1
|
Li YJ, Geng WL, Li CC, Wu JH, Gao F, Wang Y. Progress of CCL20-CCR6 in the airways: a promising new therapeutic target. J Inflamm (Lond) 2024; 21:54. [PMID: 39731176 PMCID: PMC11681768 DOI: 10.1186/s12950-024-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling. Numerous studies have demonstrated that therapeutic interventions targeting CCL20 and CCR6, including antibodies and antagonists, have the potential to mitigate disease progression. Despite the promising research prospects surrounding the CCL20-CCR6 chemokine axis, the precise mechanisms underlying its action in respiratory diseases remain largely elusive. In this review, we delve into the potential roles of the CCL20-CCR6 axis within the respiratory system by synthesizing and analyzing current research findings. Our objective is to provide a comprehensive understanding of the CCL20-CCR6 axis and its implications for respiratory health and disease. And we aspire to propel research endeavors in this domain and furnish valuable insights for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ya -Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jia-Hao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
2
|
Herrera M, Keynan Y, Lopez L, Marín D, Vélez L, McLaren PJ, Rueda ZV. Cytokine/chemokine profiles in people with recent infection by Mycobacterium tuberculosis. Front Immunol 2023; 14:1129398. [PMID: 37261336 PMCID: PMC10229054 DOI: 10.3389/fimmu.2023.1129398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The risk of progression to tuberculosis disease is highest within the first year after M. tuberculosis infection (TBI). We hypothesize that people with newly acquired TBI have a unique cytokine/chemokine profile that could be used as a potential biomarker. Methods We evaluated socio-demographic variables and 18 cytokines/chemokines in plasma samples from a cohort of people deprived of liberty (PDL) in two Colombian prisons: 47 people diagnosed with pulmonary TB, 24 with new TBI, and 47 non-infected individuals. We performed a multinomial regression to identify the immune parameters that differentiate the groups. Results The concentration of immune parameters changed over time and was affected by the time of incarceration. The concentration of sCD14, IL-18 and IP-10 differed between individuals with new TBI and short and long times of incarceration. Among people with short incarceration, high concentrations of MIP-3α were associated with a higher risk of a new TBI, and higher concentrations of Eotaxin were associated with a lower risk of a new TBI. Higher concentrations of sCD14 and TNF-α were associated with a higher risk of TB disease, and higher concentrations of IL-18 and MCP-1 were associated with a lower risk of TB disease. Conclusions There were cytokines/chemokines associated with new TBI and TB disease. However, the concentration of immune mediators varies by the time of incarceration among people with new TBI. Further studies should evaluate the changes of these and other cytokines/chemokines over time to understand the immune mechanisms across the spectrum of TB.
Collapse
Affiliation(s)
- Mariana Herrera
- Epidemiology Doctorate, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Departments of Internal Medicine and Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Lucelly Lopez
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación en Salud Pública, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Diana Marín
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación en Salud Pública, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Lázaro Vélez
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Paul J. McLaren
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación en Salud Pública, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
3
|
Li A, Li Y, Wang Y, Wang Y, Li X, Qubi W, Xiong Y, Zhu J, Liu W, Lin Y. ACADL Promotes the Differentiation of Goat Intramuscular Adipocytes. Animals (Basel) 2023; 13:281. [PMID: 36670821 PMCID: PMC9854987 DOI: 10.3390/ani13020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Intramuscular fat (IMF) deposits help improve meat quality such as marbling, juicy, flavor and tenderness. Long-chain acyl-CoA dehydrogenase (ACADL) is a key enzyme for catalyzing fatty acid oxidation, and studies have shown ACADL is involved in the deposition and differentiation of intramuscular adipocytes. However, the effect of ACADL on intramuscular adipocytes differentiation in goats needs further study. In this study, to explore the mechanism of ACADL on the development of goat intramuscular adipocytes, we constructed an over-expression plasmids and a SI-RNA of ACADL to explore the function of ACADL on the development of goat IMF. It was found that overexpression of ACADL promoted the differentiation of goat intramuscular adipocytes, and promoted the expression of fat cell differentiation marker genes lipoprotein lipase (LPL), peroxisome proliferator activated receptor gamma (PPARγ), APETALA-2-like transcription factor gene (AP2), CCAT enhancer binding protein (CEBPα), preadipocyte Factor 1 (Pref-1) and CCAT enhancer binding protein (CEBPβ), and the opposite trend occurred after interference. In addition, we screened of this related tumor necrosis factor (TNF) signaling pathway by RNA-Seq. So, we validate the signaling pathway with inhibitor of TNF signaling pathway. In summary, these results indicate that ACADL promotes intramuscular adipocytes differentiation through activation TNF signaling pathway. This study provides an important basis for the mechanism of IMF development.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Wuqie Qubi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
4
|
Molecular Signature of Neuroinflammation Induced in Cytokine-Stimulated Human Cortical Spheroids. Biomedicines 2022; 10:biomedicines10051025. [PMID: 35625761 PMCID: PMC9138619 DOI: 10.3390/biomedicines10051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Crucial in the pathogenesis of neurodegenerative diseases is the process of neuroinflammation that is often linked to the pro-inflammatory cytokines Tumor necrosis factor alpha (TNFα) and Interleukin-1beta (IL-1β). Human cortical spheroids (hCSs) constitute a valuable tool to study the molecular mechanisms underlying neurological diseases in a complex three-dimensional context. We recently designed a protocol to generate hCSs comprising all major brain cell types. Here we stimulate these hCSs for three time periods with TNFα and with IL-1β. Transcriptomic analysis reveals that the main process induced in the TNFα- as well as in the IL-1β-stimulated hCSs is neuroinflammation. Central in the neuroinflammatory response are endothelial cells, microglia and astrocytes, and dysregulated genes encoding cytokines, chemokines and their receptors, and downstream NFκB- and STAT-pathway components. Furthermore, we observe sets of neuroinflammation-related genes that are specifically modulated in the TNFα-stimulated and in the IL-1β-stimulated hCSs. Together, our results help to molecularly understand human neuroinflammation and thus a key mechanism of neurodegeneration.
