1
|
Subsurface Soil Carbon and Nitrogen Losses Offset Surface Carbon Accumulation in Abandoned Agricultural Fields. Ecosystems 2022. [DOI: 10.1007/s10021-022-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Adam N, Kallenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC. Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS One 2018; 13:e0197221. [PMID: 29874269 PMCID: PMC5991399 DOI: 10.1371/journal.pone.0197221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plant genetic diversity structures animal communities and affects plant population productivity. However, few studies have investigated which traits are involved and the mechanisms mediating these effects. We studied the consequences of varying the expression of a single biosynthetic gene in jasmonate (JA) defense hormones, which are essential for defense against herbivores but constrain plant growth, in experimental mesocosm populations of wild tobacco (Nicotiana attenuata) plants under attack from three native herbivores. Empoasca leafhoppers preferentially attack JA-deficient N. attenuata plants in nature, and the specialist Tupiocoris notatus mirids avoid Empoasca-damaged plants. However, in experimental mesocosm populations having equal numbers of wild-type (WT) and JA-deficient plants that are silenced in the expression of the biosynthetic gene lipoxygenase 3 (LOX3), Empoasca sp. attacked both genotypes. Empoasca sp. damage, rather than JA, determined T. notatus damage, which was reduced in mixed populations. The growth of specialist Manduca sexta larvae was reduced on WT vs. asLOX3 monocultures, but differed in mixtures depending on caterpillar density. However, seed capsule number remained similar for WT and asLOX3 plants in mixtures, not in monocultures, in two experimental scenarios reflecting high and low caterpillar attack. At high caterpillar density, WT plants growing in mixtures produced more seed capsules than those growing in monocultures while seed production of asLOX3 plants did not differ by population type. However, at low caterpillar density, asLOX3 plants growing in mixed populations produced more seed capsules than those growing in monoculture, while seed capsule production did not differ for WT by population type. Thus, mixed populations had a more stable output of seed capsules under the two scenarios. This may result from a balance between JA-mediated herbivore defense and plant competitive ability in mixed populations.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
3
|
Lurie MH, Barton KE, Daehler CC. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii. Ecology 2017; 98:3011-3021. [DOI: 10.1002/ecy.2031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/10/2017] [Accepted: 09/11/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew H. Lurie
- Department of Botany; University of Hawai'i at Mānoa; 3190 Maile Way Room 101 Honolulu, Hawai'i 96822 USA
| | - Kasey E. Barton
- Department of Botany; University of Hawai'i at Mānoa; 3190 Maile Way Room 101 Honolulu, Hawai'i 96822 USA
| | - Curtis C. Daehler
- Department of Botany; University of Hawai'i at Mānoa; 3190 Maile Way Room 101 Honolulu, Hawai'i 96822 USA
| |
Collapse
|
4
|
Schäfer M, Brütting C, Canales IM, Großkinsky DK, Vankova R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4873-84. [PMID: 25998904 PMCID: PMC5147713 DOI: 10.1093/jxb/erv214] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including trans-zeatin and isopentenyladenine-type CKs, have been studied in detail, the role of cis-zeatin-type CKs (cZs) in plant development and in mediating environmental interactions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant development and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant development and defence responses to pathogen and herbivore attack and highlight their potential role as 'novel' stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and their potential for crop improvement.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Christoph Brütting
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Ivan Meza Canales
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, 2630 Taastrup, Denmark
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Stefan Meldau
- KWS SAAT AG, Molecular Physiology (RD-ME-MP), Grimsehlstrasse 31, 37555 Einbeck, Germany, Phone: +49 (0) 5561-311-1391, Fax: +49 (0) 5561-311-1090
| |
Collapse
|
5
|
Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth. PLoS Genet 2015; 11:e1005300. [PMID: 26070206 PMCID: PMC4466561 DOI: 10.1371/journal.pgen.1005300] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage. The study of plant development is generally carried out in the absence of physical injury. However, damage to plant organs through biotic and abiotic insult is common in nature. Under these conditions the jasmonate pathway that has a low activity in unstressed vegetative tissues imposes its activity on cell division and elongation. Such jasmonate-dependent growth restriction can strongly impact plant productivity. Taking roots as a model, we show that it is possible to manipulate regulatory layers in jasmonate signalling such that cell division and cell elongation can be constrained differently. This approach may lead to future strategies to alter organ growth. Moreover, during this study we identified a novel mutant in a key regulator of the jasmonate pathway. This mutant generated a positive regulator of jasmonate signalling that was so active that we were able to show that hormone synthesis can be completely uncoupled from hormone responses, suggesting ways to modify traits of potential agronomic importance.
