1
|
Gorosito Serrán M, Tosello Boari J, Fiocca Vernengo F, Beccaría CG, Ramello MC, Bermejo DA, Cook AG, Vinuesa CG, Montes CL, Acosta Rodriguez EV, Gruppi A. Unconventional Pro-inflammatory CD4 + T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi. Front Immunol 2017; 8:1548. [PMID: 29209313 PMCID: PMC5702327 DOI: 10.3389/fimmu.2017.01548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/03/2023] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice) infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44- cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able to regulate TNF-producing CD4+ T cells since their absence favor the increase of the number of TNF+ CD4+ in T. cruzi-infected mice.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jimena Tosello Boari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaría
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Ramello
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela A Bermejo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Amelia G Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Longhi SA, Atienza A, Perez Prados G, Buying A, Balouz V, Buscaglia CA, Santos R, Tasso LM, Bonato R, Chiale P, Pinilla C, Judkowski VA, Gómez KA. Cytokine production but lack of proliferation in peripheral blood mononuclear cells from chronic Chagas' disease cardiomyopathy patients in response to T. cruzi ribosomal P proteins. PLoS Negl Trop Dis 2014; 8:e2906. [PMID: 24901991 PMCID: PMC4046937 DOI: 10.1371/journal.pntd.0002906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/15/2014] [Indexed: 01/16/2023] Open
Abstract
Background Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC). It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals. Methodology/Principal findings We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC) stimulated with P2β, the C-terminal portion of P0 (CP0) proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells. Conclusions/Significance Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T. cruzi infection. Chronic Chagas' disease Cardiomyopathy (CCC) is the most frequent and severe consequence of the chronic infection by protozoan parasite T. cruzi. Patients with CCC develop high levels of antibodies against ribosomal P proteins of T. cruzi, called P2β and P0. These antibodies can cross-react with, and stimulate, the β1-adrenergic and M2 muscarinic cardiac receptors, inducing a functional and pathological response in cardiomyocytes. In this study, we focused on the cellular immune response developed by CCC patients in response to T. cruzi ribosomal P proteins. Peripheral blood mononuclear cells (PBMC) from CCC patients stimulated with both proteins neither proliferated nor induced the expression of activation markers on CD4+ and CD8+ T cells. However, these cells responded by the secretion of IL-10, TNF-α and GM-CSF, giving evidence that there is indeed a pool of specific T cells in the periphery responsive to these proteins. Interestingly, the cytokines profile was not related with those described to whole parasite lysate or other recombinant proteins, suggesting that each parasite protein may contribute differently to the complex immune response developed in patients with Chagas' disease.
Collapse
Affiliation(s)
- Silvia A. Longhi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Augusto Atienza
- Hospital General de Agudos J.M. Ramos Mejía, Buenos Aires, Argentina
| | | | - Alcinette Buying
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus UNSAM, San Martín, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus UNSAM, San Martín, Buenos Aires, Argentina
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, United States of America
| | - Laura M. Tasso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Ricardo Bonato
- Hospital General de Agudos J.M. Ramos Mejía, Buenos Aires, Argentina
| | - Pablo Chiale
- Hospital General de Agudos J.M. Ramos Mejía, Buenos Aires, Argentina
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Valeria A. Judkowski
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
3
|
Hrabák A, Csuka I, Bajor T, Csatáry LK. The cytotoxic anti-tumor effect of MTH-68/H, a live attenuated Newcastle disease virus is mediated by the induction of nitric oxide synthesis in rat peritoneal macrophages in vitro. Cancer Lett 2006; 231:279-89. [PMID: 16399229 DOI: 10.1016/j.canlet.2005.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 02/06/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Rat peritoneal macrophages were induced to produce high amounts of nitric oxide (NO) when rats were challenged by MTH68/H, (a live attenuated oncolytic Newcastle disease virus strain). The increase in NO production was observed to be viral particle dose dependent. The higher NO production measured could be due to the enhanced expression of NO synthase II enzyme. In addition, viral administration caused a higher macrophage cell count in the peritoneal cavity of treated rats. Interleukin-1 and granulocyte-monocyte colony stimulating factors were also produced by the induced macrophages. COS 7, a transformed cell line was killed by both NO donors and activated macrophages; the latter effect was markedly decreased in the presence of the inhibitors of NO production. Cytotoxic effect of NO was evidenced by the decrease of cell viability and proliferation of COS 7 cells. Excessive NO production may also be cytotoxic for macrophages themselves as proved by the addition of exogenous NO donors. These results strongly suggested the participation of induced NO synthesis of macrophages in the anti-tumor effect of MTH-68/H vaccine treatment.
