1
|
Jackson AC, Carine MA, Chapman MA. Genomics of ecological adaptation in Canary Island Descurainia (Brassicaceae) and comparisons with other Brassicaceae. Ecol Evol 2024; 14:e70144. [PMID: 39119179 PMCID: PMC11307170 DOI: 10.1002/ece3.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Oceanic archipelagos provide striking examples of lineages that have radiated over pronounced ecological gradients. Accompanying this diversification, lineages have evolved adaptations allowing survival in extreme environments. Here, we investigate the genomic basis of ecological adaptation in Canary Island Descurainia (Brassicaceae), an island relative of Arabidopsis. The seven endemic species have diversified in situ along an elevational and ecological gradient, from low-elevation scrub to high-elevation sub-alpine desert. We first generated a reference genome for Descurainia millefolia, phylogenetic analysis of which placed it as sister to D. sophioides. Ninety-six gene families were found to be specific to D. millefolia and a further 1087 and 1469 gene families have expanded or contracted in size, respectively, along the D. millefolia branch. We then employed genome re-sequencing to sample 14 genomes across the seven species of Canary Island Descurainia and an outgroup. Phylogenomic analyses were consistent with previous reconstructions of Canary Island Descurainia in resolving low- and high-elevation clades. Using the branch-site dN/dS method, we detected positive selection for 275 genes on the branch separating the low- and high-elevation species and these positively selected genes (PSGs) were significantly enriched for functions related to reproduction and stress tolerance. Comparing PSGs to those in analyses of adaptation to elevation and/or latitude in other Brassicaceae, we found little evidence of widespread convergence and gene reuse, except for two examples, one of which was a significant overlap between Descurainia and Draba nivalis, a species restricted to high latitudes. The study of Canary Island Descurainia suggests that the transition to high-elevation environments such as that found in the high mountains of the Canary Islands involves selection on genes related to reproduction and stress tolerance but that repeated evolution across different lineages that have evolved into similar habitats is limited, indicating substantially different molecular trajectories to adaptation.
Collapse
Affiliation(s)
- Amy C. Jackson
- Biological SciencesUniversity of SouthamptonSouthamptonUK
- Algae, Fungi and Plants DivisionThe Natural History MuseumLondonUK
- Present address:
Royal Botanic Gardens, Kew, Kew GreenRichmondSurreyUK
| | - Mark A. Carine
- Algae, Fungi and Plants DivisionThe Natural History MuseumLondonUK
| | | |
Collapse
|
2
|
Sears RG, Rigoulot SB, Occhialini A, Morgan B, Kakeshpour T, Brabazon H, Barnes CN, Seaberry EM, Jacobs B, Brown C, Yang Y, Schimel TM, Lenaghan SC, Neal Stewart C. Engineered gamma radiation phytosensors for environmental monitoring. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1745-1756. [PMID: 37224108 PMCID: PMC10440981 DOI: 10.1111/pbi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Nuclear energy, already a practical solution for supplying energy on a scale similar to fossil fuels, will likely increase its footprint over the next several decades to meet current climate goals. Gamma radiation is produced during fission in existing nuclear reactors and thus the need to detect leakage from nuclear plants, and effects of such leakage on ecosystems will likely also increase. At present, gamma radiation is detected using mechanical sensors that have several drawbacks, including: (i) limited availability; (ii) reliance on power supply; and (iii) requirement of human presence in dangerous areas. To overcome these limitations, we have developed a plant biosensor (phytosensor) to detect low-dose ionizing radiation. The system utilizes synthetic biology to engineer a dosimetric switch into potato utilizing the plant's native DNA damage response (DDR) machinery to produce a fluorescent output. In this work, the radiation phytosensor was shown to respond to a wide range of gamma radiation exposure (10-80 Grey) producing a reporter signal that was detectable at >3 m. Further, a pressure test of the top radiation phytosensor in a complex mesocosm demonstrated full function of the system in a 'real world' scenario.
Collapse
Affiliation(s)
- Robert G. Sears
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Stephen B. Rigoulot
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Alessandro Occhialini
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - Britany Morgan
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Tayebeh Kakeshpour
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Holly Brabazon
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Caitlin N. Barnes
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Erin M. Seaberry
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Brianna Jacobs
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Chandler Brown
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Yongil Yang
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Tayler M. Schimel
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| |
Collapse
|
3
|
Abstract
The desiccated, quiescent state of seeds confers extended survival of the embryonic plant. However, accumulation of striking levels of genome damage in quiescence impairs germination and threatens plant survival. The mechanisms by which seeds mitigate this damage remain unclear. Here, we reveal that imbibed Arabidopsis seeds display high resistance to DNA damage, which is lost as seeds advance to germination, coincident with increasing cell cycle activity. In contrast to seedlings, we show that seeds minimize the impact of DNA damage by reducing meristem disruption and delaying SOG1-dependent programmed cell death. This promotes root growth early postgermination. In response to naturally accumulated DNA damage in aging seeds, SOG1 activates cell death postgermination. SOG1 activities are also important for promoting successful seedling establishment. These distinct cellular responses of seeds and seedlings are reflected by different DNA damage transcriptional profiles. Comparative analysis of DNA repair mutants identifies roles of the major genome maintenance pathways in germination but that the repair of cytotoxic chromosomal breaks is the most important for seed longevity. Collectively, these results indicate that high levels of DNA damage incurred in seeds are countered by low cell cycle activity, cell cycle checkpoints, and DNA repair, promoting successful seedling establishment. Our findings reveal insight into both the physiological significance of plant DNA damage responses and the mechanisms which maintain seed longevity, important for survival of plant populations in the natural environment and sustainable crop production under changing climates.