Collapse
|
6
|
Schmidt L, Hummel GM, Thiele B, Schurr U, Thorpe MR. Leaf wounding or simulated herbivory in young N. attenuata plants reduces carbon delivery to roots and root tips. PLANTA 2015; 241:917-28. [PMID: 25528149 DOI: 10.1007/s00425-014-2230-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
MAIN CONCLUSION In Nicotiana attenuata seedlings, simulated herbivo ry by the specialist Manduca sexta decreases root growth and partitioning of recent photoassimilates to roots in contrast to increased partitioning reported for older plants. Root elongation rate in Nicotiana attenuata has been shown to decrease after leaf herbivory, despite reports of an increased proportion of recently mobilized photoassimilate being delivered towards the root system in many species after similar treatments. To study this apparent contradiction, we measured the distribution of recent photoassimilate within root tissues after wounding or simulated herbivory of N. attenuata leaves. We found no contradiction: herbivory reduced carbon delivery to root tips. However, the speed of phloem transport in both shoot and root, and the delivery of recently assimilated carbon to the entire root system, declined after wounding or simulated herbivory, in contrast with the often-reported increase in root partitioning. We conclude that the herbivory response in N. attenuata seedlings is to favor the shoot and not bunker carbon in the root system.
Collapse
Affiliation(s)
- Lilian Schmidt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany,
| | | | | | | | | |
Collapse
|
7
|
Meldau S, Woldemariam MG, Fatangare A, Svatos A, Galis I. Using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to study carbon allocation in plants after herbivore attack. BMC Res Notes 2015; 8:45. [PMID: 25888779 PMCID: PMC4341241 DOI: 10.1186/s13104-015-0989-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although leaf herbivory-induced changes in allocation of recently assimilated carbon between the shoot and below-ground tissues have been described in several species, it is still unclear which part of the root system is affected by resource allocation changes and which signalling pathways are involved. We investigated carbon partitioning in root tissues following wounding and simulated leaf herbivory in young Nicotiana attenuata plants. RESULTS Using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), which was incorporated into disaccharides in planta, we found that simulated herbivory reduced carbon partitioning specifically to the root tips in wild type plants. In jasmonate (JA) signalling-deficient COI1 plants, the wound-induced allocation of [(18)F]FDG to the roots was decreased, while more [(18)F]FDG was transported to young leaves, demonstrating an important role of the JA pathway in regulating the wound-induced carbon partitioning between shoots and roots. CONCLUSIONS Our data highlight the use of [(18)F]FDG to study stress-induced carbon allocation responses in plants and indicate an important role of the JA pathway in regulating wound-induced shoot to root signalling.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, 04107, Leipzig, Germany.
- Present address: KWS SAAT AG, Molecular Physiology, R&D, RD-ME-MP, Grimsehlstrasse 31, D-37555, Einbeck, Germany.
| | - Melkamu G Woldemariam
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- Present address: Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, 14853, NY, USA.
| | - Amol Fatangare
- Mass Spectrometry Research Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
| | - Ales Svatos
- Mass Spectrometry Research Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
| | - Ivan Galis
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- Present address: Okayama University, Institute of Plant Science and Resources, Chuo 2-20-1, 710-0046, Kurashiki, Japan.
| |
Collapse
|
8
|
Chaumont F, Tyerman SD. Aquaporins: highly regulated channels controlling plant water relations. PLANT PHYSIOLOGY 2014; 164:1600-18. [PMID: 24449709 PMCID: PMC3982727 DOI: 10.1104/pp.113.233791] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/19/2014] [Indexed: 05/18/2023]
Abstract
Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.