Collapse
Affiliation(s)
- András Hrabák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, VIII, Puskin u. 9, P.O. Box 260, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
4
|
Shi L, Shi SQ, Given RL, von Hertzen H, Garfield RE. Synergistic effects of antiprogestins and iNOS or aromatase inhibitors on establishment and maintenance of pregnancy. Steroids 2003; 68:1077-84. [PMID: 14668001 DOI: 10.1016/j.steroids.2003.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Progesterone is known to be involved in many steps in female reproduction including control of implantation and uterine-cervical function during pregnancy. Our studies in rats and guinea pigs indicate that progesterone inhibits uterine contractility and cervical softening during pregnancy. Progesterone levels or actions decline near the end of pregnancy leading to the onset of labor. Treatment with progestin agonists prolongs pregnancy and inhibits cervical softening, whereas treatment with antiprogestins (mifepristone or onapristone) stimulates uterine contractility, cervical softening and premature delivery. Thus the effect of progesterone receptor modulators in the uterus and cervix depend up on the degree of intrinsic agonistic/antagonistic activities. Our recent studies show that progesterone interacts with nitric oxide (NO) to maintain pregnancy and that administration of progesterone antagonists with NO synthase inhibitors act synergistically to stimulate labor. In addition our studies show that combinations of progesterone antagonists with aromatase inhibitors act synergistically to induce labor. Similarly antiprogestins interact with NO synthase or aromatase inhibitors to block implantation through action on the endometrium. These studies suggest new applications for combined therapies of progestin receptor modulators with aromatase inhibitors or agents that modify NO production for contraception, stimulation of labor, estrogen-dependent diseases and improved outcomes in pregnancy.
Collapse
Affiliation(s)
- Leili Shi
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA
| | | | | | | | | |
Collapse
|
5
|
Olivares Fontt E, Beschin A, Van Dijck E, Vercruysse V, Bilej M, Lucas R, De Baetselier P, Vray B. Trypanosoma cruzi is lysed by coelomic cytolytic factor-1, an invertebrate analogue of tumor necrosis factor, and induces phenoloxidase activity in the coelomic fluid of Eisenia foetida foetida. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:27-34. [PMID: 11687260 DOI: 10.1016/s0145-305x(01)00048-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cytolytic protein named Coelomic Cytolytic Factor-1 (CCF-1) was isolated from the coelomic fluid of the earthworm Eisenia foetida foetida. Despite the absence of any gene homology, CCF-1 showed functional analogy with the mammalian cytokine tumour necrosis factor (TNF), particularly based on similar lectin-like activity. Indeed, both CCF-1 and TNF recognise N,N'-diacetylchitobiose and exert lytic activity on African Trypanosoma brucei brucei. In this report, we show that South-American Trypanosoma cruzi trypomastigotes, but not epimastigotes, were lysed by earthworm coelomic fluid or purified CCF-1. However, T. cruzi was less susceptible to lysis than T. brucei brucei. This lytic effect of coelomic fluid and CCF-1 on T. cruzi trypomastigotes was partially inhibited in the presence of anti-CCF-1 monoclonal antibody, antibody neutralising the lectin-like activity of TNF or N,N'-diacetylchitobiose. In contrast, this lytic effect was completely inhibited when using T. b. brucei. In addition, T. cruzi components, upon recognition by CCF-1 in E. f. foetida coelomic fluid, triggered the prophenoloxidase cascade, an invertebrate defence mechanism. These results further extend the functional analogies of CCF-1 and TNF, suggesting that both molecules share a similar lectin-like activity that has been conserved as an innate recognition mechanism in invertebrates and vertebrates. They also establish a link between stercorarian (T. cruzi) and salivarian (T. brucei) trypanosomatids having divergent phylogenetic origins and patterns of evolution, but possessing closely related cell surface sugar moieties.