Collapse
|
4
|
Wolter F, Schindele P, Beying N, Scheben A, Puchta H. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. THE PLANT CELL 2021; 33:3454-3469. [PMID: 34375428 PMCID: PMC8566284 DOI: 10.1093/plcell/koab204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 05/03/2023]
Abstract
In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Natalja Beying
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Author for correspondence:
| |
Collapse
|
5
|
Lee G, Ahmadi H, Quintana J, Syllwasschy L, Janina N, Preite V, Anderson JE, Pietzenuk B, Krämer U. Constitutively enhanced genome integrity maintenance and direct stress mitigation characterize transcriptome of extreme stress-adapted Arabidopsis halleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:896-911. [PMID: 34669984 DOI: 10.1111/tpj.15544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal-rich toxic soils and ordinary soils are both natural habitats of Arabidopsis halleri, a diploid perennial and obligate outcrosser in the sister clade of the genetic model plant Arabidopsis thaliana. The molecular divergence underlying survival in sharply contrasting environments is unknown. Here we comparatively address metal physiology and transcriptomes of A. halleri originating from the most highly heavy metal-contaminated soil in Europe, Ponte Nossa, Italy (Noss), and from non-metalliferous (NM) soils. Plants from Noss exhibit enhanced hypertolerance and attenuated accumulation of cadmium (Cd), and their transcriptomic Cd responsiveness is decreased, compared to plants of NM soil origin. Among the condition-independent transcriptome characteristics of Noss, the most highly overrepresented functional class of 'meiotic cell cycle' comprises 21 transcripts with elevated abundance in vegetative tissues, in particular Argonaute 9 (AGO9) and the synaptonemal complex transverse filament protein-encoding ZYP1a/b. Increased AGO9 transcript levels in Noss are accompanied by decreased long terminal repeat retrotransposon expression. Similar to Noss, plants from other highly metalliferous sites in Poland and Germany share elevated somatic AGO9 transcript levels in comparison to plants originating from NM soils in their respective geographic regions. Transcript levels of Iron-Regulated Transporter 1 (IRT1) are very low and transcript levels of Heavy Metal ATPase 2 (HMA2) are strongly elevated in Noss, which can account for its altered Cd handling. We conclude that in plants adapted to the most extreme abiotic stress, broadly enhanced functions comprise genes with likely roles in somatic genome integrity maintenance, accompanied by few alterations in stress-specific functional networks.
Collapse
Affiliation(s)
- Gwonjin Lee
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Hassan Ahmadi
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Julia Quintana
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Lara Syllwasschy
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Nadežda Janina
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Veronica Preite
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Justin E Anderson
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Van Vu T, Thi Hai Doan D, Kim J, Sung YW, Thi Tran M, Song YJ, Das S, Kim J. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:230-239. [PMID: 33047464 PMCID: PMC7868975 DOI: 10.1111/pbi.13490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 05/05/2023]
Abstract
Gene editing and/or allele introgression with absolute precision and control appear to be the ultimate goals of genetic engineering. Precision genome editing in plants has been developed through various approaches, including oligonucleotide-directed mutagenesis (ODM), base editing, prime editing and especially homologous recombination (HR)-based gene targeting. With the advent of CRISPR/Cas for the targeted generation of DNA breaks (single-stranded breaks (SSBs) or double-stranded breaks (DSBs)), a substantial advancement in HR-mediated precise editing frequencies has been achieved. Nonetheless, further research needs to be performed for commercially viable applications of precise genome editing; hence, an alternative innovative method for genome editing may be required. Within this scope, we summarize recent progress regarding precision genome editing mediated by microhomology-mediated end joining (MMEJ) and discuss their potential applications in crop improvement.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- National Key Laboratory for Plant Cell BiotechnologyAgricultural Genetics InstituteKm 02, Pham Van Dong RoadCo Nhue 1, Bac Tu Liem, Hanoi11917Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- Division of Life ScienceGyeongsang National University501 Jinju‐daeroJinju52828Republic of Korea
| |
Collapse
|
7
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
8
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
9
|
AbdelGawwad MR, Marić A, Al-Ghamdi AA, Hatamleh AA. Interactome Analysis and Docking Sites of MutS Homologs Reveal New Physiological Roles in Arabidopsis thaliana. Molecules 2019; 24:molecules24132493. [PMID: 31288414 PMCID: PMC6651420 DOI: 10.3390/molecules24132493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Due to their sedentary lifestyle, plants are constantly exposed to different stress stimuli. Stress comes in variety of forms where factors like radiation, free radicals, “replication errors, polymerase slippage”, and chemical mutagens result in genotoxic or cytotoxic damage. In order to face “the base oxidation or DNA replication stress”, plants have developed many sophisticated mechanisms. One of them is the DNA mismatch repair (MMR) pathway. The main part of the MMR is the MutS homologue (MSH) protein family. The genome of Arabidopsis thaliana encodes at least seven homologues of the MSH family: AtMSH1, AtMSH2, AtMSH3, AtMSH4, AtMSH5, AtMSH6, and AtMSH7. Despite their importance, the functions of AtMSH homologs have not been investigated. In this work, bioinformatics tools were used to obtain a better understanding of MSH-mediated DNA repair mechanisms in Arabidopsis thaliana and to understand the additional biological roles of AtMSH family members. In silico analysis, including phylogeny tracking, prediction of 3D structure, interactome analysis, and docking site prediction, suggested interactions with proteins were important for physiological development of A. thaliana. The MSH homologs extensively interacted with both TIL1 and TIL2 (DNA polymerase epsilon catalytic subunit), proteins involved in cell fate determination during plant embryogenesis and involved in flowering time repression. Additionally, interactions with the RECQ protein family (helicase enzymes) and proteins of nucleotide excision repair pathway were detected. Taken together, the results presented here confirm the important role of AtMSH proteins in mismatch repair and suggest important new physiological roles.
