signal of standards, such as patchouli oil, Xanthium strumarium extract, and starch. The hydration, swelling, disintegration, and sub-diffusion of tablets in simulated gastric fluids (SGF) were visualized statically. All tablets showed similar expansion (37.4-42.0%) along the direction of thickness at 25 min and reached a full disintegration at 145 min, at pH 1.80-6.15, indicating pH-independent swelling and disintegration. Compared to that static immersion within 20 mL SGF, the tablet disintegration time was shortened by ~ 11% in 30 mL SGF. The application of shear reduced the time by ~ 28%, suggesting a major role of hydrodynamic condition in tablet dissolution. The ability to simultaneously visualize, distinguish, and localize drug ingredients using LF-NMR is expected to provide valuable information to develop drug release monitoring systems in vitro and potentially in vivo using small animal studies.
Collapse
Affiliation(s)
- Qianyu Ye
- The Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Meilai Ding
- The Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ping Zhang
- The Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Peng Wu
- The Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Xiao Dong Chen
- The Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Kazemi S, Stommel M, Cheng LK, Xu W. Finite-Time Contraction Control of a Ring-Shaped Soft Pneumatic Actuator Mimicking Gastric Pathologic Motility Conditions. Soft Robot 2022; 10:221-233. [PMID: 35704909 DOI: 10.1089/soro.2021.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soft gastric simulators are the latest gastric models designed to imitate gastrointestinal (GI) functions in actual physiological conditions. They are used in in vitro tests for examining the drug and food behaviors in the GI tract. As the main motility function of the GI tract, the peristalsis can be altered in some gastric disorders, for example, by being delayed or accelerated. To simulate the stomach motility, a GI simulator must achieve a prescribed healthy or pathological peristalsis. This requires the simulator to be controlled in a closed loop. Unlike conventional controllers that stabilize a controlled plant asymptotically, a finite-time controller regulates state variables to their equilibrium points in a predetermined time interval. This article presents the design and implementation of a finite-time, model-based state feedback controller (based on the differential Riccati equation) on a soft robotic gastric simulator's actuators for the first time. We propose a mass-spring-damper model of a ring-shaped soft pneumatic actuator (RiSPA). RiSPA is a bellows-driven, elastomer-based actuator developed to reproduce motility functions of the lower part of the stomach (pyloric antrum). The proposed model is augmented by a new approach for modeling the soft tissues, where the moments of inertia of the system constituents are considered as time-varying functions. The finite-time controller is successfully applied on the RiSPA in numerical simulation and experimental implementation, and the results were thoroughly analyzed and discussed. Its accuracy and the ability to control in a predetermined time are highlighted in the tracking of peristalsis trajectory and contractive regulations.
Collapse
Affiliation(s)
- Shahab Kazemi
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Martin Stommel
- Department of Electrical & Electronic Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Leo K Cheng
- Riddet Institute, Palmerston North, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
32
|
Feng J, Wu P, Chen XD. Quantitative visualization study on the physical movement and gastric emptying of diced carrot particle in a transparent rat stomach-duodenum model. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, a transparent soft-elastic silicone rat stomach model was prepared to visualize the gastric movement and emptying of one individual diced carrot in a dynamic in vitro rat stomach system. The influences of the viscosity of solution medium, the pattern of gastric peristalsis and the extraction rate of the emptying pump on the location and gastric residence time of the carrot particle were examined. A proper medium viscosity could promote the emptying of the carrot particle. Compared to the combined actions of plate and roller, gastric residence time of the carrot particle was reduced from 32.3 to 19.8 min under the single plate compression. This time was also shortened from 34.8 to 12.3 min when the extraction rate of emptying pump was changed from 100 mL/min to 400 mL/min. Knowledge gained from this work is unique and may provide new insights for optimizing biomimic gastrointestinal models.
