1
|
Lima MIS, Corrêa MBC, Moraes ECDS, Oliveira JDDD, de Souza Santos P, de Souza AG, Goulart IMB, Goulart LR. HSP60 mimetic peptides from Mycobacterium leprae as new antigens for immunodiagnosis of Leprosy. AMB Express 2023; 13:120. [PMID: 37891336 PMCID: PMC10611693 DOI: 10.1186/s13568-023-01625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The early diagnosis of leprosy serves as an important tool to reduce the incidence of this disease in the world. Phage display (PD) technology can be used for mapping new antigens to the development of immunodiagnostic platforms. Our objective was to identify peptides that mimic Mycobacterium leprae proteins as serological markers using phage display technology. The phages were obtained in the biopanning using negative and positive serum from household contacts and leprosy patients, respectively. Then, the peptides were synthesized and validated in silico and in vitro for detection of IgG from patients and contacts. To characterize the native protein of M. leprae, scFv antibodies were selected against the synthetic peptides by PD. The scFv binding protein was obtained by immunocapture and confirmed using mass spectrometry. We selected two phase-fused peptides, MPML12 and MPML14, which mimic the HSP60 protein from M. leprae. The peptides MPML12 and MPML14 obtained 100% and 92.85% positivity in lepromatous patients. MPML12 and MPM14 detect IgG, especially in the multibacillary forms. The MPML12 and MPML14 peptides had positivity of 11.1% and 16.6% in household contacts, respectively. There was no cross-reaction in patient's samples with visceral leishmaniasis, tuberculosis and other mycobacteriosis for both peptides. Given these results and the easy obtainment of mimetic antigens, our peptides are promising markers for application in the diagnosis of leprosy, especially in endemic and hyperendemic regions.
Collapse
Affiliation(s)
- Mayara Ingrid Sousa Lima
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, MA, Brazil.
- Postgraduate Program on Health and Environment and Postgraduate Program on Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| | | | | | | | - Paula de Souza Santos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Isabela Maria Bernardes Goulart
- National Reference Center in Sanitary Dermatology and Leprosy, School of Medicine, Clinics' Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Silva GBD, Faria LSD, Lopes CA, Nunes DS, Ribeiro VS, de Sousa JEN, Paiva GCM, Gonçalves-Pires MRF, Borges IP, Santos MM, Ávila VMR, Júnior ÁF, Costa-Cruz JM. Egg yolk immunoglobulin Y as a promising tool to detect immune complexes in neurocysticercosis serum samples. Trans R Soc Trop Med Hyg 2021; 114:585-592. [PMID: 32484880 DOI: 10.1093/trstmh/traa028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/10/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neurocysticercosis (NCC) is a neglected tropical disease and its diagnosis is still a challenge due to non-specific manifestations. Neuroimaging techniques are used in the diagnosis of NCC, however, due to the high cost of these methods and the advantages presented in the use of immunological tests, such as ease of performance and satisfactory results, immunoassays are commonly used to detect antibodies against Taenia sp. antigens. The aim of the present study was to produce, characterize and apply specific polyclonal immunoglobulin Y (IgY) anti-Taenia crassiceps extracted from egg yolk of hens immunized with T. crassiceps metacestodes. METHODS Indirect enzyme-linked immunosorbent assay (ELISA), avidity ELISA, immunoblotting and indirect immunofluorescence tests were performed for characterization of IgY antibodies. Diagnostic performance was verified by ELISA for immune complex detection testing 90 serum samples. RESULTS Values of sensitivity, specificity, positive and negative likelihood ratios (LR+/LR-) and area under the curve (AUC) were calculated and presented the following results: sensitivity 83.3%, specificity 96.7%, AUC 0.966, LR+ 25.0 and LR- 0.17. CONCLUSIONS Results of this pioneering and innovative study demonstrate that anti-T. crassiceps IgY antibodies present potential applicability and can be used as an efficient tool in human NCC serodiagnosis.