Collapse
Affiliation(s)
| | - Stephen D. Tyerman
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4–L7.07.14, B–1348 Louvain-la-Neuve, Belgium (F.C.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus PMB 1, Glen Osmond, South Australia 5064, Australia (S.D.T.)
| |
Collapse
|
9
|
Gulati J, Baldwin IT, Gaquerel E. The roots of plant defenses: integrative multivariate analyses uncover dynamic behaviors of gene and metabolic networks of roots elicited by leaf herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:880-92. [PMID: 24456376 PMCID: PMC4190575 DOI: 10.1111/tpj.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 05/08/2023]
Abstract
High-throughput analyses have frequently been used to characterize herbivory-induced reconfigurations in plant primary and secondary metabolism in above- and below-ground tissues, but the conclusions drawn from these analyses are often limited by the univariate methods used to analyze the data. Here we use our previously described multivariate time-series data analysis to evaluate leaf herbivory-elicited transcriptional and metabolic dynamics in the roots of Nicotiana attenuata. We observed large, but transient, systemic responses in the roots that contrasted with the pattern of co-linearity observed in the up- and downregulation of genes and metabolites across the entire time series in treated and systemic leaves. Using this newly developed approach for the analysis of whole-plant molecular responses in a time-course multivariate data set, we simultaneously analyzed stress responses in leaves and roots in response to the elicitation of a leaf. We found that transient systemic responses in roots resolved into two principal trends characterized by: (i) an inversion of root-specific semi-diurnal (12 h) transcript oscillations and (ii) transcriptional changes with major amplitude effects that translated into a distinct suite of root-specific secondary metabolites (e.g. alkaloids synthesized in the roots of N. attenuata). These findings underscore the importance of understanding tissue-specific stress responses in the correct day-night phase context and provide a holistic framework for the important role played by roots in above-ground stress responses.
Collapse
Affiliation(s)
- Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Vandeleur RK, Sullivan W, Athman A, Jordans C, Gilliham M, Kaiser BN, Tyerman SD. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. PLANT, CELL & ENVIRONMENT 2014; 37:520-38. [PMID: 23926961 DOI: 10.1111/pce.12175] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 05/03/2023]
Abstract
We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo .
Collapse
Affiliation(s)
- Rebecca K Vandeleur
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus PMB 1, Glen Osmond, South Australia, 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Baskin TI. Patterns of root growth acclimation: constant processes, changing boundaries. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:65-73. [DOI: 10.1002/wdev.94] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Robert CAM, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TCJ. Herbivore-induced plant volatiles mediate host selection by a root herbivore. THE NEW PHYTOLOGIST 2012; 194:1061-1069. [PMID: 22486361 DOI: 10.1111/j.1469-8137.2012.04127.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D. virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S. littoralis. We identified (E)-β-caryophyllene, which is induced by D. virgifera, and ethylene, which is suppressed by S. littoralis, as two signals used by D. virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.
Collapse
Affiliation(s)
- Christelle A M Robert
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Matthias Erb
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Marianne Duployer
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Claudia Zwahlen
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Gwladys R Doyen
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Ted C J Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
13
|
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3339-51. [PMID: 22223810 DOI: 10.1093/jxb/err334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
Collapse
Affiliation(s)
- Tom Ruts
- Forschungszentrum Jülich, IBG-2: Plant Sciences, Wilhelm-Johnen-Strasse, Jülich, Germany
| | | | | | | |
Collapse
|
14
|
Hall H, Ellis B. Developmentally equivalent tissue sampling based on growth kinematic profiling of Arabidopsis inflorescence stems. THE NEW PHYTOLOGIST 2012; 194:287-296. [PMID: 22313381 DOI: 10.1111/j.1469-8137.2012.04060.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Directional growth in Arabidopsis thaliana during bolting of the inflorescence stem makes this an attractive system for study of the underlying processes of tissue elongation and cell wall extension. Analysis of local molecular events accompanying Arabidopsis inflorescence stem elongation is hampered by difficulties in isolating developmentally matched tissue samples from different plants. • Here, we present a novel sampling approach in which specific developmental stages along the developing stem are defined nonintrusively in terms of their relative elemental growth rate by use of time-lapse imagery and subsequent derivation of growth kinematic profiles for individual plants. • Growth kinematic profiling reveals that key developmental transitions such as the point of maximum elongation rate and the point of cessation of elongation occur over broad and overlapping ranges across individuals within a population of the Columbia (Col-0) ecotype. The position of these transitions is only weakly correlated with overall plant height, which undermines the common assumption that physically similar plants have closely matched growth profiles. • This kinematic profiling approach provides high-resolution growth phenotyping of the developing stem and thereby enables the harvest, pooling and analysis of developmentally matched tissue samples from multiple Arabidopsis plants.