Collapse
Affiliation(s)
- Jiajun Feng
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| |
Collapse
|
33
|
Acevedo-Fani A, Singh H. Food Structure and Nutrition Interface: New Perspectives in Designing Healthy and Sustainable Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5291-5298. [PMID: 35446581 DOI: 10.1021/acs.jafc.2c01026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing world population, impact of food production on climate change, and ongoing issues with diet-related diseases (e.g., malnutrition and obesity) are global major challenges. Recent advances in how food structure impacts the extent and kinetics of uptake of nutrients and its consequent effects on the physiological outcomes are beginning to shift our understanding of nutrition. This understanding is important to designing future foods that provide optimum nutrient bioavailability and deliver healthy outcomes. We discuss perspectives and scientific challenges in understanding the complex relationship between food structure/matrix modification during the digestion process and the absorption of nutrients as well as designing food structures with more sustainable materials.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
34
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|
35
|
Application of In Vivo Imaging Techniques and Diagnostic Tools in Oral Drug Delivery Research. Pharmaceutics 2022; 14:pharmaceutics14040801. [PMID: 35456635 PMCID: PMC9025904 DOI: 10.3390/pharmaceutics14040801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on “Understanding Gastrointestinal Absorption-related Processes (UNGAP)” was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.
Collapse
|
36
|
Acharya S, Halder S, Kou W, Kahrilas PJ, Pandolfino JE, Patankar NA. A fully resolved multiphysics model of gastric peristalsis and bolus emptying in the upper gastrointestinal tract. Comput Biol Med 2022; 143:104948. [PMID: 35091365 PMCID: PMC9014465 DOI: 10.1016/j.compbiomed.2021.104948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Over the past few decades, in silico modeling of organ systems has significantly furthered our understanding of their physiology and biomechanical function. In spite of the relative importance of the digestive system in normal functioning of the human body, there is a scarcity of high-fidelity models for the upper gastrointestinal tract including the esophagus and the stomach. In this work, we present a detailed numerical model of the upper gastrointestinal tract that not only accounts for the fiber architecture of the muscle walls, but also the multiphasic components they help transport during normal digestive function. Construction details for 3D models of representative stomach geometry are presented along with a simple strategy for assigning circular and longitudinal muscle fiber orientations for each layer. We developed a fully resolved model of the stomach to simulate gastric peristalsis by systematically activating muscle fibers embedded in the stomach. Following this, for the first time, we simulate gravity-driven bolus emptying into the stomach due to density differences between ingested contents and fluid contents of the stomach. Finally, we present a case of retrograde flow of fluid from the stomach into the esophagus, resembling the phenomenon of acid reflux. This detailed computational model of the upper gastrointestinal tract provides a foundation for future models to investigate the biomechanics of acid reflux and probe various strategies for gastric bypass surgeries to address the growing problem of obesity.
Collapse
Affiliation(s)
- Shashank Acharya
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sourav Halder
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Wenjun Kou
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peter J Kahrilas
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John E Pandolfino
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Neelesh A Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
37
|
Digestion of curcumin-fortified yogurt in short/long gastric residence times using a near-real dynamic in vitro human stomach. Food Chem 2022; 372:131327. [PMID: 34818741 DOI: 10.1016/j.foodchem.2021.131327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
A dynamic in vitro human stomach (DIVHS), simulating the anatomical structures, peristalsis, and biochemical environments of a real stomach as practically as possible, was applied to mimic the gastric pH and emptying during yogurt digestion in short/long gastric residence times. The influences of peristalsis, dilution, and proteolysis on digesta viscosity were quantified respectively, indicating the dominant role of proteolysis and dilution. After incorporating curcumin-whey protein microparticles with targeted-release formula in yogurt, the peak curcumin release during intestinal digestion reached 43% at 120 min in the short gastric residence time and 16% at 180 min in the long gastric residence time. The change in the maximum curcumin release depended on the gastric emptying kinetics in each residence time. This emptying-kinetics dependence was reflected by the slower microparticle disintegration and proteolysis in the long gastric residence time. The dynamic reproduction of realistic gastric conditions using DIVHS helps revealing controlled release from foods.