Collapse
|
5
|
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Synergistic Effects of Toll-Like Receptor 1/2 and Toll-Like Receptor 3 Signaling Triggering Interleukin 27 Gene Expression in Chikungunya Virus-Infected Macrophages. Front Cell Dev Biol 2022; 10:812110. [PMID: 35223841 PMCID: PMC8863767 DOI: 10.3389/fcell.2022.812110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and severe acute or chronic arthralgia. CHIKF is associated with immunopathology and high levels of pro-inflammatory factors. CHIKV is known to have a wide range of tropism in human cell types, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. Previously, we reported that CHIKV-infected monocytes-derived macrophages (MDMs) express high levels of interleukin 27 (IL27), a heterodimeric cytokine consisting of IL27p28 and EBI3 subunits, that triggers JAK-STAT signaling and promotes pro-inflammatory and antiviral response, in interferon (IFN)-independent manner. Based on the transcriptomic analysis, we now report that induction of IL27-dependent pro-inflammatory and antiviral response in CHIKV-infected MDMs relies on two signaling pathways: an early signal dependent on recognition of CHIKV-PAMPs by TLR1/2-MyD88 to activate NF-κB-complex that induces the expression of EBI3 mRNA; and second signaling dependent on the recognition of intermediates of CHIKV replication (such as dsRNA) by TLR3-TRIF, to activate IRF1 and the induction of IL27p28 mRNA expression. Both signaling pathways were required to produce a functional IL27 protein involved in the induction of ISGs, including antiviral proteins, cytokines, CC- and CXC- chemokines in an IFN-independent manner in MDMs. Furthermore, we reported that activation of TLR4 by LPS, both in human MDMs and murine BMDM, results in the induction of both subunits of IL27 that trigger strong IL27-dependent pro-inflammatory and antiviral response independent of IFNs signaling. Our findings are a significant contribution to the understanding of molecular and cellular mechanisms of CHIKV infection.
Collapse
|
6
|
Jacobo-Delgado YM, Torres-Juarez F, Rodríguez-Carlos A, Santos-Mena A, Enciso-Moreno JE, Rivas-Santiago C, Diamond G, Rivas-Santiago B. Retinoic acid induces antimicrobial peptides and cytokines leading to Mycobacterium tuberculosis elimination in airway epithelial cells. Peptides 2021; 142:170580. [PMID: 34033876 DOI: 10.1016/j.peptides.2021.170580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is the leading cause of death by a single infectious agent, Mycobacterium tuberculosis (Mtb). Alveolar macrophages and respiratory epithelial cells are the first cells exposed to Mtb during the primary infection, once these cells are activated, secrete cytokines and antimicrobial peptides that are associated with the Mtb contention and elimination. Vitamins are micronutrients that function as boosters on the innate immune system, however, is unclear whether they have any protective activity during Mtb infection. Thus, we investigated the role of vitamin A (retinoic acid), vitamin C (ascorbic acid), vitamin D (calcitriol), and vitamin E (alfa-tocopherol) as inductors of molecules related to mycobacterial infection in macrophages and epithelial cells. Our results showed that retinoic acid promotes the expression of pro- and anti-inflammatory molecules such as Thymic stromal lymphopoietin (TSLP), β-defensin-2, IL-1β, CCL20, β-defensin-3, Cathelicidin LL-37, TGF-β, and RNase 7, whereas calcitriol, ascorbic acid, and α-tocopherol lead to an anti-inflammatory response. Treatment of Mtb-infected epithelial cells and macrophage-like cells with the vitamins showed a differential response, where calcitriol reduced Mtb in macrophages, while retinoic acid reduced infection in epithelial cells. Thereby, we propose that a combination of calcitriol and retinoic acid supplementation can drive the immune response, and promotes the Mtb elimination by increasing the expression of antimicrobial peptides and cytokines, while simultaneously modulating inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cesar Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, University Autonomous of Zacatecas, Zacatecas, Mexico
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | | |
Collapse
|
7
|
Sun Y, Chen G, Liu Z, Yu L, Shang Y. A bioinformatics analysis to identify novel biomarkers for prognosis of pulmonary tuberculosis. BMC Pulm Med 2020; 20:279. [PMID: 33099324 PMCID: PMC7585184 DOI: 10.1186/s12890-020-01316-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Due to the fact that pulmonary tuberculosis (PTB) is a highly infectious respiratory disease characterized by high herd susceptibility and hard to be treated, this study aimed to search novel effective biomarkers to improve the prognosis and treatment of PTB patients. Methods Firstly, bioinformatics analysis was performed to identify PTB-related differentially expressed genes (DEGs) from GEO database, which were then subjected to GO annotation and KEGG pathway enrichment analysis to initially describe their functions. Afterwards, clustering analysis