Collapse
Affiliation(s)
- Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210 Sarajevo, Bosnia and Herzegovina.
| | - Aida Marić
- Centre for Research in Agricultural Genomics, UAB-Edifici CRAG, Cerdanyola, 08193 Barcelona, Spain
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Guyon-Debast A, Rossetti P, Charlot F, Epert A, Neuhaus JM, Schaefer DG, Nogué F. The XPF-ERCC1 Complex Is Essential for Genome Stability and Is Involved in the Mechanism of Gene Targeting in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2019; 10:588. [PMID: 31143199 PMCID: PMC6521618 DOI: 10.3389/fpls.2019.00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The XPF-ERCC1 complex, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair, and homologous recombination. XPF-ERCC1 incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here, we have examined the role of the XPF-ERCC1 complex in the model bryophyte Physcomitrella patens which exhibits uniquely high gene targeting frequencies. We undertook targeted knockout of the Physcomitrella ERCC1 and XPF genes. Mutant analysis shows that the endonuclease complex is essential for resistance to UV-B and to the alkylating agent MMS, and contributes to the maintenance of genome integrity but is also involved in gene targeting in this model plant. Using different constructs we determine whether the function of the XPF-ERCC1 endonuclease complex in gene targeting was removal of 3' non-homologous termini, similar to SSA, or processing of looped-out heteroduplex intermediates. Interestingly, our data suggest a role of the endonuclease in both pathways and have implications for the mechanism of targeted gene replacement in plants and its specificities compared to yeast and mammalian cells.
Collapse
Affiliation(s)
- Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Patricia Rossetti
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aline Epert
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Didier G. Schaefer
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
11
|
Lytvyn DI, Raynaud C, Yemets AI, Bergounioux C, Blume YB. Involvement of Inositol Biosynthesis and Nitric Oxide in the Mediation of UV-B Induced Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:430. [PMID: 27148278 PMCID: PMC4828445 DOI: 10.3389/fpls.2016.00430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/18/2016] [Indexed: 05/12/2023]
Abstract
The involvement of NO-signaling in ultraviolet B (UV-B) induced oxidative stress (OS) in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1), a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent OS in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1) and wild-type plants were transformed with a reduction- grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside)-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM) before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.
Collapse
Affiliation(s)
- Dmytro I. Lytvyn
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyiv, Ukraine
- *Correspondence: Dmytro I. Lytvyn,
| | - Cécile Raynaud
- Laboratory of Cell Cycle Chromatin and Development, Institute of Plant Sciences Paris-Saclay IPS2, CNRS 9213, INRA 1403, Université Paris-Sud, Université Evry Val d’Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-SaclayOrsay, France
| | - Alla I. Yemets
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Catherine Bergounioux
- Laboratory of Cell Cycle Chromatin and Development, Institute of Plant Sciences Paris-Saclay IPS2, CNRS 9213, INRA 1403, Université Paris-Sud, Université Evry Val d’Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-SaclayOrsay, France
| | - Yaroslav B. Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of UkraineKyiv, Ukraine
| |
Collapse
|
12
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
13
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
14
|
Campi M, D’Andrea L, Emiliani J, Casati P. Participation of chromatin-remodeling proteins in the repair of ultraviolet-B-damaged DNA. PLANT PHYSIOLOGY 2012; 158:981-95. [PMID: 22170978 PMCID: PMC3271783 DOI: 10.1104/pp.111.191452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/14/2011] [Indexed: 05/17/2023]
Abstract
The genome of plants is organized into chromatin, affecting the rates of transcription, DNA recombination, and repair. In this work, we have investigated the consequences of reduced expression of some chromatin-remodeling factors and histone acetylation in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) in their participation in DNA repair after ultraviolet (UV)-B irradiation. Plants deficient in NFC102/NFC4 or SDG102/SDG26 showed more damaged DNA than wild-type plants; however, the Arabidopsis chc1 mutant showed similar accumulation of cyclobutane pyrimidine dimers as wild-type plants, in contrast to the increased DNA damage measured in the maize chc101 RNA interference line. In Arabidopsis, plants deficient in chromatin remodeling are also affected in the accumulation of pigments by UV-B. Plants treated with an inhibitor of histone acetyltransferases, curcumin, previous to the UV-B treatment show deficiencies in DNA repair; in addition, the chromatin remodeling-deficient plants have altered levels of acetylated histones after the UV-B treatment, demonstrating that histone acetylation is important during DNA repair in these two plant species. Arabidopsis mutants ham1 and ham2 also showed increased DNA damage after UV-B, suggesting that the role of these proteins in DNA damage repair has been conserved through evolution. However, cyclobutane pyrimidine dimer accumulation was higher in ham1 than in ham2; suggesting that HAM1 has a major role in DNA repair after UV-B. In summary, in this work, we have demonstrated that chromatin remodeling, and histone acetylation in particular, is important during DNA repair by UV-B, demonstrating that both genetic and epigenetic effects control DNA repair in plants.