Collapse
Affiliation(s)
- Elizabeth Olivares Fontt
- Laboratoire d'Immunologie Expérimentale (CP 615), Faculté de Médecine, 808 route de Lennik, B-1070, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Verdot L, Lalmanach G, Vercruysse V, Hoebeke J, Gauthier F, Vray B. Chicken cystatin stimulates nitric oxide release from interferon-gamma-activated mouse peritoneal macrophages via cytokine synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1111-7. [PMID: 10583408 DOI: 10.1046/j.1432-1327.1999.00964.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystatins are natural tight-binding, reversible inhibitors of cysteine proteases. We have shown that cystatins also stimulate nitric oxide (NO) production by interferon-gamma-activated mouse peritoneal macrophages [Verdot, L., Lalmanach, G., Vercruysse, V., Hartman, S., Lucius, R., Hoebeke, J., Gauthier F. & Vray, B. (1996) J. Biol. Chem. 271, 28077-28081]. The present study was undertaken to further document this new function. Macrophages activated with interferon-gamma and then stimulated with interferon-gamma plus chicken cystatin generated increased amounts of NO in comparison with macrophages only activated with interferon-gamma. Interferon-gamma-activated macrophages must be incubated with chicken cystatin for at least 8 h to upregulate NO production. NO induction was due to increased inducible nitric oxide synthase protein synthesis. Macrophages incubated with chicken cystatin alone or with interferon-gamma plus chicken cystatin produced increased amounts of both tumor necrosis factor alpha and interleukin 10. The addition of recombinant murine tumor necrosis factor alpha alone or in combination with recombinant murine interleukin-10 mimicked the effect of chicken cystatin. The addition of neutralizing anti-(tumor necrosis factor alpha) antibodies reduced sharply NO production by chicken cystatin/interferon-gamma-activated mouse peritoneal macrophages. Taken together, these data suggest that chicken cystatin induces the synthesis of tumor necrosis factor alpha and interleukin 10. In turn, these two cytokines stimulate the production of NO by interferon-gamma-activated macrophages. The findings point to a new relationship between cystatins, cytokines, inflammation and the immune response.
Collapse
Affiliation(s)
- L Verdot
- Laboratoire dImmunologie Expérimentale, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Chaussabel D, Jacobs F, de Jonge J, de Veerman M, Carlier Y, Thielemans K, Goldman M, Vray B. CD40 ligation prevents Trypanosoma cruzi infection through interleukin-12 upregulation. Infect Immun 1999; 67:1929-34. [PMID: 10085038 PMCID: PMC96548 DOI: 10.1128/iai.67.4.1929-1934.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of the critical role of the CD40-CD40 ligand (CD40L) pathway in the induction and effector phases of immune responses, we investigated the effects of CD40 ligation on the control of Trypanosoma cruzi infection. First, we observed that supernatants of murine spleen cells stimulated by CD40L-transfected 3T3 fibroblasts (3T3-CD40L transfectants) prevent the infection of mouse peritoneal macrophages (MPM) by T. cruzi. This phenomenon depends on de novo production of nitric oxide (NO) as it is prevented by the addition of N-nitro-L-arginine methyl ester, a NO synthase inhibitor. NO production requires interleukin (IL)-12-mediated gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) synthesis as demonstrated by inhibition experiments using neutralizing anti-IL-12, anti-IFN-gamma, and anti-TNF-alpha monoclonal antibodies (MAb). We found that an activating anti-CD40 MAb also directly stimulates IFN-gamma-activated MPM to produce NO and thereby to control T. cruzi infection. To determine the in vivo relevance of these in vitro findings, mice were injected with 3T3-CD40L transfectants or 3T3 control fibroblasts at the time of T. cruzi inoculation. We observed that in vivo CD40 ligation dramatically reduced both parasitemia and the mortality rate of T. cruzi-infected mice. A reduced parasitemia was still observed when the injection of 3T3-CD40L transfectants was delayed 8 days postinfection. It was abolished by injection of anti-IL-12 MAb. Taken together, these data establish that CD40 ligation facilitates the control of T. cruzi infection through a cascade involving IL-12, IFN-gamma, and NO.