was conducted to identify PTB-related gene clusters and relevant PPI networks were established using the STRING database. Results Based on the further differential and clustering analyses, 10 DEGs decreased during PTB development were identified and considered as candidate hub genes. Besides, we retrospectively analyzed some relevant studies and found that 7 genes (CCL20, PTGS2, ICAM1, TIMP1, MMP9, CXCL8 and IL6) presented an intimate correlation with PTB development and had the potential serving as biomarkers. Conclusions Overall, this study provides a theoretical basis for research on novel biomarkers of PTB, and helps to estimate PTB prognosis as well as probe into targeted molecular treatment. Supplementary information Supplementary information accompanies this paper at 10.1186/s12890-020-01316-2.
Collapse
Affiliation(s)
- Yahong Sun
- Department of Pulmonary and Critical Care Medicine, Haining People's Hospital, Jiaxing, 314400, China
| | - Gang Chen
- Department of Pulmonary and Critical Care Medicine, Haining People's Hospital, Jiaxing, 314400, China
| | - Zhihao Liu
- Department of Pulmonary and Critical Care Medicine, Haining People's Hospital, Jiaxing, 314400, China
| | - Lina Yu
- Department of Pulmonary and Critical Care Medicine, Haining People's Hospital, Jiaxing, 314400, China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), No. 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
8
|
Lavalett L, Ortega H, Barrera LF. Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of Mycobacterium tuberculosis Induces Alterations in Myeloid Effector Functions. Front Cell Infect Microbiol 2020; 10:163. [PMID: 32391286 PMCID: PMC7190864 DOI: 10.3389/fcimb.2020.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung, where they participate in the control of infection during active tuberculosis (TB). Alternatively, inflammatory monocytes may participate in inflammation or serve as niches for Mtb infection. Monocytes response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, we have examined the baseline mRNA profiles of circulating human monocytes from patients with active TB (MoTB) compared with monocytes from healthy individuals (MoCT). Circulating MoTB displayed a pro-inflammatory transcriptome characterized by increased gene expression of genes associated with cytokines, monocytopoiesis, and down-regulation of MHC class II gene expression. In response to in vitro infection with two clinical isolates of the LAM family of Mtb (UT127 and UT205), MoTB displayed an attenuated inflammatory mRNA profile associated with down-regulation the TREM1 signaling pathway. Furthermore, the gene expression signature induced by Mtb UT205 clinical strain was characterized by the enrichment of genes in pathways and biological processes mainly associated with a signature of IFN-inducible genes and the inhibition of cell death mechanisms compared to MoTB-127, which could favor the establishment and survival of Mtb within the monocytes. These results suggest that circulating MoTB have an altered transcriptome that upon infection with Mtb may help to maintain chronic inflammation and infection. Moreover, this functional abnormality of monocytes may also depend on potential differences in virulence of circulating clinical strains of Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
9
|
Pydi SS, Ghousunnissa S, Devalraju KP, Ramaseri SS, Gaddam R, Auzumeedi SK, Vankayalapati R, Valluri VL. Down regulation of RANTES in pleural site is associated with inhibition of antigen specific response in tuberculosis. Tuberculosis (Edinb) 2019; 116S:S123-S130. [PMID: 31103419 DOI: 10.1016/j.tube.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Tuberculosis is the most common infectious reason for death and a major cause of pleural effusion globally. To understand the role of chemokines in trafficking of cells during TB pleurisy, we studied the responses to MTB, Ag85A in cells from pleural fluids and peripheral blood. Patients with TB pleural effusions, malignant effusions and asymptomatic healthy controls were enrolled. High expression (p < 0.05) of IP-10, MCP-1, MIG, IL-8, IFN-γ and IL-23 were observed in pleural fluids of TB patients compared to their plasma where expression of RANTES was significantly higher (p < 0.05). On specific stimulation of PFMCs with Ag85A, expression of RANTES was significantly lower in TB compared to NTB patients. We also observed increased expression of T regs and PD1 on CD8+T cells in PFMC of TB patients. Though some of the inflammatory chemokine/cytokines were up-regulated in pleura of TB patients, antigenic stimulation failed to induce them indicating poor antigenic responses at the site. Low expression of RANTES might be a reason for decreased trafficking of cells to the site and dissemination of infection into pleural site. The pattern of RANTES expression in pleural fluid vs serum is interesting. The observations necessitate further studies to investigate the levels of RANTES for its potential biological relevance in TB immunity and its use as a biomarker for diagnosis of pleural TB.