Collapse
Affiliation(s)
- Gabriela B da Silva
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Lucas S da Faria
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Camila A Lopes
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Daniela S Nunes
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vanessa S Ribeiro
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - José Eduardo N de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Guilherme C M Paiva
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Maria R F Gonçalves-Pires
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Isabela P Borges
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Malú M Santos
- Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Campus Aeroporto. Av. Nenê Sabino, 1802, sala 2D05, Uberaba, Minas Gerais, 38055-500, Brazil
| | - Veridiana M R Ávila
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Álvaro Ferreira Júnior
- Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Campus Aeroporto. Av. Nenê Sabino, 1802, sala 2D05, Uberaba, Minas Gerais, 38055-500, Brazil
| | - Julia M Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, Minas Gerais, 38400-902, Brazil
| |
Collapse
|
3
|
Mimotope-based antigens as potential vaccine candidates in experimental murine cysticercosis. Parasitology 2020; 147:1330-1337. [DOI: 10.1017/s0031182020001080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractHuman cysticercosis is a public health problem caused by Taenia solium metacestodes; thus, eradication of T. solium transmission by vaccination is an urgent requirement. The Cc48 mimotope from T. solium cysticerci was tested expressed in phage particles (mCc48) and chemically synthesized (sCc48) as a vaccine candidate in experimental murine cysticercosis. For this, BALB/c mice were immunized with mCc48 (G1; n = 40), sCc48 (G2; n = 40) and phosphate-buffered saline (PBS) (G3; n = 40, positive control) and challenged with Taenia crassiceps metacestodes. Another PBS group without parasite challenge was used as a negative control (G4; n = 40). Mice were sacrificed 15, 30, 45 and 60 days post-infection for cysticerci and serum collection. Immunization efficacy was determined by cysticerci counting. Serum samples were tested by ELISA to verify antibody (IgM, IgG, IgA and IgE) and cytokine (IFNγ and IL-4) levels. The sCc48 achieved the highest rates of protection and efficacy (90 and 98%, respectively). The group immunized with mCc48 presented the highest reactivity for IgM, IgG and IgE. All groups presented IL-4, but IFNγ was quite variable among groups. The protection induced by sCc48 synthetic peptide supports further studies of this mimotope as a potential vaccine candidate against cysticercosis.
Collapse
|
4
|
IgY antibody and human neurocysticercosis: a novel approach on immunodiagnosis usingTaenia crassicepshydrophobic antigens. Parasitology 2019; 147:240-247. [DOI: 10.1017/s0031182019001446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractHuman neurocysticercosis (NCC) is a worldwide neglected disease caused byTaenia soliummetacestode and responsible for various complications and neurological disorders. This study aimed to evaluate the use of specific immunoglobulin Y (IgY) produced by laying hens immunized with a hydrophobic fraction ofTaenia crassicepsmetacestodes (hFTc) in NCC diagnosis. Egg yolk IgY antibodies were fractionated, purified and characterized. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the production kinetics and avidity maturation of anti-hFTcIgY antibodies throughout the IgY obtention process. Antigen recognition tests were carried out by Western blotting and immunofluorescence antibody test using purified and specific anti-hFTcIgY antibodies for detection of parasitic antigens ofT. crassicepsandT. soliummetacestodes. Sandwich ELISA was performed to detect circulating immune complexes formed by IgG and parasitic antigens in human sera. The results showed high diagnostic values (93.2% sensitivity and 94.3% specificity) for immune complexes detection in human sera with confirmed NCC. In conclusion, specific IgY antibodies produced from immunized hens with hFTcantigens were efficient to detectT. soliumimmune complexes in human sera, being an innovative and potential tool for NCC immunodiagnosis.
Collapse
|
5
|
Anti- Ascaris suum immunoglobulin Y as a novel biotechnological tool for the diagnosis of human ascariasis. J Helminthol 2019; 94:e71. [PMID: 31409433 DOI: 10.1017/s0022149x19000701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human ascariasis is a neglected tropical disease of great relevance to public health and is considered the most frequent helminthiasis in poor regions. Accurately diagnosing this parasite has been challenging due to limitations of current diagnostic methods. Immunoglobulin Y (IgY) technology is a very effective alternative for the production of highly specific and profitable antibodies. This study aimed to produce and apply anti-Ascaris suum IgY antibodies in the immunodiagnosis of human ascariasis. Five immunizations comprising total saline extract from A. suum adult life forms were given at 14-day intervals to Gallus gallus domesticus hens of the Isa Brown line. Eggs and blood samples were collected weekly and fortnightly, respectively, to monitor the production of antibodies. The specificity of antibodies was confirmed by dot-blot, kinetic enzyme-linked immunosorbent assay (ELISA), avidity ELISA, immunoblotting and indirect immunofluorescence antibody tests. The application for disease diagnosis was performed through the detection of immune complexes in human serum samples by sandwich ELISA. Peaks of IgY anti-A. suum production occurred at weeks 6 and 8. IgY showed high avidity levels after the second dose of immunization, ranging from 64% to 93%, with a mean avidity index of 78.30%. Purified IgY recognized 12 bands of proteins from A. suum saline extract. Eggs, the uterine portion and cuticles of A. suum female adult are reactive in immunofluorescence. The detection of immune complexes showed diagnostic values of 80% sensitivity and 90% specificity. In conclusion, specific IgY have been shown to be a potential immunodiagnostic tool with promising future applications in human ascariasis.