Collapse
Affiliation(s)
- Hardy Hall
- Department of Botany and the Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Brian Ellis
- Department of Botany and the Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
15
|
Hanik N, Gómez S, Schueller M, Orians CM, Ferrieri RA. Use of gaseous 13NH3 administered to intact leaves of Nicotiana tabacum to study changes in nitrogen utilization during defence induction. PLANT, CELL & ENVIRONMENT 2010; 33:2173-9. [PMID: 20716065 DOI: 10.1111/j.1365-3040.2010.02215.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nitrogen-13 (t(1/2) 9.97 m), a radioactive isotope of nitrogen, offers unique opportunities to explore plant nitrogen utilization over short time periods. Here we describe a method for administering (13)N as gaseous (13)NH(3) to intact leaves of Nicotiana tabacum L. (cv Samsun), and measuring the labelled amino acids using radio high-performance liquid chromatography (HPLC) on tissue extract. We used this method to study the effects of defence induction on plant nitrogen utilization by applying treatments of methyl jasmonate (MeJA), a potent defence elicitor. MeJA caused a significant increase relative to controls in key [(13)N]amino acids, including serine, glycine and alanine by 4 h post-treatment, yet had no effect on (13)NH(3) incorporation, a process that is primarily under the control of the glutamine synthatase/glutamate synthase pathway (GS/GOGAT) in cellular photorespiration. We suggest that the reconfiguration of nitrogen metabolism may reflect induction of non-photorespiratory sources of nitrogen to better serve the plant's defences.
Collapse
Affiliation(s)
- Nils Hanik
- Fachbereich Chemie, Johannes Gutenberg Universität, Mainz, Germany
| | | | | | | | | |
Collapse
|
16
|
Schmidt L, Walter A. Root growth is affected differently by mechanical wounding in seedlings of the ecological model species Nicotiana attenuata and the molecular model species Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2010; 5:290-2. [PMID: 20037470 PMCID: PMC2881281 DOI: 10.4161/psb.5.3.10719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the ecological model plant Nicotiana attenuata, leaf wounding or herbivory lead to a reduction of root growth via jasmonic acid (JA) signaling. A single wounding treatment is sufficient to induce this response; multiple wounding does not increase the plant growth reaction. In a recent study, in which JA bursts were elicited in leaves of the molecular model species Arabidopsis thaliana in different ways,(1) we tested whether JA induces the same response there. Root growth reduction was neither induced by foliar application of herbivore oral secretions nor by direct application of methyl jasmonate to leaves. Root growth reduction was observed when leaves were infected with the pathogen Pseudomonas syringae pv. tomato, which persistently induces the JA signaling pathway. Yet, growth analyses of this effect in wild type and JA-signaling mutants showed that it was elicited by the bacterial toxin coronatine which suggests ethylene-but not JA-induced root growth reduction in A. thaliana. Moreover, the growth effects were somewhat masked by a light-induced diurnal decrease of root growth. Overall, we conclude that the reaction of root growth to herbivore-induced JA signaling differs among species, which is related to different ecological defence strategies that have evolved in different species.
Collapse
Affiliation(s)
- Lilian Schmidt
- ICG-3 (Phytosphere), Research Center Jülich, Jülich, Germany
| | | |
Collapse
|
17
|
Poiré R, Schneider H, Thorpe MR, Kuhn AJ, Schurr U, Walter A. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis. PLANT, CELL & ENVIRONMENT 2010; 33:408-417. [PMID: 19968824 DOI: 10.1111/j.1365-3040.2009.02090.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.