Collapse
Affiliation(s)
- Satya Sudheer Pydi
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, 501301, India
| | - Sheikh Ghousunnissa
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, 501301, India
| | - Kamakshi Prudhula Devalraju
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, 501301, India
| | - Sharadambal Sunder Ramaseri
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, 501301, India
| | - Ramulu Gaddam
- Department of Respiratory Medicine, AP Chest and General Hospital, Osmania Medical College, Erragadda, Hyderabad, 500038, India
| | - Sai Kumar Auzumeedi
- Department of Respiratory Medicine, AP Chest and General Hospital, Osmania Medical College, Erragadda, Hyderabad, 500038, India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, TX, 75708, USA.
| | - Vijaya Lakshmi Valluri
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, 501301, India.
| |
Collapse
|
10
|
Burel JG, Lindestam Arlehamn CS, Khan N, Seumois G, Greenbaum JA, Taplitz R, Gilman RH, Saito M, Vijayanand P, Sette A, Peters B. Transcriptomic Analysis of CD4 + T Cells Reveals Novel Immune Signatures of Latent Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3283-3290. [PMID: 29602771 DOI: 10.4049/jimmunol.1800118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
Abstract
In the context of infectious diseases, cell population transcriptomics are useful to gain mechanistic insight into protective immune responses, which is not possible using traditional whole-blood approaches. In this study, we applied a cell population transcriptomics strategy to sorted memory CD4 T cells to define novel immune signatures of latent tuberculosis infection (LTBI) and gain insight into the phenotype of tuberculosis (TB)-specific CD4 T cells. We found a 74-gene signature that could discriminate between memory CD4 T cells from healthy latently Mycobacterium tuberculosis-infected subjects and noninfected controls. The gene signature presented a significant overlap with the gene signature of the Th1* (CCR6+CXCR3+CCR4-) subset of CD4 T cells, which contains the majority of TB-specific reactivity and is expanded in LTBI. In particular, three Th1* genes (ABCB1, c-KIT, and GPA33) were differentially expressed at the RNA and protein levels in memory CD4 T cells of LTBI subjects compared with controls. The 74-gene signature also highlighted novel phenotypic markers that further defined the CD4 T cell subset containing TB specificity. We found the majority of TB-specific epitope reactivity in the CD62L-GPA33- Th1* subset. Thus, by combining cell population transcriptomics and single-cell protein-profiling techniques, we identified a CD4 T cell immune signature of LTBI that provided novel insights into the phenotype of TB-specific CD4 T cells.
Collapse
Affiliation(s)
- Julie G Burel
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
| | | | - Nabeela Khan
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Grégory Seumois
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Jason A Greenbaum
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Randy Taplitz
- Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093
| | - Robert H Gilman
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205.,Universidad Peruana Caytano Hereida, Lima 15102, Peru
| | - Mayuko Saito
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205.,Universidad Peruana Caytano Hereida, Lima 15102, Peru.,Department of Virology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan; and
| | - Pandurangan Vijayanand
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Bjoern Peters
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
11
|
The Absence of Interferon-β Promotor Stimulator-1 (IPS-1) Predisposes to Bronchiolitis and Asthma-like Pathology in Response to Pneumoviral Infection in Mice. Sci Rep 2017; 7:2353. [PMID: 28539639 PMCID: PMC5443759 DOI: 10.1038/s41598-017-02564-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV)-bronchiolitis is a major cause of infant morbidity and mortality and a risk factor for subsequent asthma. We showed previously that toll-like receptor (TLR)7 in plasmacytoid dendritic cells (pDCs) is critical for protection against bronchiolitis and asthma in mice infected with pneumonia virus of mice (PVM), the mouse homolog of RSV. This lack of redundancy was unexpected as interferon-β promotor stimulator-1 (IPS-1) signalling, downstream of RIG-I-like receptor (RLR) and not TLR7 activation, contributes to host defence in hRSV-inoculated adult mice. To further clarify the role of IPS-1 signalling, we inoculated IPS-1−/− and WT mice with PVM in early-life, and again in later-life, to model the association between bronchiolitis and asthma. IPS-1 deficiency predisposed to severe PVM bronchiolitis, characterised by neutrophilic inflammation and necroptotic airway epithelial cell death, high mobility group box 1 (HMGB1) and IL-33 release, and downstream type-2 inflammation. Secondary infection induced an eosinophilic asthma-like pathophysiology in IPS-1−/− but not WT mice. Mechanistically, we identified that IPS-1 is necessary for pDC recruitment, IFN-α production and viral control. Our findings suggest that TLR7 and RLR signalling work collaboratively to optimally control the host response to pneumovirus infection thereby protecting against viral bronchiolitis and subsequent asthma.