Collapse
|
6
|
de Faria LS, de Souza DLN, Ribeiro RP, de Sousa JEN, Borges IP, Ávila VMR, Ferreira-Júnior Á, Goulart LR, Costa-Cruz JM. Highly specific and sensitive anti-Strongyloides venezuelensis IgY antibodies applied to the human strongyloidiasis immunodiagnosis. Parasitol Int 2019; 72:101933. [PMID: 31128257 DOI: 10.1016/j.parint.2019.101933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Due to the epidemiological problem of the neglected condition of human strongyloidiasis, rapid and effective diagnosis is extremely important, with the development of new diagnostic tools being essential to reduce infections and chronic cases. Avian immunoglobulin Y (IgY) technology is an alternative for antibody production that has high specificity and profitability. This study aimed to produce and fractionate IgY antibodies from the egg yolks of hens that were immunized with the total antigenic extracts of Strongyloides venezuelensis infectious filariform larvae (iL3) and parthenogenetic females (pF). IgY antibodies were then evaluated by their recognition of antigenic proteins, evolutive helminth forms, and serological diagnosis of human strongyloidiasis by the detection of immune complexes in serum samples. Egg yolks were fractionated to obtain IgY antibodies by thiophilic interaction chromatography. Immune complex detection in serum samples showed diagnostic values for anti-iL3 IgY and anti-pF IgY antibodies at 95.56% and 88.89% sensitivity and 95.56% and 91.11% specificity, respectively. Therefore, IgY technology is a promising tool for the detection of blood circulating Strongyloides antigens, with possible application as a serological diagnostic method.
Collapse
Affiliation(s)
- Lucas S de Faria
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Dayane L N de Souza
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Raphaella P Ribeiro
- Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Campus Aeroporto. Av. Nenê Sabino, sala 2D05,Uberaba, Minas Gerais 38055-500, Brazil
| | - José Eduardo N de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Isabela P Borges
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Veridiana M R Ávila
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Álvaro Ferreira-Júnior
- Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Campus Aeroporto. Av. Nenê Sabino, sala 2D05,Uberaba, Minas Gerais 38055-500, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândi, Av Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil
| | - Julia M Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais 38400-902, Brazil.
| |
Collapse
|
7
|
da Costa GCV, Peralta RHS, Kalume DE, Alves ALGM, Peralta JM. A gel-free proteomic analysis of Taenia solium and Taenia crassiceps cysticerci vesicular extracts. Parasitol Res 2018; 117:3781-3790. [PMID: 30215138 DOI: 10.1007/s00436-018-6080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
The taeniasis/cysticercosis complex is a zoonosis caused by the presence of the parasite Taenia solium in humans. It is considered a neglected disease that causes serious public health and economic problems in developing countries. In humans, the most common locations for the larval form are the skeletal muscles, ocular system, and the central nervous system, which is the most clinically important. Several glycoproteins of T. solium and Taenia crassiceps cysticerci have been characterized and studied for their use in the immunodiagnosis of neurocysticercosis and/or the development of synthetic or recombinant vaccines against cysticercosis. The aim of this study was to perform a gel-free shotgun proteomic analysis to identify saline vesicular extract (SVE) proteins of T. solium and T. crassiceps cysticerci. After solubilization of the SVE with and without surfactant reagent and in-solution digestion, the proteins were analyzed by LC-MS/MS. Use of a surfactant resulted in a significantly higher number of proteins that were able to be identified by LC-MS/MS. Novel proteins were identified in T. solium and T. crassiceps SVE. The qualitative analysis revealed a total of 79 proteins in the Taenia species: 29 in T. solium alone, 11 in T. crassiceps alone, and 39 in both. These results are an important contribution to support future investigations and for establishing a Taenia proteomic profile to study candidate biomarkers involved in the diagnosis or pathogenesis of neurocysticercosis.