Collapse
Affiliation(s)
| | | | | | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
15
|
Dumont M, Massot S, Doutriaux MP, Gratias A. Characterization of Brca2-deficient plants excludes the role of NHEJ and SSA in the meiotic chromosomal defect phenotype. PLoS One 2011; 6:e26696. [PMID: 22039535 PMCID: PMC3198793 DOI: 10.1371/journal.pone.0026696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/02/2011] [Indexed: 12/22/2022] Open
Abstract
In somatic cells, three major pathways are involved in the repair of DNA double-strand breaks (DBS): Non-Homologous End Joining (NHEJ), Single-Strand Annealing (SSA) and Homologous Recombination (HR). In somatic and meiotic HR, DNA DSB are 5′ to 3′ resected, producing long 3′ single-stranded DNA extensions. Brca2 is essential to load the Rad51 recombinase onto these 3′ overhangs. The resulting nucleofilament can thus invade a homologous DNA sequence to copy and restore the original genetic information. In Arabidopsis, the inactivation of Brca2 specifically during meiosis by an RNAi approach results in aberrant chromosome aggregates, chromosomal fragmentation and missegregation leading to a sterility phenotype. We had previously suggested that such chromosomal behaviour could be due to NHEJ. In this study, we show that knock-out plants affected in both BRCA2 genes show the same meiotic phenotype as the RNAi-inactivated plants. Moreover, it is demonstrated that during meiosis, neither NHEJ nor SSA compensate for HR deficiency in BRCA2-inactivated plants. The role of the plant-specific DNA Ligase6 is also excluded. The possible mechanism(s) involved in the formation of these aberrant chromosomal bridges in the absence of HR during meiosis are discussed.
Collapse
Affiliation(s)
- Marilyn Dumont
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
| | - Sophie Massot
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
| | | | - Ariane Gratias
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris Sud-11, Orsay, France
- * E-mail:
| |
Collapse
|
16
|
Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair (Amst) 2011; 10:611-9. [PMID: 21530420 DOI: 10.1016/j.dnarep.2011.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 01/19/2023]
Abstract
Double-strand breaks in genomic DNA (DSB) are potentially lethal lesions which separate parts of chromosome arms from their centromeres. Repair of DSB by recombination can generate mutations and further chromosomal rearrangements, making the regulation of recombination and the choice of recombination pathways of the highest importance. Although knowledge of recombination mechanisms has considerably advanced, the complex interrelationships and regulation of pathways are far from being fully understood. We analyse the different pathways of DSB repair acting in G2/M phase nuclei of irradiated plants, through quantitation of the kinetics of appearance and loss of γ-H2AX foci in Arabidopsis mutants. These analyses show the roles for the four major recombination pathways in post-S-phase DSB repair and that non-homologous recombination pathways constitute the major response. The data suggest a hierarchical organisation of DSB repair in these cells: C-NHEJ acts prior to B-NHEJ which can also inhibit MMEJ. Surprisingly the quadruple ku80 xrcc1 xrcc2 xpf mutant can repair DSB, although with severely altered kinetics. This repair leads to massive genetic instability with more than 50% of mitoses showing anaphase bridges following irradiation. This study thus clarifies the relationships between the different pathways of DSB repair in the living plant and points to the existence of novel DSB repair processes.