Collapse
|
12
|
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016; 4:10.1128/microbiolspec.TBTB2-0018-2016. [PMID: 27763255 PMCID: PMC5205539 DOI: 10.1128/microbiolspec.tbtb2-0018-2016] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into Mycobacterium tuberculosis-infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the "goldilocks" (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.
Collapse
Affiliation(s)
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
13
|
Vaccination with an Attenuated Ferritin Mutant Protects Mice against Virulent Mycobacterium tuberculosis. J Immunol Res 2015; 2015:385402. [PMID: 26339659 PMCID: PMC4539171 DOI: 10.1155/2015/385402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis the causative agent of tuberculosis affects millions of people worldwide. New tools for treatment and prevention of tuberculosis are urgently needed. We previously showed that a ferritin (bfrB) mutant of M. tuberculosis has altered iron homeostasis and increased sensitivity to antibiotics and to microbicidal effectors produced by activated macrophages. Most importantly, M. tuberculosis lacking BfrB is strongly attenuated in mice, especially, during the chronic phase of infection. In this study, we examined whether immunization with a bfrB mutant could confer protection against subsequent infection with virulent M. tuberculosis in a mouse model. The results show that the protection elicited by immunization with the bfrB mutant is comparable to BCG vaccination with respect to reduction of bacterial burden. However, significant distinctions in the disease pathology and host genome-wide lung transcriptome suggest improved containment of Mtb infection in animals vaccinated with the bfrB mutant, compared to BCG. We found that downmodulation of inflammatory response and enhanced fibrosis, compared to BCG vaccination, is associated with the protective response elicited by the bfrB mutant.
Collapse
|
14
|
D′ Andrea EL, Ferravante A, Scudiero I, Zotti T, Reale C, Pizzulo M, De La Motte LR, De Maio C, Mazzone P, Telesio G, Vito P, Stilo R. The Dishevelled, EGL-10 and pleckstrin (DEP) domain-containing protein DEPDC7 binds to CARMA2 and CARMA3 proteins, and regulates NF-κB activation. PLoS One 2014; 9:e116062. [PMID: 25541973 PMCID: PMC4277425 DOI: 10.1371/journal.pone.0116062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
The molecular complexes containing BCL10, MALT1 and CARMA proteins (CBM complex) have been recently identified as a key component in the signal transduction pathways that regulate activation of Nuclear Factor kappaB (NF-κB) transcription factor. Herein we identified the DEP domain-containing protein DEPDC7 as cellular binding partners of CARMA2 and CARMA3 proteins. DEPDC7 displays a cytosolic distribution and its expression induces NF-κB activation. Conversely, shRNA-mediated abrogation of DEPDC7 results in impaired NF-κB activation following G protein-coupled receptors stimulation, or stimuli that require CARMA2 and CARMA3, but not CARMA1. Thus, this study identifies DEPDC7 as a CARMA interacting molecule, and provides evidence that DEPDC7 may be required to specifically convey on the CBM complex signals coming from activated G protein-coupled receptors.