Collapse
Affiliation(s)
- Giovani Carlo Veríssimo da Costa
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo, Rio de Janeiro, RJ, 1281, Brazil
| | - Regina Helena Saramago Peralta
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rua Marques do Paraná, Niterói, RJ, 303, Brazil
| | - Dário Eluan Kalume
- Fundação Oswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Av. Brasil, Rio de Janeiro, RJ, Brazil
| | - Ana Larissa Gama Martins Alves
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - José Mauro Peralta
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil.
| |
Collapse
|
8
|
Ramos FF, Costa LE, Dias DS, Santos TTO, Rodrigues MR, Lage DP, Salles BCS, Martins VT, Ribeiro PAF, Chávez-Fumagalli MA, Dias ACS, Alves PT, Vieira ÉLM, Roatt BM, Menezes-Souza D, Duarte MC, Teixeira AL, Goulart LR, Coelho EAF. Selection strategy of phage-displayed immunogens based on an in vitro evaluation of the Th1 response of PBMCs and their potential use as a vaccine against Leishmania infantum infection. Parasit Vectors 2017; 10:617. [PMID: 29268793 PMCID: PMC5740923 DOI: 10.1186/s13071-017-2576-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022] Open
Abstract
Background The development of a vaccine for the prevention of visceral leishmaniasis (VL) still represents a significant unmet medical need. A human vaccine can be found if one takes into consideration that many people living in endemic areas of disease are infected but do not develop active VL, including those subjects with subclinical or asymptomatic infection. Methods In this study, a phage display was used to select phage-exposed peptides that were specific to immunoglobulin G (IgG) antibodies from asymptomatic and symptomatic VL patients, separating them from non-infected subjects. Phage clones presenting valid peptide sequences were selected and used as stimuli of peripheral blood mononuclear cells (PBMCs) obtained from both patients’ groups and controls. Those with higher interferon-gamma (IFN-γ)/interleukin (IL)-10 ratios were further selected for vaccination tests. Results Among 17 evaluated clones, two were selected, B1 and D11, and used to immunize BALB/c mice in an attempt to further validate their in vivo protective efficacy against Leishmania infantum infection. Both clones induced partial protection against the parasite challenge, which was evidenced by the reduction of parasitism in the evaluated organs, a process mediated by a specific T helper (Th)1 immune response. Conclusions To the best of our knowledge, this study is the first to use a rational strategy based on in vitro stimulation of human PBMCs with selected phage-displayed clones to obtain new immunogens against VL. Electronic supplementary material The online version of this article (10.1186/s13071-017-2576-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernanda Fonseca Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Daniel Silva Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Thaís Teodoro Oliveira Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Marcella Rezende Rodrigues
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Beatriz Cristina Silveira Salles
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Vívian Tamietti Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Patrícia Aparecida Fernandes Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ana Carolina Silva Dias
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Patrícia Terra Alves
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Antonio Lúcio Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil.,Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77041, USA
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, Uberlândia, Minas Gerais, 38400-902, Brazil.,Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, 95616, USA
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, Minas Gerais, 30130-100, Brazil. .,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
9
|
Portes LDS, Kioshima ES, de Camargo ZP, Batista WL, Xander P. Subtractive phage display selection for screening and identification of peptide sequences with potential use in serodiagnosis of paracoccidioidomycosis caused by Paracoccidioides brasiliensis. Lett Appl Microbiol 2017; 65:346-353. [PMID: 28796894 DOI: 10.1111/lam.12788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous disease endemic in Latin America whose aetiologic agents are the thermodimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. Despite technological advances, some problems have been reported for the fungal antigens used for serological diagnosis, and inconsistencies among laboratories have been reported. The use of synthetic peptides in the serological diagnosis of infectious diseases has proved to be a valuable strategy because in some cases, the reactions are more specific and sensitive. In this study, we used a subtractive selection with a phage display library against purified polyclonal antibodies for negative and positive PCM sera caused by P. brasiliensis. The binding phages were sequenced and tested in a binding assay to evaluate its interaction with sera from normal individuals and PCM patients. Synthetic peptides derived from these phage clones were tested in a serological assay, and we observed a significant recognition of LP15 by sera from PCM patients infected with P. brasiliensis. Our results demonstrated that subtractive phage display selection may be useful for identifying new epitopes that can be applied to the serodiagnosis of PCM caused by P. brasiliensis. SIGNIFICANCE AND IMPACT OF THE STUDY Currently, there is no standardized method for the preparation of paracoccidioidomycosis (PCM) antigens, which has resulted in differences in the antigens used for serological diagnosis. Here, we report a procedure that uses subtractive phage display selection to select and identify new epitopes for the serodiagnosis of PCM caused by Paracoccidioides brasiliensis. A synthetic peptide obtained using this methodology was successfully recognized by sera from PCM patients, thus demonstrating its potential use for improving the serodiagnosis of this mycosis. The development of synthetic peptides for the serodiagnosis of PCM could be a promising alternative for the better standardization of diagnoses among laboratories.