Collapse
|
17
|
Mannuss A, Dukowic-Schulze S, Suer S, Hartung F, Pacher M, Puchta H. RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. THE PLANT CELL 2010; 22:3318-30. [PMID: 20971895 PMCID: PMC2990144 DOI: 10.1105/tpc.110.078568] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/09/2010] [Accepted: 10/06/2010] [Indexed: 05/17/2023]
Abstract
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of these factors in Arabidopsis. rad5A recq4A and rad5A mus81 double mutants are more sensitive to cross-linking and methylating agents, showing that RAD5A is required for damage-induced DNA repair, independent of MUS81 and RECQ4A. The lethality of the recq4A mus81 double mutant indicates that MUS81 and RECQ4A also define parallel DNA repair pathways. The recq4A/mus81 lethality is suppressed by blocking homologous recombination (HR) through disruption of RAD51C, showing that RECQ4A and MUS81 are required for processing recombination-induced aberrant intermediates during replication. Thus, plants possess at least three different pathways to process DNA repair intermediates. We also examined HR-mediated double-strand break (DSB) repair using recombination substrates with inducible site-specific DSBs: MUS81 and RECQ4A are required for efficient synthesis-dependent strand annealing (SDSA) but only to a small extent for single-strand annealing (SSA). Interestingly, RAD5A plays a significant role in SDSA but not in SSA.
Collapse
|
18
|
Siaud N, Dubois E, Massot S, Richaud A, Dray E, Collier J, Doutriaux MP. The SOS screen in Arabidopsis: a search for functions involved in DNA metabolism. DNA Repair (Amst) 2010; 9:567-78. [PMID: 20227352 DOI: 10.1016/j.dnarep.2010.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/19/2022]
Abstract
The SOS screen, as originally described by Perkins et al. (1999) [7], was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS(+) candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS(+) candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS(+) candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Collapse
Affiliation(s)
- Nicolas Siaud
- Institut de Biologie des Plantes, CNRS UMR8618, Bâtiment 630, Université Paris Sud 11, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:134-149. [DOI: 10.1016/j.mrrev.2008.06.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 01/03/2023]
|
20
|
Vannier JB, Depeiges A, White C, Gallego ME. ERCC1/XPF protects short telomeres from homologous recombination in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000380. [PMID: 19214203 PMCID: PMC2632759 DOI: 10.1371/journal.pgen.1000380] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/13/2009] [Indexed: 12/17/2022] Open
Abstract
Many repair and recombination proteins play essential roles in telomere function and chromosome stability, notwithstanding the role of telomeres in "hiding" chromosome ends from DNA repair and recombination. Among these are XPF and ERCC1, which form a structure-specific endonuclease known for its essential role in nucleotide excision repair and is the subject of considerable interest in studies of recombination. In contrast to observations in mammalian cells, we observe no enhancement of chromosomal instability in Arabidopsis plants mutated for either XPF (AtRAD1) or ERCC1 (AtERCC1) orthologs, which develop normally and show wild-type telomere length. However, in the absence of telomerase, mutation of either of these two genes induces a significantly earlier onset of chromosomal instability. This early appearance of telomere instability is not due to a general acceleration of telomeric repeat loss, but is associated with the presence of dicentric chromosome bridges and cytologically visible extrachromosomal DNA fragments in mitotic anaphase. Such extrachromosomal fragments are not observed in later-generation single-telomerase mutant plants presenting similar frequencies of anaphase bridges. Extensive FISH analyses show that these DNAs are broken chromosomes and correspond to two specific chromosome arms. Analysis of the Arabidopsis genome sequence identified two extensive blocks of degenerate telomeric repeats, which lie at the bases of these two arms. Our data thus indicate a protective role of ERCC1/XPF against 3' G-strand overhang invasion of interstitial telomeric repeats. The fact that the Atercc1 (and Atrad1) mutants dramatically potentiate levels of chromosome instability in Attert mutants, and the absence of such events in the presence of telomerase, have important implications for models of the roles of recombination at telomeres and is a striking illustration of the impact of genome structure on the outcomes of equivalent recombination processes in different organisms.
Collapse
Affiliation(s)
- Jean-Baptiste Vannier
- Génétique, Reproduction et Développement, UMR CNRS 6247, Clermont Université, INSERM U931, Aubière, France
| | - Annie Depeiges
- Génétique, Reproduction et Développement, UMR CNRS 6247, Clermont Université, INSERM U931, Aubière, France
| | - Charles White
- Génétique, Reproduction et Développement, UMR CNRS 6247, Clermont Université, INSERM U931, Aubière, France
| | - Maria Eugenia Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6247, Clermont Université, INSERM U931, Aubière, France
- * E-mail:
| |
Collapse
|
21
|
Molinier J, Lechner E, Dumbliauskas E, Genschik P. Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 2008; 4:e1000093. [PMID: 18551167 PMCID: PMC2396500 DOI: 10.1371/journal.pgen.1000093] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 05/12/2008] [Indexed: 11/18/2022] Open
Abstract
Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.