Collapse
Affiliation(s)
- Egildo Luca D′ Andrea
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
| | | | - Ivan Scudiero
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
| | - Carla Reale
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | | | - Luigi Regenburgh De La Motte
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Chiara De Maio
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | | | - Gianluca Telesio
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
- Biogem Consortium, Via Camporeale, 83031 Ariano Irpino (AV), Italy
- * E-mail:
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port′Arsa 11, 82100 Benevento, Italy
- SannioTech Consortium, Strada Statale Appia, Benevento, Italy
| |
Collapse
|
15
|
Klein M, Brouwer MC, Angele B, Geldhoff M, Marquez G, Varona R, Häcker G, Schmetzer H, Häcker H, Hammerschmidt S, van der Ende A, Pfister HW, van de Beek D, Koedel U. Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis. PLoS One 2014; 9:e93057. [PMID: 24699535 PMCID: PMC3974727 DOI: 10.1371/journal.pone.0093057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2014] [Indexed: 01/10/2023] Open
Abstract
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Blotting, Western
- Brain/immunology
- Brain/metabolism
- Brain/microbiology
- Case-Control Studies
- Cells, Cultured
- Chemokine CCL20/antagonists & inhibitors
- Chemokine CCL20/immunology
- Chemokine CCL20/metabolism
- Chemotaxis, Leukocyte/immunology
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Male
- Meningitis, Pneumococcal/cerebrospinal fluid
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/metabolism
- Meningitis, Pneumococcal/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Prospective Studies
- Receptors, CCR6/physiology
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Matthias Klein
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Matthijs C. Brouwer
- Department of Neurology, University of Amsterdam, Amsterdam, The Netherlands
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Angele
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Madelijn Geldhoff
- Department of Neurology, University of Amsterdam, Amsterdam, The Netherlands
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rosa Varona
- Departamento de Immunologia y Oncologia, Centro National de Biotecnologia, Madrid, Spain
| | - Georg Häcker
- Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Helga Schmetzer
- Medical Department III, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, University of Greifswald, Greifswald, Germany
| | - Arie van der Ende
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Diederik van de Beek
- Department of Neurology, University of Amsterdam, Amsterdam, The Netherlands
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
16
|
Slight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev 2012; 24:105-13. [PMID: 23168132 DOI: 10.1016/j.cytogfr.2012.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 02/08/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is the intracellular pathogen that causes the disease, tuberculosis. Chemokines and chemokine receptors are key regulators in immune cell recruitment to sites of infection and inflammation. This review highlights our recent advances in understanding the role of chemokines and chemokine receptors in cellular recruitment of immune cells to the lung, role in granuloma formation and host defense against Mtb infection.
Collapse
Affiliation(s)
- Samantha R Slight
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
17
|
Regev D, Surolia R, Karki S, Zolak J, Montes-Worboys A, Oliva O, Guroji P, Saini V, Steyn AJC, Agarwal A, Antony VB. Heme oxygenase-1 promotes granuloma development and protects against dissemination of mycobacteria. J Transl Med 2012; 92:1541-52. [PMID: 22964851 PMCID: PMC4017357 DOI: 10.1038/labinvest.2012.125] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-tuberculous mycobacterial (NTM) infections occur in both immunocompromised and immunocompetent hosts and are an increasingly recognized cause of morbidity and mortality. The hallmark of pulmonary mycobacterial infections is the formation of granuloma in the lung. Our study focuses on the role of heme oxygenase-1 (HO-1), a cytoprotective enzyme, in the regulation of granuloma development and maturation following infection with Mycobacterium avium. We examined the role of HO-1 in regulating monocyte chemoattractant protein-1 (MCP-1) and chemokine receptor 2 (CCR2), two molecules involved in monocyte-macrophage cell trafficking after infection. We showed that RAW 264.7 mouse monocytes exposed to M. avium expressed HO-1 and MCP-1. Inhibition of HO by zinc protoporphyrin-IX led to inhibition of MCP-1 and increased expression of CCR2, its cognate receptor. HO-1⁻/⁻ mice did not develop organized granuloma in their lungs, had higher lung colony forming unit of M. avium when infected with intratracheal M. avium, and had loose collections of inflammatory cells in the lung parenchyma. Mycobacteria were found only inside defined granulomas but not outside granuloma in the lungs of HO-1⁺/⁺ mice. In HO-1⁻/⁻ mice, mycobacteria were also found in the liver and spleen and showed increased mortality. Peripheral blood monocytes isolated from GFP⁺ mice and given intravenously to HO-1⁺/⁺ mice localized into tight granulomas, while in HO-1⁻/⁻ mice they remained diffusely scattered in areas of parenchymal inflammation. Higher MCP-1 levels were found in bronchoalveolar lavage fluid of M. avium infected HO-1(-/-) mice and CCR2 expression was higher in HO-1⁻/⁻ alveolar macrophages when compared with HO-1⁺/⁺ mice. CCR2 expression localized to granuloma in HO-1⁺/⁺ mice but not in the HO-1⁻/⁻ mice. These findings strongly suggest that HO-1 plays a protective role in the control of M. avium infection.