Collapse
|
38
|
Early steps of an alternative test meal for gastric emptying scintigraphy. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp211121052s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Gastric emptying (GE) scintigraphy provides a physiologic and noninvasive measurement of GE. Although GE scintigraphy has been standardized, preparing a meal is still complex and not practical in daily routine. The aim of the study was to prepare a simple, practical, and easily standardizable semisolid meal and investigate its role in estimating the GE function in of rabbits. Methods. In the first part of the study (basal condition), the mixture of the macroaggregated albumin (MAA) labeled with 37 MBq (1 mCi) of technetium-99m (99mTc) and 40 g of barium sulfate (1g/mL) was applied to animals via a nasogastric catheter. A series of images (frame/min, 60 min) in the anterior and posterior projections were dynamically acquired, and the motion was corrected after the radiopharmaceutical application. A few days later, the same rabbits were scanned under the same protocol after a 1 mg atropine injection to simulate gastroparesis condition. Eleven rabbits were included according to inclusion and exclusion criteria, and a total of twenty-two imaging data sets were analyzed for quantification. Results. In the basal study, total counts of the mixture decreased from 87,800.83 ? 12,622.76 to 42,733.14 ? 6,591.53 at 30 min and to 13,684.19 ? 1,774.90 at 60 min, and these decreases were statistically significant (p = 0.003). Emptying percentages were 51.39 ? 0.78% at 30 min and 84.32 ? 1.56 at 60 min and were statistically significant (p = 0.003). After intravascular atropine sulfate injection, total counts of the mixture decreased from 84,508.78 ? 11,871.48 to 64,995.18 ? 9,298 at 30 min and to 53,507.17 ? 7,258.98 at 60 min, and these decreases were statistically significant (p = 0.003). Emptying percentages were 23.10 ? 1.11% at 30 min and 36.63 ? 1.42 at 60 min and were statistically significant (p = 0.003). The difference between basal and post-atropine sulfate gastric emptying percentage at 30th (p = 0.003) and 60th (p = 0.003) min was statistically significant. Conclusion. The meal, used in this study, is non-nutrient, fatty-free, and semisolid and is easy to prepare and administer. Due to its semisolid nature, it offers a chance to evaluate the quantification of regional and total GE as well as the separate roles of the fundus and antrum.
Collapse
|
39
|
Wang R, Mohammadi M, Mahboubi A, Taherzadeh MJ. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021; 12:3040-3064. [PMID: 34187302 PMCID: PMC8806420 DOI: 10.1080/21655979.2021.1940769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 10/28/2022] Open
Abstract
Digestive systems in human, animals, and fish are biological reactors and membranes to digest food and extract nutrients. Therefore, static and dynamic models of in-vitro digestion systems are developed to study e.g. novel food and feed before in-vivo studies. Such models are well developed for human, but not to the same extent for animals and fish. On the other hand, recent advances in aquaculture nutrition have created several potential fish meal replacements, and the assessment of their nutrient digestibility is critical in the application as a fish meal replacement. Using an in-vitro method, the assessment of an ingredient digestibility could be faster and less expensive compared to using an in-vivo experiment. An in-vitro method has been widely used to assess food nutrient digestibility for humans; however, its application for fish is still in the early stages. Both the human and fish as monogastric vertebrates share similar gastrointestinal systems; thus, the concept from the application for humans could be applied for fish. This review aims to improve the in-vitro digestion protocol for fish by adapting the concept from then study for humans, summarizing the current available in-vitro digestion model developed for human and fish in-vitro digestion study, identifying challenges specifically for fish required to be tackled and suggesting an engineering approach to adapt the human in-vitro gastrointestinal model to fish. Protocols to conduct in-vitro digestion study for fish are then proposed.
Collapse
Affiliation(s)
- Ricky Wang
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Mahtab Mohammadi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | | |
Collapse
|
40
|
Payal A, Elumalai A, Murugan SV, Moses J, Anandharamakrishnan C. An investigation on gastric emptying behavior of apple in the dynamic digestion model ARK® and its validation using MRI of human subjects – A pilot study. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Weitschies W, Müller L, Grimm M, Koziolek M. Ingestible devices for studying the gastrointestinal physiology and their application in oral biopharmaceutics. Adv Drug Deliv Rev 2021; 176:113853. [PMID: 34192551 DOI: 10.1016/j.addr.2021.113853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
Ingestible sensor systems are unique tools for obtaining physiological data from an undisturbed gastrointestinal tract. Since their dimensions correspond to monolithic oral dosage forms, such as enteric coated tablets or hydrogel matrix tablets, they also allow insights into the physiological conditions experienced by non-disintegrating dosage forms on their way through the gastrointestinal tract. In this work, the different ingestible sensor systems which can be used for this purpose are described and their potential applications as well as difficulties and pitfalls with respect to their use are presented. It is also highlighted how the data on transit times, pH, temperature and pressure as well as the data from different animal models commonly used in drug product development such as dogs and pigs have contributed to a deeper mechanistic understanding of oral drug delivery.