Collapse
Affiliation(s)
- Richard Poiré
- Institut Phytosphere (ICG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Erb M, Lenk C, Degenhardt J, Turlings TCJ. The underestimated role of roots in defense against leaf attackers. TRENDS IN PLANT SCIENCE 2009; 14:653-9. [PMID: 19736036 DOI: 10.1016/j.tplants.2009.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/04/2009] [Accepted: 08/10/2009] [Indexed: 05/23/2023]
Abstract
Plants have evolved intricate strategies to withstand attacks by herbivores and pathogens. Although it is known that plants change their primary and secondary metabolism in leaves to resist and tolerate aboveground attack, there is little awareness of the role of roots in these processes. This is surprising given that plant roots are responsible for the synthesis of plant toxins, play an active role in environmental sensing and defense signaling, and serve as dynamic storage organs to allow regrowth. Hence, studying roots is essential for a solid understanding of resistance and tolerance to leaf-feeding insects and pathogens. Here, we highlight this function of roots in plant resistance to aboveground attackers, with a special focus on systemic signaling and insect herbivores.
Collapse
Affiliation(s)
- Matthias Erb
- Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
| | | | | | | |
Collapse
|
19
|
Schmidt L, Schurr U, Röse USR. Local and systemic effects of two herbivores with different feeding mechanisms on primary metabolism of cotton leaves. PLANT, CELL & ENVIRONMENT 2009; 32:893-903. [PMID: 19302172 DOI: 10.1111/j.1365-3040.2009.01969.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Caterpillars and spider mites are herbivores with different feeding mechanisms. Spider mites feed on the cell content via stylets, while caterpillars, as chewing herbivores, remove larger amounts of photosynthetically active tissue. We investigated local and systemic effects of short-term caterpillar and spider mite herbivory on cotton in terms of primary metabolism and growth processes. After short-term caterpillar feeding, leaf growth and water content were decreased in damaged leaves. The glutamate/glutamine ratio increased and other free amino acids were also affected. In contrast, mild spider mite infestation did not affect leaf growth or amino acid composition, but led to an increase in total nitrogen and sucrose concentrations. Both herbivores induced locally increased dark respiration, suggesting an increased mobilization of storage compounds potentially available for synthesis of defensive substances, but did not affect assimilation and transpiration. Systemically induced leaves were not significantly affected by the treatments performed in this study. The results show that cotton plants do not compensate the loss of photosynthetic tissue with higher photosynthetic efficiency of the remaining tissue. However, early plant responses to different herbivores leave their signature in primary metabolism, affecting leaf growth. Changes in amino acid concentrations, total nitrogen and sucrose content may affect subsequent herbivore performance.
Collapse
Affiliation(s)
- Lilian Schmidt
- Institut Phytosphäre (ICG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | |
Collapse
|
20
|
Hummel GM, Schurr U, Baldwin IT, Walter A. Herbivore-induced jasmonic acid bursts in leaves of Nicotiana attenuata mediate short-term reductions in root growth. PLANT, CELL & ENVIRONMENT 2009; 32:134-43. [PMID: 19054344 DOI: 10.1111/j.1365-3040.2008.01905.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Root growth in Nicotiana attenuata is transiently reduced after application of oral secretions (OS) of Manduca sexta larvae to wounds in leaves. Feeding of M. sexta or OS elicitation is known to result in jasmonic acid (JA) and ethylene bursts, and activates a suite of defence responses. Because both plant hormones are known to strongly reduce root growth, their activation might account for the observed reduction of root growth following herbivory. To test this hypothesis, we measured primary root growth with digital image sequence processing at high temporal resolution in antisense-lipoxygenase 3 (asLOX3) and inverted repeat-coronatin-insensitive 1 (irCOI1) seedlings which are impaired in JA biosynthesis and perception, respectively, and wild-type (WT) seedlings. Higher root growth rates in irCOI1 compared with WT were observed after OS elicitation. The dynamics of wound-induced root growth reduction coincide with the dynamics of root growth reduction induced by external application of methyl JA. In an experiment with 1-methylcyclopropen (1-MCP), a potent ethylene receptor blocker, no wounding-specific difference between growth of 1-MCP-treated plants and non-treated plants was observed, suggesting that wound-induced endogenous JA and not ethylene mediates the wounding-specific reduction in root growth. Yet, inhibiting the ethylene response by applying 1-MCP led to markedly increased root growth compared with that of control plants, indicating that ethylene normally suppresses plant growth in N. attenuata seedlings.