Collapse
Affiliation(s)
- Doron Regev
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ranu Surolia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suman Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Zolak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ana Montes-Worboys
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ocatvio Oliva
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Purushotum Guroji
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adrie JC Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,KwaZulu-Natal Research Institute for TB and HIV, Durban 4001, South Africa
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Veena. B. Antony
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA,Corresponding Author: Veena B Antony, MD, Professor of Medicine, University of Alabama at Birmingham, 1530, 3rd Avenue South, THT 422, Birmingham, AL 35294-0006., Tel: (205) 934-0892. Fax: (205) 934-1721,
| |
Collapse
|
18
|
Expression of CXCL10 (IP-10) and CXCL11 (I-TAC) chemokines during Mycobacterium tuberculosis infection and immunoprophylaxis with Mycobacterium indicus pranii (Mw) in guinea pig. INFECTION GENETICS AND EVOLUTION 2012; 13:11-7. [PMID: 23107775 DOI: 10.1016/j.meegid.2012.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 11/23/2022]
Abstract
Mycobacterium indicus pranii (earlier known as Mycobacterium w) has been used as an immunmodulatory agent in leprosy and tuberculosis by mediating the release of various cytokines and chemokines. CXCL10 (IP-10) and CXCL11 (I-TAC) chemokines are involved in T-cell migration and stimulation of natural killer cells in Mycobacterium tuberculosis infection. In this study, the effect of heat killed M. indicus pranii (alone and in conjunction with chemotherapy) on disease progression was determined by colony forming units (CFUs) in guinea pig lung following their aerosol infection and the expression levels of CXCL10 and CXCL11 were studied by quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) and in situ RT-PCR. Four groups of animals included; infection only (Rv), immunoprophylaxis (RvMw), chemotherapy (RvCh) and combination of immunoprophylaxis with chemotherapy (RvChMw). In the group where immunoprophylaxis was given in combination with chemotherapy, the CFU counts reduced significantly at 4th week post-infection as compared to animals that received immunoprophylaxis or chemotherapy alone. At the same time, all groups of animals had elevated expression of CXCL 10 which was significantly high only in animals that received Mw with or without chemotherapy. Unlike to CXCL 10, study demonstrated suppressed expression CXCL 11 in both immunoprophylaxis as well as chemotherapy groups that became up-regulated in synergistic response of immunoprophylaxis and chemotherapy. Taken together, data indicates that the expression of CXCL10 and CXCL11 positively correlates with anti-tubercular treatment (at least with combination of immunoprophylaxis and chemotherapy). Therefore, prior immunization with Mw appears to be a good immunomodulator for release of chemokines and augments the effect of chemotherapy.
Collapse
|
19
|
Kim TS, Lee HM, Yoo H, Park YK, Jo EK. Intracellular Signaling Pathways that Regulate Macrophage Chemokine Expression in Response toMycobacterium abscessus. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.2.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tae Sung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Heekyung Yoo
- Department of Research and Development, Korean Institute of Tuberculosis, Osong Bio-Health Science Technopolis, Chungbuk, Korea
| | - Young Kil Park
- Department of Research and Development, Korean Institute of Tuberculosis, Osong Bio-Health Science Technopolis, Chungbuk, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
20
|
Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SHE. Recombinant BCG ΔureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 2011; 204:1573-84. [PMID: 21933877 PMCID: PMC3192191 DOI: 10.1093/infdis/jir592] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 06/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND New vaccines against tuberculosis (TB) are urgently needed because the only available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), fails to protect against pulmonary TB in adults. The recombinant ΔureC hly+ BCG (rBCG) is more efficient than parental BCG (pBCG) against pulmonary TB in preclinical studies and has proven safe and immunogenic in phase I clinical trials. METHODS In an attempt to identify the mechanisms underlying the superior protection of rBCG, we compared the immune responses elicited after vaccination and subsequent aerosol infection with Mycobacterium tuberculosis (MTB) in mice. RESULTS We demonstrate that both rBCG and pBCG induce marked type 1 cytokine responses, whereas only rBCG elicits a profound type 17 cytokine response in addition. We observed earlier recruitment of antigen-specific T lymphocytes to the lung upon MTB infection of rBCG-vaccinated mice. These T cells produced abundant type 1 cytokines after restimulation, resulting in 10-fold reduced bacterial burden 90 days after infection. CONCLUSIONS Our findings identify a general immunologic pathway for improved vaccination strategies against TB that can also be harnessed by other vaccine candidates.
Collapse
Affiliation(s)
- Christiane Desel
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin.
| | | | | | | | | | | |
Collapse
|
21
|
Stolberg VR, Chiu BC, Martin BE, Shah SA, Sandor M, Chensue SW. Cysteine-cysteinyl chemokine receptor 6 mediates invariant natural killer T cell airway recruitment and innate stage resistance during mycobacterial infection. J Innate Immun 2010; 3:99-108. [PMID: 21042003 DOI: 10.1159/000321156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 12/25/2022] Open
Abstract
This study examined the contribution of cysteine-cysteinyl chemokine receptor 6 (CCR6) to the innate pulmonary antimycobacterial immune response. Using a mouse model of Mycobacterium bovis BCG airway infection, we detected maximal induction of the CCR6 agonist CCL20 in lungs at 1 week after infection. Infected CCR6 knockout (CCR6-/-) mice displayed an early impairment of bacterial clearance, but ultimately eliminated the attenuated organisms with the onset of adaptive immunity. Flow-cytometric analyses of bronchoalveolar lavages and dispersed lungs revealed a 60% reduction in TCR-α/β+ T cells in airways but no compromise of TCR-γ/δ+ T cells. The subset of CD1d-restricted, CD8-TCR-α/β+ natural killer cells, which mediate innate mycobacterial resistance, was profoundly reduced (90%). Analysis of the adaptive response using ovalbumin-specific transgenic TCR T cell (OT-II) transfer combined with infection with recombinant M. bovis BCG producing ovalbumin peptide indicated no impairment of adaptive T cell activation in CCR6-/- mice. There was also no impairment of the induction of cytokine-producing cells in draining lymphoid tissue of CCR6-/- mice. Taken together, our findings indicate that CCR6 is not required for induction of the adaptive antimycobacterial response, but is likely critical to airway compartment mobilization of TCR-α/β+CCR6+ innate and adaptive effector T cells.