Collapse
Affiliation(s)
- Werner Weitschies
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany.
| | - Laura Müller
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Mirko Koziolek
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| |
Collapse
|
42
|
|
43
|
Peng Z, Wu P, Wang J, Dupont D, Menard O, Jeantet R, Chen XD. Achieving realistic gastric emptying curve in an advanced dynamic in vitro human digestion system: experiences with cheese-a difficult to empty material. Food Funct 2021; 12:3965-3977. [PMID: 33977933 DOI: 10.1039/d0fo03364b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nowadays, in vitro digestion models have received growing interest in recent years to track the digestive fate of foods in the gastrointestinal tract. A major challenge in the development of more physiologically relevant in vitro gastric models is to simulate realistic gastric emptying. In this study, an advanced dynamic in vitro human gastric system was investigated for its potential in achieving the above. The mechanisms for controlling the gastric emptying rate by modulations of the peristaltic moving distance, the pylorus opening size/frequency, and the stomach tilting angle in relation to time are illustrated. With solid cheese, a difficult food material for emptying, different combinations of the operational parameters of the stomach system were evaluated. The system was steered to attain consistent gastric emptying curve with the theoretical data by optimizing operational parameters. By fitting the gastric retention data with a power-exponential model, which is a common approach for describing gastric emptying, the total meal achieved an average emptying half-time (t1/2) of 84.5 min and a curve shape coefficient (β) of 1.69, similar to the theoretical data reported in the literature, where the values of t1/2 and β were 85 min and 1.8, respectively (p > 0.05). Furthermore, the mean median particle size was significantly decreased from the initial 2.80 mm (cheese cubes) to the final 1.35 mm (p < 0.05). There are few particles greater than 2 mm observed in the emptied cheese digesta throughout the digestion process. These suggest the powerful gastric grinding and sieving capacity exhibited by the in vitro system. The current study demonstrates that a well-considered in vitro system can offer a reasonable approach for tracking the structural and physicochemical changes of foods during digestion in the stomach, which is practically meaningful.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China and School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Peng Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Jingjing Wang
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, 215152, Jiangsu Province, China
| | - Didier Dupont
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, France
| | - Oliva Menard
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, France
| | - Romain Jeantet
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, France
| | - Xiao Dong Chen
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China and School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
44
|
Mortensen NP, Moreno Caffaro M, Aravamudhan S, Beeravalli L, Prattipati S, Snyder RW, Watson SL, Patel PR, Weber FX, Montgomery SA, Sumner SJ, Fennell TR. Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO 2 E171 in Male and Female Rat Pups. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1487. [PMID: 34199726 PMCID: PMC8230348 DOI: 10.3390/nano11061487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Oral exposure to nanoparticles (NPs) during early life is an understudied area. The goals of this study were to evaluate the effect of pre-weaned rat gastric fluids on 50 nm CuO NPs and TiO2 E171 in vitro, and to evaluate uptake in vivo. The NP uptake was studied in vivo in male and female Sprague-Dawley rat pups following oral administration of four consecutive daily doses of 10 mg/kg CuO NPs, TiO2 E171, or vehicle control (water) between postnatal day (PND) 7-10. Rat pups were sacrificed on either PND10 or PND21. Simulated digestion led to dissolution of CuO NPs at the later ages tested (PND14 and PND21, but not PND7). In vivo intestinal uptake of CuO NPs and TiO2 E171 was observed by hyperspectral imaging of intestinal cross sections. Brightfield microscopy showed that the number of immune cells increased in the intestinal tissue following NP administration. Orally administered NPs led to low intestinal uptake of NPs and an increase in immune cells in the small and large intestine, suggesting that oral exposure to NPs during early life may lead to irritation or a low-grade inflammation. The long-term impact of increased immune cells in the intestinal tract during early life is unknown.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Maria Moreno Caffaro
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Lakshmi Beeravalli
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Sharmista Prattipati
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd., Greensboro, NC 27401, USA; (S.A.); (L.B.); (S.P.)
| | - Rodney W. Snyder
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Scott L. Watson
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Purvi R. Patel
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Frank X. Weber
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Susan J. Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA;
| | - Timothy R. Fennell
- RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA; (M.M.C.); (R.W.S.); (S.L.W.); (P.R.P.); (F.X.W.); (T.R.F.)