Collapse
Affiliation(s)
- L da Silva Portes
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brasil
| | - E S Kioshima
- Laboratório de Micologia Médica, Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, Brasil
| | - Z P de Camargo
- Laboratório de Micologia Médica e Molecular, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brasil
| | - W L Batista
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brasil
| | - P Xander
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brasil
| |
Collapse
|
10
|
Kuzmicheva GA, Belyavskaya VA. Peptide phage display in biotechnology and biomedicine. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kuzmicheva GA, Belyavskaya VA. [Peptide phage display in biotechnology and biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:481-495. [PMID: 27797323 DOI: 10.18097/pbmc20166205481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.
Collapse
Affiliation(s)
- G A Kuzmicheva
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia; XBiotech USA, Austin, TX, USA
| | - V A Belyavskaya
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
12
|
Goulart LR, da S. Ribeiro V, Costa-Cruz JM. Anti-parasitic Antibodies from Phage Display. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:155-171. [DOI: 10.1007/978-3-319-72077-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Costa LE, Salles BCS, Alves PT, Dias ACS, Vaz ER, Ramos FF, Menezes-Souza D, Duarte MC, Roatt BM, Chávez-Fumagalli MA, Tavares CAP, Gonçalves DU, Rocha MOC, Goulart LR, Coelho EAF. New serological tools for improved diagnosis of human tegumentary leishmaniasis. J Immunol Methods 2016; 434:39-45. [PMID: 27090730 DOI: 10.1016/j.jim.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/07/2016] [Accepted: 04/07/2016] [Indexed: 11/27/2022]
Abstract
Human tegumentary leishmaniasis (HTL), characterized by skin ulcers that may spread and cause dreadful and massive tissue destruction of the nose and mouth, is considered a neglected tropical disease, and it is a serious threat to global health due to its continuous expansion, favored by the lifecycle of its causative organism that is maintained in domestic animal reservoirs and anthropophilic sand fly species. Serodiagnosis of HTL is a great challenge due to many biological factors, including hampered specificity and/or sensitivity. This investigation addresses the unmet need for new diagnostic markers of HTL, and describes a simple platform to improve the serodiagnosis. A constrained conformational phage display random peptide library combined with a magnetic microsphere-based subtraction strategy was used to identify ligands with potential diagnostic applications. Six clones were selected against IgG antibodies from HTL patients, characterized by sequencing and confirmed by a phage-ELISA using sera from patients developing visceral leishmaniasis (n=20), Chagas disease (n=10), mucosal (n=30) and cutaneous (n=20) leishmaniasis; as well as from healthy subjects living in endemic (n=20) and non-endemic (n=30) areas of leishmaniasis. A wild-type M13-phage clone and a soluble Leishmania antigenic extract were used as negative and positive controls, respectively. Three clones reached 100% sensitivity and specificity, without any cross-reactivity with sera from patients with leishmaniasis-related diseases. Briefly, we describe for the first time a set of serological markers based on three immunodominant mimotopes that showed 100% accuracy, and that could be used in a phage-ELISA assay for the HTL serodiagnosis.