Collapse
Affiliation(s)
- Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Eva Dumbliauskas
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
- * E-mail:
| |
Collapse
|
22
|
Vlček D, Ševčovičová A, Sviežená B, Gálová E, Miadoková E. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Genet 2007; 53:1-22. [DOI: 10.1007/s00294-007-0163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/08/2007] [Accepted: 10/20/2007] [Indexed: 01/12/2023]
|
23
|
Lafleuriel J, Degroote F, Depeiges A, Picard G. Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues. PLANT MOLECULAR BIOLOGY 2007; 63:833-46. [PMID: 17294256 DOI: 10.1007/s11103-006-9128-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 12/18/2006] [Indexed: 05/13/2023]
Abstract
We experimented a novel reporter system to analyze intrachromosomal recombination between homeologous sequences in Arabidopsis germ cell lineages. The recombination substrates used are the BAR and PAT genes which diverge by about 13% at the nucleotide level and confer resistance to the herbicide glufosinate. DNA double-strand breaks (DSBs) were generated by the I-Sce1 endonuclease to induce recombination. Loss of AtMSH2 induces a 3-fold increase of the frequency of recombination events indicating that AtMSH2 is involved in the anti-recombination activity that prevents exchange between highly diverged sequences in Arabidopsis. Molecular analysis of recombined alleles indicates that in wild type plants the single strand annealing (SSA) pathway can process more efficiently homologous 3' ends than 3' ends generated by resection of non-homologous overhangs. The loss of AtMSH2 disturbs this process, leading to a modification of the distribution of the BAR/PAT junctions and therefore showing that the MSH2 function is also involved in determining the structure of the recombined alleles. In addition, conversion tracts were observed in some alleles. They are shorter in MSH2 deficient plants than in wild-type, suggesting that a short-patch mismatch repair, not controlled by MSH2, could exist in Arabidopsis.
Collapse
MESH Headings
- Alleles
- Aminobutyrates/pharmacology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Base Pair Mismatch/genetics
- Base Sequence
- Chromosome Segregation/genetics
- Crosses, Genetic
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Genetic Vectors/genetics
- Genotype
- Herbicides/pharmacology
- Models, Genetic
- Molecular Sequence Data
- MutS Homolog 2 Protein/genetics
- MutS Homolog 2 Protein/physiology
- Plants, Genetically Modified
- Recombination, Genetic/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
|
24
|
Lindhout BI, Pinas JE, Hooykaas PJJ, van der Zaal BJ. Employing libraries of zinc finger artificial transcription factors to screen for homologous recombination mutants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:475-83. [PMID: 17052325 DOI: 10.1111/j.1365-313x.2006.02877.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A library of genes for zinc finger artificial transcription factors (ZF-ATF) was generated by fusion of DNA sequences encoding three-finger Cys(2)His(2) ZF domains to the VP16 activation domain under the control of the promoter of the ribosomal protein gene RPS5A from Arabidopsis thaliana. After introduction of this library into an Arabidopsis homologous recombination (HR) indicator line, we selected primary transformants exhibiting multiple somatic recombination events. After PCR-mediated rescue of ZF sequences, reconstituted ZF-ATFs were re-introduced in the target line. In this manner, a ZF-ATF was identified that led to a 200-1000-fold increase in somatic HR (replicated in an independent second target line). A mutant plant line expressing the HR-inducing ZF-ATF exhibited increased resistance to the DNA-damaging agent bleomycin and was more sensitive to methyl methanesulfonate (MMS), a combination of traits not described previously. Our results demonstrate that the use of ZF-ATF pools is highly rewarding when screening for novel dominant phenotypes in Arabidopsis.
Collapse
Affiliation(s)
- Beatrice I Lindhout
- Clusius Laboratory, Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
25
|
Reidt W, Wurz R, Wanieck K, Chu HH, Puchta H. A homologue of the breast cancer-associated gene BARD1 is involved in DNA repair in plants. EMBO J 2006; 25:4326-37. [PMID: 16957774 PMCID: PMC1570427 DOI: 10.1038/sj.emboj.7601313] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 08/03/2006] [Indexed: 01/09/2023] Open
Abstract
hBRCA1 and hBARD1 are tumor suppressor proteins that are involved as heterodimer via ubiquitinylation in many cellular processes, such as DNA repair. Loss of BRCA1 or BARD1 results in early embryonic lethality and chromosomal instability. The Arabidopsis genome carries a BRCA1 homologue, and we were able to identify a BARD1 homologue. AtBRCA1 and the putative AtBARD1 protein are able to interact with each other as indicated by in vitro and in planta experiments. We have identified T-DNA insertion mutants for both genes, which show no visible phenotype under standard growth conditions and are fully fertile. Thus, in contrast to animals, both genes have no indispensable role during development and meiosis in plants. The two single as well as the double mutant are to a similar extent sensitive to mitomycin C, indicating an epistatic interaction in DNA crosslink repair. We could further demonstrate that in Arabidopsis BARD1 plays a prominent role in the regulation of homologous DNA repair in somatic cells.