Collapse
Affiliation(s)
- Grégoire M Hummel
- ICG-3 (Phytosphere), Research Center Jülich, D-52425, Jülich, Germany
| | | | | | | |
Collapse
|
21
|
Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:279-304. [PMID: 19575584 DOI: 10.1146/annurev.arplant.59.032607.092819] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Leaves and roots live in dramatically different habitats, but are parts of the same organism. Automated image processing of time-lapse records of these organs has led to understanding of spatial and temporal patterns of growth on time scales from minutes to weeks. Growth zones in roots and leaves show distinct patterns during a diel cycle (24 h period). In dicot leaves under nonstressful conditions these patterns are characterized by endogenous rhythms, sometimes superimposed upon morphogenesis driven by environmental variation. In roots and monocot leaves the growth patterns depend more strongly on environmental fluctuations. Because the impact of spatial variations and temporal fluctuations of above- and belowground environmental parameters must be processed by the plant body as an entire system whose individual modules interact on different levels, growth reactions of individual modules are often highly nonlinear. A mechanistic understanding of plant resource use efficiency and performance in a dynamically fluctuating environment therefore requires an accurate analysis of leaf and root growth patterns in conjunction with knowledge of major intraplant communication systems and metabolic pathways.
Collapse
Affiliation(s)
- Achim Walter
- Institute of Chemistry and Dynamics of Geosphere ICG-3: Phytosphere Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|
22
|
Henkes GJ, Thorpe MR, Minchin PEH, Schurr U, Röse USR. Jasmonic acid treatment to part of the root system is consistent with simulated leaf herbivory, diverting recently assimilated carbon towards untreated roots within an hour. PLANT, CELL & ENVIRONMENT 2008; 31:1229-1236. [PMID: 18507808 DOI: 10.1111/j.1365-3040.2008.01828.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is known that shoot application of jasmonic acid (JA) leads to an increased carbon export from leaves to stem and roots, and that root treatment with JA inhibits root growth. Using the radioisotope (11)C, we measured JA effects on carbon partitioning in sterile, split-root, barley plants. JA applied to one root half reduced carbon partitioning to the JA-treated tissue within minutes, whereas the untreated side showed a corresponding--but slower--increase. This response was not observed when instead of applying JA, the sink strength of one root half was reduced by cooling it: there was no enhanced partitioning to the untreated roots. The slower response in the JA-untreated roots, and the difference between the effect of JA and temperature, suggest that root JA treatment caused transduction of a signal from the treated roots to the shoot, leading to an increase in carbon allocation from the leaves to the untreated root tissue, as was indeed observed 10 min after the shoot application of JA. This supports the hypothesis that the response of some plant species to both leaf and root herbivores may be the diversion of resources to safer locations.
Collapse
|
23
|
Walter A, Hummel GM. Root growth of Nicotiana attenuata is decreased immediately after simulated leaf herbivore attack. PLANT SIGNALING & BEHAVIOR 2008; 3:236-237. [PMID: 19704639 PMCID: PMC2634187 DOI: 10.4161/psb.3.4.5139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 05/27/2023]
Abstract
Image-based non-destructive methods were used to quantify root growth reactions happening within hours following simulated leaf herbivore attack.1 The induction of wound reactions in leaves of seedlings of Nicotiana attenuata led to transiently decreased root growth rates: Upon application of the oral secretions and regurgitants of the specialist herbivore Manduca sexta, a transient decrease in root growth was observed that was more pronounced than if a mere mechanical wounding was imposed. Root growth reduction was more severe than leaf growth reduction and the timing of the transient growth reduction coincided with endogenous bursts of jasmonate (JA) and ethylene emissions reported in literature. The reaction of root growth was superimposed by a strong diel variation of root growth, which was caused by the fluctuating temperature to which the plants were exposed. Apart from the observed root growth reaction, other defense-related traits such as increased nicotine concentration, trichome length and density were activated within 72 h after wounding. Further experiments indicated that the response was elicited by fatty acid-amino acid conjugates that are contained in the oral secretions and that JA signalling is crucial for root-shoot communication here.
Collapse
Affiliation(s)
- Achim Walter
- ICG-3 (Phytosphere); Research Center Jülich; Jülich, Germany
| | | |
Collapse
|
24
|
Schwachtje J, Baldwin IT. Why does herbivore attack reconfigure primary metabolism? PLANT PHYSIOLOGY 2008; 146:845-51. [PMID: 18316639 PMCID: PMC2259057 DOI: 10.1104/pp.107.112490] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 12/10/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Jens Schwachtje
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|