Collapse
Affiliation(s)
- Lourena E Costa
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz C S Salles
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia T Alves
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Ana C S Dias
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Emília R Vaz
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C Duarte
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Manoel O C Rocha
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902 Uberlândia, Minas Gerais, Brazil; Department of Medical Microbiology and Immunology, University of California-Davis, 95616 Davis, CA, USA.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 30130-100 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Epitope Fingerprinting for Recognition of the Polyclonal Serum Autoantibodies of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:267989. [PMID: 26417591 PMCID: PMC4568325 DOI: 10.1155/2015/267989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Autoantibodies (aAb) associated with Alzheimer's disease (AD) have not been sufficiently characterized and their exact involvement is undefined. The use of information technology and computerized analysis with phage display technology was used, in the present research, to map the epitope of putative self-antigens in AD patients. A 12-mer random peptide library, displayed on M13 phages, was screened using IgG from AD patients with two repetitions. Seventy-one peptides were isolated; however, only 10 were positive using the Elisa assay technique (Elisa Index > 1). The results showed that the epitope regions of the immunoreactive peptides, identified by phage display analysis, were on the exposed surfaces of the proteins. The putative antigens MAST1, Enah, MAO-A, X11/MINT1, HGF, SNX14, ARHGAP 11A, APC, and CENTG3, which have been associated with AD or have functions in neural tissue, may indicate possible therapeutic targets.
Collapse
|
15
|
Coelho EAF, Chávez-Fumagalli MA, Costa LE, Tavares CAP, Soto M, Goulart LR. Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy. Rev Soc Bras Med Trop 2015; 48:370-9. [DOI: 10.1590/0037-8682-0096-2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 02/02/2023] Open
Affiliation(s)
| | | | | | | | | | - Luiz Ricardo Goulart
- Universidade Federal de Uberlândia, Brazil; University of California-Davis, United States
| |
Collapse
|
16
|
Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity. Parasitol Res 2014; 114:55-64. [DOI: 10.1007/s00436-014-4159-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
17
|
Feliciano ND, Ribeiro VDS, Santos FDAA, Fujimura PT, Gonzaga HT, Goulart LR, Costa-Cruz JM. Bacteriophage-fused peptides for serodiagnosis of human strongyloidiasis. PLoS Negl Trop Dis 2014; 8:e2792. [PMID: 24874206 PMCID: PMC4038474 DOI: 10.1371/journal.pntd.0002792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/03/2014] [Indexed: 01/03/2023] Open
Abstract
Background Strongyloidiasis, a human intestinal infection caused by the nematode Strongyloides stercoralis, is frequently underdiagnosed and although its high prevalence is still a neglected parasitic disease because conventional diagnostic tests based on parasitological examination (presence of Strongyloides larvae in stool) are not sufficiently sensitive due to the low parasitic load and to the irregular larval output. There is an urgent need to improve diagnostic assays, especially for immunocompromised patients with high parasitic load as consequence of self-infection cycle, which can disseminate throughout the body, resulting in a potentially fatal hyperinfection syndrome often accompanied by sepsis or meningitis. Methods/Principal Findings We have performed Phage Display technology to select peptides that mimic S. stercoralis antigens, capable of detecting a humoral response in patients with strongyloidiasis. The peptides reactivity was investigated by Phage-ELISA through different panels of serum samples. We have successfully selected five peptides with significant immunoreactivity to circulating IgG from patients' sera with strongyloidiasis. The phage displayed peptides C9 and C10 presented the highest diagnostic potential (AUC>0.87) with excellent sensitivity (>85%) and good specificity (>77.5%), suggesting that some S. stercoralis antigens trigger systemic immune response. Conclusions/Significance These novel antigens are interesting serum biomarkers for routine strongyloidiasis screenings due to the easy production and simple assay using Phage-ELISA. Such markers may also present a promising application for therapeutic monitoring. Strongyloidiasis is one of the most neglected helminthic infections and can cause disseminated disease in immunocompromised hosts, which can be fatal. Given the unsatisfactory results of current parasitological and serological tests, there is a need for more efficient diagnostic tools. Therefore we have used phage display technology and bioppaning procedure to select sensitive and specific mimotopes ready to be used in immunodiagnostic tests. These mimotopes allows a cheap and fast clear-cut diagnosis of Strongyloides stercoralis infections. The field applicability of the assay using the phage clones obtained is really promising. The main advantage is that phage-based ELISA is the reproducible, simple, rapid and low-cost for production of recombinant antigens, and such tests may be of interest for massive screening in developing countries. Our results indicate that the mimotopes selected and tested here are potential biomarkers for the diagnosis of human strongyloidiasis.