Collapse
Affiliation(s)
- Valerie R Stolberg
- Department of Pathology, University of Michigan Medical School Ann Arbor, Ann Arbor, Mich., USA
| | | | | | | | | | | |
Collapse
|
22
|
Rivero-Lezcano OM, González-Cortés C, Reyes-Ruvalcaba D, Diez-Tascón C. CCL20 is overexpressed in Mycobacterium tuberculosis-infected monocytes and inhibits the production of reactive oxygen species (ROS). Clin Exp Immunol 2010; 162:289-97. [PMID: 20819093 DOI: 10.1111/j.1365-2249.2010.04168.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CCL20 is a chemokine that attracts immature dendritic cells. We show that monocytes, cells characteristic of the innate immune response, infected with Mycobacterium tuberculosis express the CCL20 gene at a much higher level than the same cells infected with non-tuberculous mycobacteria. Interferon (IFN)-γ, a fundamental cytokine in the immune response to tuberculosis, strongly inhibits both the transcription and the translation of CCL20. We have also confirmed that dendritic cells are a suitable host for mycobacteria proliferation, although CCL20 does not seem to influence their intracellular multiplication rate. The chemokine, however, down-regulates the characteristic production of reactive oxygen species (ROS) induced by M. tuberculosis in monocytes, which may affect the activity of the cells. Apoptosis mediated by the mycobacteria, possibly ROS-dependent, was also inhibited by CCL20.
Collapse
Affiliation(s)
- O M Rivero-Lezcano
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Hospital de León, Spain.
| | | | | | | |
Collapse
|
23
|
He C, Zhang SL, Hu CJ, Tong DW, Li YZ. Higher levels of CCL20 expression on peripheral blood mononuclear cells of chinese patients with inflammatory bowel disease. Immunol Invest 2010; 39:16-26. [PMID: 20064082 DOI: 10.3109/08820130903380732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed at characterizing the levels of CCL20 mRNA transcripts in peripheral mononuclear blood cells (PMBC) of 56 Chinese patients with inflammatory bowel disease (IBD), 30 other intestinal diseases and 30 healthy controls by quantitative real time polymerase chain reaction. The levels of CCL20 mRNA transcripts in PBMC of patients with IBD were significantly higher than that of patients with non-IBD intestinal diseases and healthy controls (p < 0.01) and the CCL20 expression in active IBD patients was significantly higher than that in remission patients (p < 0.01). Importantly, the levels of CCL20 expression in PBMC were significantly correlated with the degrees of disease severity, the levels of erythrocyte sedimentation rate and C-reaction protein, but not hemoglobin, in patients with IBD (p < 0.01). Furthermore, the levels of CCL20 expression in active IBD patients after treatment with salazosulphapyridine or prednisone were significantly reduced, as compared with before treatment (p < 0.01). Therefore, analysis of CCL20 expression in PBMC may be used as a surrogate measure for evaluation of IBD activity, disease progression and therapeutic efficacy in Chinese IBD patients.
Collapse
Affiliation(s)
- Chun He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | | | | | | | | |
Collapse
|
24
|
Kabara E, Kloss CC, Wilson M, Tempelman RJ, Sreevatsan S, Janagama H, Coussens PM. A large-scale study of differential gene expression in monocyte-derived macrophages infected with several strains of Mycobacterium avium subspecies paratuberculosis. Brief Funct Genomics 2010; 9:220-37. [DOI: 10.1093/bfgp/elq009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Méndez-Samperio P. Expression and regulation of chemokines in mycobacterial infection. J Infect 2008; 57:374-84. [PMID: 18838171 DOI: 10.1016/j.jinf.2008.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
Abstract
Chemokines are the key molecules that recruit immune cells by chemotaxis and act in leukocyte activation during mycobacterial diseases. Currently, tuberculosis is a leading infectious disease affecting millions of people worldwide. The purpose of this review is to describe a series of recent scientific evidence concerning to the protective role of some members of the CC- and the CXC chemokine subfamilies for the control of mycobacterial infection. The discussion will (1) highlight the effectiveness of some chemokines as potent immunoprophylactic tool for controlling the mycobacterial establishment within the host, (2) describe recent work on the relevance of cellular signaling pathways by which mycobacterial antigens mediate chemokine induction, and (3) summarize current progress in the understanding of the potential use of chemokines as potent adjuvants in antimycobacterial immune responses.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN., Prol. Carpio y Plan de Ayala, México D.F. 11340, Mexico.
| |
Collapse
|