Collapse
Affiliation(s)
- Wim Reidt
- Botanisches Institut II, Universität Karlsruhe, Karlsruhe, Germany
| | - Rebecca Wurz
- Botanisches Institut II, Universität Karlsruhe, Karlsruhe, Germany
| | - Kristina Wanieck
- Botanisches Institut II, Universität Karlsruhe, Karlsruhe, Germany
| | - Hoang Ha Chu
- Botanisches Institut II, Universität Karlsruhe, Karlsruhe, Germany
| | - Holger Puchta
- Botanisches Institut II, Universität Karlsruhe, Karlsruhe, Germany
| |
Collapse
|
26
|
Hartung F, Suer S, Bergmann T, Puchta H. The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A. Nucleic Acids Res 2006; 34:4438-48. [PMID: 16945961 PMCID: PMC1636358 DOI: 10.1093/nar/gkl576] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The endonuclease MUS81 has been shown in a variety of organisms to be involved in DNA repair in mitotic and meiotic cells. Homologues of the MUS81 gene exist in the genomes of all eukaryotes, pointing to a conserved role of the protein. However, the biological role of MUS81 varies between different eukaryotes. For example, while loss of the gene results in strongly impaired fertility in Saccharomyces cerevisiae and nearly complete sterility in Schizosaccharomyces pombe, it is not essential for meiosis in mammals. We identified a functional homologue (AtMUS81/At4g30870) in the genome of Arabidopsis thaliana and isolated a full-length cDNA of this gene. Analysing two independent T-DNA insertion lines of AtMUS81, we found that they are sensitive to the mutagens MMS and MMC. Both mutants have a deficiency in homologous recombination in somatic cells but only after induction by genotoxic stress. In contrast to yeast, no meiotic defect of AtMUS81 mutants was detectable and the mutants are viable. Crosses with a hyperrecombinogenic mutant of the AtRecQ4A helicase resulted in synthetic lethality in the double mutant. Thus, the nuclease AtMUS81 and the helicase AtRecQ4A seem to be involved in two alternative pathways of resolution of replicative DNA structures in somatic cells.
Collapse
Affiliation(s)
| | | | | | - H. Puchta
- To whom correspondence should be addressed. Tel: +49 721 6088894; Fax: +49 721 6084874;
| |
Collapse
|
27
|
Liang L, Flury S, Kalck V, Hohn B, Molinier J. CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. PLANT MOLECULAR BIOLOGY 2006; 61:345-56. [PMID: 16786311 DOI: 10.1007/s11103-006-0016-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/25/2006] [Indexed: 05/10/2023]
Abstract
Arabidopsis thaliana CENTRIN2 (AtCEN2) has been shown to modulate Nucleotide Excision Repair (NER) and Homologous Recombination (HR). The present study provides evidence that AtCEN2 interacts with the Arabidopsis homolog of human XPC, AtRAD4 and that the distal EF-hand Ca(2+) binding domain is essential for this interaction. In addition, the synthesis-dependent repair efficiency of bulky DNA lesions was enhanced in cell extracts prepared from Arabidopsis plants overexpressing the full length AtCEN2 but not in those overexpressing a truncated AtCEN2 form, suggesting a role for the distal EF-hand Ca(2+) binding domain in the early step of the NER process. Upon UV-C treatment the AtCEN2 protein was shown to be increased in concentration and to be localised in the nucleus rapidly. Taken together these data suggest that AtCEN2 is a part of the AtRAD4 recognition complex and that this interaction is required for efficient NER. In addition, NER and HR appear to be differentially modulated upon exposure of plants to DNA damaging agents. This suggests in plants, that processing of bulky DNA lesions highly depends on the excision repair efficiency, especially the recognition step, thus influencing the recombinational repair pathway.
Collapse
Affiliation(s)
- Lu Liang
- Plant Biochemistry Physiology Group, Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Lindau, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
29
|
Shaked H, Avivi-Ragolsky N, Levy AA. Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 2006; 173:985-94. [PMID: 16547115 PMCID: PMC1526515 DOI: 10.1534/genetics.105.051664] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The genome of plants, like that of other eukaryotes, is organized into chromatin, a compact structure that reduces the accessibility of DNA to machineries such as transcription, replication, and DNA recombination and repair. Plant genes, which contain the characteristic ATPase/helicase motifs of the chromatin remodeling Swi2/Snf2 family of proteins, have been thoroughly studied, but their role in homologous recombination or DNA repair has received limited attention. We have searched for homologs of the yeast RAD54 gene, whose role in recombination and repair and in chromatin remodeling is well established. Forty Arabidopsis SWI2/SNF2 genes were identified and the function of a selected group of 14 was analyzed. Mutant analysis and/or RNAi-mediated silencing showed that 11 of the 14 genes tested played a role in response to DNA damage. Two of the 14 genes were involved in homologous recombination between inverted repeats. The putative ortholog of RAD54 and close homologs of ERCC6/RAD26 were involved in DNA damage response, suggesting functional conservation across kingdoms. In addition, genes known for their role in development, such as PICKLE/GYMNOS and PIE1, or in silencing, such as DDM1, turned out to also be involved in DNA damage response. A comparison of ddm1 and met1 mutants suggests that DNA damage response is affected essentially by chromatin structure and that cytosine methylation is less critical. These results emphasize the broad involvement of the SWI2/SNF2 family, and thus of chromatin remodeling, in genome maintenance and the link between epigenetic and genetic processes.
Collapse
Affiliation(s)
- Hezi Shaked
- Plant Sciences Department, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
30
|
Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol Biol Cell 2006; 17:1331-43. [PMID: 16394097 PMCID: PMC1382321 DOI: 10.1091/mbc.e05-09-0902] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.