| |
Collapse
|
45
|
Ratanpaul V, Zhang D, Williams BA, Diffey S, Black JL, Gidley MJ. Interplay between grain digestion and fibre in relation to gastro-small-intestinal passage rate and feed intake in pigs. Eur J Nutr 2021; 60:4001-4017. [PMID: 33950401 DOI: 10.1007/s00394-021-02567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The combined effects of grain digestibility and dietary fibre on digesta passage rate and satiety in humans are poorly understood. Satiety can be increased through gastric distention, reduced gastric emptying rate and when partially digested nutrients reach the terminal ileum to stimulate peptide release through the ileal/colonic brakes to slow the rate of digesta passage. This study determined the effects of grain digestibility and insoluble fibre on mean retention time (MRT) of digesta from mouth-to-ileum, feed intake (FI), starch digestion to the terminal ileum and faecal short chain fatty acids (SCFA) in a pig model. METHOD Twelve grain-based [milled sorghum (MS), steam-flaked-sorghum, milled wheat, and steam-flaked-wheat (SFW)] diets with different intrinsic rates of starch digestion, assessed by apparent amylase diffusion coefficient (ADC), and fibre from oat hulls (OH) at 0, 5 and 20% of the diet were fed to ileal-cannulated pigs. RESULT MRT was affected by grain-type/processing (P < 0.05) and fibre amount (P < 0.05). An approximate tenfold increase in ADC showed a limited decline in MRT (P = 0.18). OH at 20% increased MRT (P < 0.05) and reduced FI (P < 0.05). Ileal digestibility of starch increased and faecal SCFA concentration decreased with ADC; values for MS being lower (P < 0.001) and higher (P < 0.05), respectively, than for SFW. CONCLUSIONS Lower ileal digestibility of starch, higher faecal SCFA concentration and longer MRT of MS than SFW, suggest the ileal/colonic brakes may be operating. FI appeared to decrease with increasing MRT. MRT increased and intake decreased with grain-based foods/feeds that have low starch digestibility and substantial amounts of insoluble fibre.
Collapse
Affiliation(s)
- Vishal Ratanpaul
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - Dagong Zhang
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - Barbara A Williams
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | | | | | - Michael J Gidley
- Australian Research Council, Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
46
|
Li C, Jin Y. A CFD model for investigating the dynamics of liquid gastric contents in human-stomach induced by gastric motility. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Nadia J, Bronlund J, Singh RP, Singh H, Bornhorst GM. Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Compr Rev Food Sci Food Saf 2021; 20:2660-2698. [PMID: 33884751 DOI: 10.1111/1541-4337.12749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rajinder Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
48
|
Karthikeyan J, Salvi D, Karwe MV. Modeling of fluid flow, carbohydrate digestion, and glucose absorption in human small intestine. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Ding M, Wu P, Chen XD. Investigation of gastric disintegration of carrot during digestion in vitro by a Low-Field Nuclear Magnetic Resonance device. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Mixing and emptying of gastric contents in human-stomach: A numerical study. J Biomech 2021; 118:110293. [PMID: 33588327 DOI: 10.1016/j.jbiomech.2021.110293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 11/21/2022]
Abstract
Stomach is one of the most important organs in human gastro-track. To better understand the operation of human-stomach, the process of mixing and emptying of gastric contents is simulated using a numerical method. The numerical results confirm that a fast pathway is located close to the lesser curvature of the stomach when water is emptied. However, this fast pathway doesn't exist when the gastric contents are composed of water and food boluses with different properties. The muscle contractions enhance the mixing of light food boluses and water, while they have limited effects on heavy food boluses. As a result, the foods are distributed in layers; heavy food boluses are located in the bottom layer. Besides the gastric motility and high viscosity of foods, the food matrix made of heavy food particles is also important to the formation of the Magenstrasse (stomach road). The food matrix and the zone of wrinkles behave like a porous medium which has higher flow resistance to the light food particles than to the water, leading to faster emptying of water. The water is emptied along the stomach wall since the flow resistance in the stomach wrinkles is smaller than the one in the food matrix. This mechanism is supported by the numerical results, while it might interpret the phenomena observed in the experiments.
Collapse
|