Collapse
Affiliation(s)
- D Chaussabel
- Laboratoire d'Immunologie Expérimentale, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Villalta F, Zhang Y, Bibb KE, Kappes JC, Lima MF. The cysteine-cysteine family of chemokines RANTES, MIP-1alpha, and MIP-1beta induce trypanocidal activity in human macrophages via nitric oxide. Infect Immun 1998; 66:4690-5. [PMID: 9746565 PMCID: PMC108576 DOI: 10.1128/iai.66.10.4690-4695.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper describes a new role for the cysteine-cysteine (CC) chemokines RANTES, MIP-1alpha, and MIP-1beta on human macrophage function, which is the induction of nitric oxide (NO)-mediated trypanocidal activity. In a previous report, we showed that RANTES, MIP-1alpha and MIP-1beta enhance Trypanosoma cruzi uptake and promote parasite killing by human macrophages (M. F. Lima, Y. Zhang, and F. Villalta, Cell. Mol. Biol. 43:1067-1076, 1997). Here we study the mechanism by which RANTES, MIP-1alpha, and MIP-1beta activate human macrophages obtained from healthy individuals to kill T. cruzi. Treatment of human macrophages with different concentrations of RANTES, MIP-1alpha, and MIP-1beta enhances T. cruzi trypomastigote phagocytosis in a dose peak response. The optimal response induced by the three CC chemokines is attained at 500 ng/ml. The macrophage trypanocidal activity induced by CC chemokines can be completely inhibited by L-N-monomethyl arginine (L-NMMA), a specific inhibitor of the L-arginine:NO pathway, but not by its D-enantiomer. Culture supernatants of chemokine-treated human macrophages contain increased NO2- levels, and NO2- production is also specifically inhibited by L-NMMA. The amount of NO2- induced by these chemokines in human macrophages is comparable to the amount of NO2- induced by gamma interferon. The killing of trypomastigotes by NO in cell-free medium is blocked by an NO antagonist or a NO scavenger. This data supports the hypothesis that the CC chemokines RANTES, MIP-1alpha, and MIP-1beta activate human macrophages to kill T. cruzi via NO, which is an effective trypanocidal mechanism.
Collapse
Affiliation(s)
- F Villalta
- Department of Microbiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | |
Collapse
|
9
|
Hrabák A, Sefrioui H, Vercruysse V, Temesi A, Bajor T, Vray B. Action of chloroquine on nitric oxide production and parasite killing by macrophages. Eur J Pharmacol 1998; 354:83-90. [PMID: 9726634 DOI: 10.1016/s0014-2999(98)00427-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chloroquine is known to inhibit several functions of macrophages, but its effect on the nitric oxide (NO)-dependent parasite killing capacity of macrophages has not been documented. NO synthesis by interferon-gamma-induced mouse and casein-elicited rat macrophages was significantly and irreversibly inhibited by chloroquine. The activity of the inducible NO synthase was not directly altered, but previous incubation of macrophages with chloroquine decreased it. Chloroquine did not alter arginase activity or arginine uptake. NADPH diaphorase activity, an indicator of NO synthase was impaired. Western blotting showed that inducible NO synthase synthesis was blocked by chloroquine. The blocking of NO formation by chloroquine resulted in increased infection of mouse peritoneal macrophages by Trypanosoma cruzi (T. cruzi). This suggests that chloroquine decreases NO formation by macrophages by inhibiting the induction of NO synthase. The findings are further evidence that NO is involved in the anti-parasitic response of macrophages.