Collapse
Affiliation(s)
- Asela J Wijeratne
- Intercollege Graduate Program in Plant Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
31
|
Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. Plant responses to UV radiation and links to pathogen resistance. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:1-40. [PMID: 17178464 DOI: 10.1016/s0074-7696(06)55001-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased incident ultraviolet (UV) radiation due to ozone depletion has heightened interest in plant responses to UV because solar UV wavelengths can reduce plant genome stability, growth, and productivity. These detrimental effects result from damage to cell components including nucleic acids, proteins, and membrane lipids. As obligate phototrophs, plants must counter the onslaught of cellular damage due to prolonged exposure to sunlight. They do so by attenuating the UV dose received through accumulation of UV-absorbing secondary metabolites, neutralizing reactive oxygen species produced by UV, monomerizing UV-induced pyrimidine dimers by photoreactivation, extracting UV photoproducts from DNA via nucleotide excision repair, and perhaps transiently tolerating the presence of DNA lesions via replicative bypass of the damage. The signaling mechanisms controlling these responses suggest that UV exposure also may be beneficial to plants by increasing cellular immunity to pathogens. Indeed, pathogen resistance can be enhanced by UV treatment, and recent experiments suggest DNA damage and its processing may have a role.
Collapse
Affiliation(s)
- Bernard A Kunz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | | | | | |
Collapse
|
32
|
Bray CM, West CE. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. THE NEW PHYTOLOGIST 2005; 168:511-28. [PMID: 16313635 DOI: 10.1111/j.1469-8137.2005.01548.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As obligate phototrophs, plants harness energy from sunlight to split water, producing oxygen and reducing power. This lifestyle exposes plants to particularly high levels of genotoxic stress that threatens genomic integrity, leading to mutation, developmental arrest and cell death. Plants, which with algae are the only photosynthetic eukaryotes, have evolved very effective pathways for DNA damage signalling and repair, and this review summarises our current understanding of these processes in the responses of plants to genotoxic stress. We also identify how the use of new and emerging technologies can complement established physiological and ecological studies to progress the application of this knowledge in biotechnology.
Collapse
Affiliation(s)
- Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
33
|
Gallego ME, White CI. DNA repair and recombination functions in Arabidopsis telomere maintenance. Chromosome Res 2005; 13:481-91. [PMID: 16132813 DOI: 10.1007/s10577-005-0995-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this review, we discuss recent advances in the knowledge of plant telomere maintenance, focusing on the model plant Arabidopsis thaliana and, in particular, on the roles of proteins involved in DNA repair and recombination. The question of the interrelationships between DNA repair and recombination pathways and proteins with telomere function and maintenance is of increasing interest and has been the subject of a number of recent reviews (Cech 2004, d'Adda di Fagagna et al. 2004, Hande 2004, Harrington 2004, Maser and DePinho 2004). Understanding of telomere biology, DNA repair and recombination in plants has rapidly progressed over the last decade, substantially due to genetic approaches in Arabidopsis, and we feel that this is an appropriate time to review current knowledge in this field. A number of recent reviews have dealt more generally with the subject of plant telomere structure and evolution (Riha et al. 2001, McKnight et al. 2002, Riha and Shippen 2003b, McKnight and Shippen 2004, Fajkus et al. 2005) and we thus focus specifically on plant telomere biology in the context of DNA repair and recombination in Arabidopsis.
Collapse
Affiliation(s)
- Maria E Gallego
- UMR 6547 CNRS, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France
| | | |
Collapse
|
34
|
Abe K, Osakabe K, Nakayama S, Endo M, Tagiri A, Todoriki S, Ichikawa H, Toki S. Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis. PLANT PHYSIOLOGY 2005; 139:896-908. [PMID: 16169964 PMCID: PMC1256004 DOI: 10.1104/pp.105.065243] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rad51 is a homolog of the bacterial RecA recombinase, and a key factor in homologous recombination in eukaryotes. Rad51 paralogs have been identified from yeast to vertebrates. Rad51 paralogs are thought to play an important role in the assembly or stabilization of Rad51 that promotes homologous pairing and strand exchange reactions. We previously characterized two RAD51 paralogous genes in Arabidopsis (Arabidopsis thaliana) named AtRAD51C and AtXRCC3, which are homologs of human RAD51C and XRCC3, respectively, and described the interaction of their products in a yeast two-hybrid system. Recent studies showed the involvement of AtXrcc3 in DNA repair and functional role in meiosis. To determine the role of RAD51C in meiotic and mitotic recombination in higher plants, we characterized a T-DNA insertion mutant of AtRAD51C. Although the atrad51C mutant grew normally during vegetative developmental stage, the mutant produced aborted siliques, and their anthers did not contain mature pollen grains. Crossing of the mutant with wild-type plants showed defective male and female gametogeneses as evidenced by lack of seed production. Furthermore, meiosis was severely disturbed in the mutant. The atrad51C mutant also showed increased sensitivity to gamma-irradiation and cisplatin, which are known to induce double-strand DNA breaks. The efficiency of homologous recombination in somatic cells in the mutant was markedly reduced relative to that in wild-type plants.
Collapse
Affiliation(s)
- Kiyomi Abe
- Department of Plant Biotechnology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|