Collapse
Affiliation(s)
- Nágilla Daliane Feliciano
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Vanessa da Silva Ribeiro
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Fabiana de Almeida Araújo Santos
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Patricia Tiemi Fujimura
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Henrique Tomaz Gonzaga
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
- * E-mail: (LRG)
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
- * E-mail: (LRG)
| |
Collapse
|
18
|
Subtractive phage display selection from canine visceral leishmaniasis identifies novel epitopes that mimic Leishmania infantum antigens with potential serodiagnosis applications. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:96-106. [PMID: 24256622 DOI: 10.1128/cvi.00583-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visceral leishmaniasis (VL) is a zoonotic disease that is endemic to Brazil, where dogs are the main domestic parasite reservoirs, and the percentages of infected dogs living in regions where canine VL (CVL) is endemic have ranged from 10% to 62%. Despite technological advances, some problems have been reported with CVL serodiagnosis. The present study describes a sequential subtractive selection through phage display technology from polyclonal antibodies of negative and positive sera that resulted in the identification of potential bacteriophage-fused peptides that were highly sensitive and specific to antibodies of CVL. A negative selection was performed in which phage clones were adhered to purified IgGs from healthy and Trypanosoma cruzi-infected dogs to eliminate cross-reactive phages. The remaining supernatant nonadhered phages were submitted to positive selection against IgG from the blood serum of dogs that were infected with Leishmania infantum. Phage clones that adhered to purified IgGs from the CVL-infected serum samples were selected. Eighteen clones were identified and their reactivities tested by a phage enzyme-linked immunosorbent assay (phage-ELISA) against the serum samples from infected dogs (n = 31) compared to those from vaccinated dogs (n = 21), experimentally infected dogs with cross-reactive parasites (n = 23), and healthy controls (n = 17). Eight clones presented sensitivity, specificity, and positive and negative predictive values of 100%, and they showed no cross-reactivity with T. cruzi- or Ehrlichia canis-infected dogs or with dogs vaccinated with two different commercial CVL vaccines in Brazil. Our study identified eight mimotopes of L. infantum antigens with 100% accuracy for CVL serodiagnosis. The use of these mimotopes by phage-ELISA proved to be an excellent assay that was reproducible, simple, fast, and inexpensive, and it can be applied in CVL-monitoring programs.
Collapse
|
19
|
Rodriguez S, Wilkins P, Dorny P. Immunological and molecular diagnosis of cysticercosis. Pathog Glob Health 2013; 106:286-98. [PMID: 23265553 DOI: 10.1179/2047773212y.0000000048] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cysticercosis, the infection with the larval stage of Taenia solium, is a cause of neurological symptoms including seizures, affecting the quality of life of patients and their families. Diagnosis focuses on brain imaging and serological tests are mostly used as confirmatory tools. Most cases, however, occur in poor endemic areas, where both kinds of diagnostic tools are poorly available. Development of point of care diagnostic tests is one of the most important priorities for cysticercosis researches today. The ideal point of care test would require detection of viable cysticercosis and hopefully identify cases with severe or progressive forms of neurocysticercosis, leading to referral of the patient for specialized medical attention. This manuscript describes the evolution of the serological diagnosis of cysticercosis over time, and the characteristics of the most common currently available tools, their advantages and disadvantages, and their potential use in future diagnostic tests.
Collapse
Affiliation(s)
- Silvia Rodriguez
- Infectious Diseases, Instituto Nacional de Ciencias Neurológicas, Jr. Anchash 1271, Lima 1, Peru.
| | | | | |
Collapse
|
20
|
Gazarian K, Rowlay M, Gazarian T, Vazquez Buchelli JE, Hernández Gonzáles M. Mimotope peptides selected from phage display combinatorial library by serum antibodies of pigs experimentally infected with Taenia solium as leads to developing diagnostic antigens for human neurocysticercosis. Peptides 2012; 38:381-8. [PMID: 23022592 DOI: 10.1016/j.peptides.2012.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/19/2012] [Accepted: 09/19/2012] [Indexed: 01/19/2023]
Abstract
Neurocysticercosis is caused by penetration of the tapeworm Taenia solium larvae into the central nervous system resulting in a diverse range of neurologic complications including epilepsy in endemic areas that globalization spreads worldwide. Sensitive and specific immunodiagnosis is needed for the early detection and elimination of the parasite, but the lack of standardized, readily obtainable antigens is a challenge. Here, we used the phage display for resolving the problem. The rationale of the strategy rests on the concept that the screening of combinatorial libraries with polyclonal serum to pathogens reveals families of peptides mimicking the pathogen most immunodominant epitopes indispensable for the successful diagnosis. The screening of a 7mer library with serum IgG of four pigs experimentally infected with parasite followed by computer aided segregation of the selected sequences resulted in the discovery of four clusters of homologous sequences of which one presented a family of ten mimotopes selected by three infected pig serum IgGs; the common motif sequence LSPF carried by the family was considered to be the core of an immunodominant epitope of the parasite critical for the binding with the antibody that selected the mimotopes. The immunoassay testing permitted to select a mimotope whose synthetic peptide free of the phage with the amino acid sequence Leu-Ser-Fen-Pro-Ser-Val-Val that distinguished well a panel of 21 cerebrospinal fluids of neurocysticercosis patients from the fluids of individuals with neurological complications of other etiology. This peptide is proposed as a lead for developing a novel molecularly defined diagnostic antigen(s) for the neurocysticercosis.