Collapse
Affiliation(s)
- A Hrabák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University of Medicine, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
10
|
Olivares Fontt EO, De Baetselier P, Heirman C, Thielemans K, Lucas R, Vray B. Effects of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha on Trypanosoma cruzi trypomastigotes. Infect Immun 1998; 66:2722-7. [PMID: 9596739 PMCID: PMC108261 DOI: 10.1128/iai.66.6.2722-2727.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that the addition of exogenous granulocyte-macrophage colony-stimulating factor (GM-CSF) to nonactivated mouse peritoneal macrophages (MPM) limits Trypanosoma cruzi infections in vitro (E. Olivares Fontt and B. Vray, Parasite Immunol. 17:135-141, 1995). Lower levels of infection were correlated with a higher level of production of tumor necrosis factor alpha (TNF-alpha) in the absence of nitric oxide (NO) release. These data suggested that GM-CSF and/or TNF-alpha might have a direct parasitocidal effect on T. cruzi trypomastigotes, independently of NO release. To address this question, T. cruzi trypomastigotes were treated with recombinant murine GM-CSF (rmGM-CSF), recombinant murine TNF-alpha (rmTNF-alpha), or both cytokines in a cell-free system. Treatment with rmGM-CSF but not rmTNF-alpha caused morphological changes in the parasites, and most became spherical after 7 h of incubation. Both cytokines exerted a cytolytic activity on the trypomastigotes, yet the trypanolytic activity of rmTNF-alpha was more effective than that of rmGM-CSF. Viable rmGM-CSF- and rmTNF-alpha-treated parasites were less able to infect MPM than untreated parasites, and this reduction in infectivity was greatest for rmGM-CSF. Treatments with both cytokines resulted in more lysis and almost complete inhibition of infection. The direct parasitocidal activity of rmTNF-alpha was inhibited by carbohydrates and monoclonal antibodies specific for the lectin-like domain of TNF-alpha. Collectively, these results suggest that cytokines such as GM-CSF and TNF-alpha may directly control the level of T. cruzi trypomastigotes at least in vitro and so could determine the outcome of infection in vivo.
Collapse
Affiliation(s)
- E O Olivares Fontt
- Laboratoire d'Immunologie Expérimentale, Faculté de Médecine, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Olivares Fontt E, Heirman C, Thielemans K, Vray B. Granulocyte-macrophage colony-stimulating factor: involvement in control of Trypanosoma cruzi infection in mice. Infect Immun 1996; 64:3429-34. [PMID: 8757888 PMCID: PMC174243 DOI: 10.1128/iai.64.8.3429-3434.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Several cytokines play crucial roles in Trypanosoma cruzi infection in mice, but the involvement of endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF) is poorly documented. This report shows that T. cruzi infection of mice triggered an early and sharp increase in plasma GM-CSF during the ascending phase of parasitemia. The plasma GM-CSF concentration remained stable at the peak of parasitemia and subsequently increased in those mice that survived to the acute phase. GM-CSF level increased again sharply, while parasitemia was rapidly decreasing. Finally, GM-CSF was undetectable, soon after the disappearance of circulating parasites. Injection of T. cruzi-infected mice with neutralizing anti-GM-CSF monoclonal antibodies induced the early appearance of parasitemia and aggravated cumulative mortality. In contrast, recombinant mouse GM-CSF (rmGM-CSF) caused sharp decreases in both parasitemia and cumulative mortality in T. cruzi-infected mice. Peritoneal macrophages from rmGM-CSF-treated and infected or uninfected mice were less infected ex vivo than those from control mice. Taken together these data demonstrate the protective action of endogenous GM-CSF in T. cruzi infection. Neutralization of endogenous GM-CSF aggravates infection, while exogenous rmGM-CSF decreases both parasitemia and host mortality.
Collapse
Affiliation(s)
- E Olivares Fontt
- Laboratoire d'Immunologie Expérimentale, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|