Collapse
Affiliation(s)
- Karlen Gazarian
- Department of Medicinal Genomics and Environmental Toxicology, Institute of Biomedical Research of the Mexican National Autonomous University, Mexico City, University Campus, CP 04510, Mexico.
| | | | | | | | | |
Collapse
|
21
|
Gabriël S, Blocher J, Dorny P, Abatih EN, Schmutzhard E, Ombay M, Mathias B, Winkler AS. Added value of antigen ELISA in the diagnosis of neurocysticercosis in resource poor settings. PLoS Negl Trop Dis 2012; 6:e1851. [PMID: 23094118 PMCID: PMC3475663 DOI: 10.1371/journal.pntd.0001851] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Neurocysticercosis (NCC) is the most common cause of acquired epilepsy in Taenia solium endemic areas, primarily situated in low-income countries. Diagnosis is largely based upon the “Del Brutto diagnostic criteria” using the definitive/probable/no NCC diagnosis approach. Neuroimaging and specific T. solium cysticercosis antibody detection results are at the mainstay of this diagnosis, while antigen detection in serum has never been included. This study aimed at evaluating the addition of antigen detection as a major diagnostic criterion, especially in areas where neuroimaging is absent. Methods The B158/B60 monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for the detection of circulating cysticercus antigen was carried out retrospectively on serum samples collected during a hospital-based study from 83 people with epilepsy (PWE) in an endemic area. Results The addition of antigen results as a major criterion allowed the correct diagnosis of definitive NCC in 10 out of 17 patients as opposed to 0/17 without antigen results in the absence of neuroimaging. A sensitivity of 100% and a specificity of 84% were determined for the diagnosis of active NCC using antigen ELISA. While the use of a higher cutoff improves the specificity of the test to 96%, it decreases its sensitivity to 83%. Conclusions In areas where neuroimaging is absent, NCC diagnosis according to the existing criteria is problematic. Taking into account its limitations for diagnosis of inactive NCC, antigen detection can be of added value for diagnosing NCC in PWE by supporting diagnostic and treatment decisions. Therefore, we recommend a revision of the “Del Brutto diagnostic criteria” for use in resource poor areas and suggest the inclusion of serum antigen detection as a major criterion. Neurocysticercosis is a parasitic infection of the central nervous system and a common cause of epilepsy in Taenia solium cysticercosis endemic countries. According to the current diagnostic criteria proposed by Del Brutto and colleagues, the diagnosis of neurocysticercosis is mainly based on neuroimaging and detection of specific antibodies. Unfortunately, especially neuroimaging is rarely available in endemic countries. The authors analyzed the value of a test that detects antigens that are excreted by living cysts in people with epilepsy. Different diagnostic scenarios and cut-off values are discussed with the respective sensitivity and specificity of the test. When using the antigen-detecting test, considerably more people with epilepsy were diagnosed correctly with neurocysticercosis. There are some concerns about possible false positive results in other cases. The test was useful for the detection of people with living cysts (active neurocysticercosis), who need further diagnostic evaluation and specific treatment. The authors recommend the addition of this test in the diagnostic criteria for neurocysticercosis.
Collapse
Affiliation(s)
- Sarah Gabriël
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joachim Blocher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
- * E-mail:
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emmanuel Nji Abatih
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaeli Ombay
- Mental Health Unit, Haydom Lutheran Hospital, Mbulu, Tanzania
| | | | | |
Collapse
|