1
|
Che R, Tan X, Meng X, Li H. ZmCYB5-1, a cytochrome b5 Gene, negatively regulates drought stress tolerance in maize. Gene 2025; 954:149422. [PMID: 40107433 DOI: 10.1016/j.gene.2025.149422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Cytochrome b5 proteins (CYB5s), integral components of electron transport systems, are well-documented mediators in plant-specific fatty acid biogenesis and cuticular lipid deposition. However, the mechanisms through which CYB5 genes modulate drought stress responses in maize remain poorly understood. In this study, we identified a novel drought-responsive gene designated as ZmCYB5-1 and characterized its role in drought adaptation. The transcriptional profile of ZmCYB5-1 was found to be significant down-regulated by both drought stress and abscisic acid (ABA). Sequence analysis revealed that ZmCYB5-1 possesses the conserved cytochrome b5 domain characteristic of this protein family. Transient expression assays in tobacco epidermal cells confirmed that ZmCYB5-1 is predominantly localized in the cytoplasm and nucleus. Strikingly, transgenic maize plants overexpressing ZmCYB5-1 displayed markedly reduced drought tolerance compared to wild-type controls. Transcriptomic profiling under drought stress conditions demonstrated that the overexpression line exhibited significant downregulation of genes related to three key biological processes: ABA signal transduction pathways, stress response mechanisms, and photosynthetic apparatus. Collectively, our findings provide compelling evidence that ZmCYB5-1 acts as a negative regulator of drought stress responses in maize, highlighting its potential as a promising genetic engineering target for improving drought resistance through gene-editing approaches.
Collapse
Affiliation(s)
- Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Xiaoting Tan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Xiaona Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Tang XH, Zhou Y, He YT, Zhang W, Chen X, Tan J, Guo K, Liu YT, Zhao SH, Ning YQ, Sun Y, Li XF. Interaction of PASTICCINO2 with Golgi anti-apoptotic proteins confers resistance to endoplasmic reticulum stress and is dependent on very-long-chain fatty acids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7267-7283. [PMID: 39126211 DOI: 10.1093/jxb/erae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining cell homeostasis because it is the primary site for synthesizing secreted and transmembrane proteins and lipids. The unfolded protein response (UPR) is activated to restore the homeostasis of the ER when it is under stress; however, the relationship between lipids and the ER stress response in plants is not well understood. Arabidopsis GOLGI ANTI-APOPTOTIC PROTEINS (GAAPs) are involved in resisting ER stress, and in this study, we found that PASTICCINO2 (PAS2), which is involved in very-long-chain fatty acid (VLCFA) synthesis, interacts with GAAPs and INOSITOL REQUIRING ENZYME 1. The pas2 single-mutant and the gaap1 pas2 and gaap2 pas2 double-mutants exhibited increased seedling damage and an impaired UPR response under chronic ER stress. Site mutation combined with genetic analysis revealed that the role of PAS2 in resisting ER stress depended on its VLCFA synthesis domain. VLCFA contents were increased under ER stress, and this required GAAPs. Exogenous VLCFAs partially restored the defect in the activation of the UPR caused by mutation of PAS2 or GAAP under chronic ER stress. Our findings demonstrate that the association of PAS2 with GAAPs confers plant resistance to ER stress by regulating VLCFA synthesis and the UPR. This provides a basis for further studies on the connection between lipids and cell-fate decisions under stress.
Collapse
Affiliation(s)
- Xiao-Han Tang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
- College of Forestry Engineering, Shandong Agriculture and Engineering University, 866 Nongganyuan Road, Jinan 250100, PR China
| | - Yan Zhou
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Yu-Ting He
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Wei Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Xi Chen
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Jing Tan
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Kun Guo
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Yu-Ting Liu
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Shu-Heng Zhao
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Yi-Qiu Ning
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Yue Sun
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| | - Xiao-Fang Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, PR China 200241
| |
Collapse
|
3
|
Tang Z, Shi S, Niu R, Zhou Y, Wang Z, Fu R, Mou R, Chen S, Ding P, Xu G. Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe 2024; 32:1552-1565.e8. [PMID: 39111320 DOI: 10.1016/j.chom.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shaosong Shi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rongrong Fu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
4
|
Adhikari B, Gayral M, Herath V, Bedsole CO, Kumar S, Ball H, Atallah O, Shaw B, Pajerowska-Mukhtar KM, Verchot J. bZIP60 and Bax inhibitor 1 contribute IRE1-dependent and independent roles to potexvirus infection. THE NEW PHYTOLOGIST 2024; 243:1172-1189. [PMID: 38853429 DOI: 10.1111/nph.19882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Mathieu Gayral
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, 26, bd Docteur Petitjean-BP 87999, Dijon, Cedex, 21079, France
| | - Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Sandeep Kumar
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Haden Ball
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Osama Atallah
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| |
Collapse
|
5
|
Xi Y, Long X, Song M, Liu Y, Yan J, Lv Y, Yang H, Zhang Y, Miao W, Lin C. The fatty acid 2-hydroxylase CsSCS7 is a key hyphal growth factor and potential control target in Colletotrichum siamense. mBio 2024; 15:e0201523. [PMID: 38197633 PMCID: PMC10865788 DOI: 10.1128/mbio.02015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
SCS7 is a fatty acid 2-hydroxylase required for the synthesis of inositol phosphorylceramide but is not essential for normal growth in Saccharomyces cerevisiae. Here, we demonstrate that the Colletotrichum siamense SCS7 homolog CsSCS7 plays a key role in hyphal growth. The CsSCS7 deletion mutant showed strong hyphal growth inhibition, small conidia, and marginally reduced sporulation and also resulted in a sharp reduction in the full virulence and increasing the fungicide sensitivity. The three protein domains (a cytochrome b5 domain, a transmembrane domain, and a hydroxylase domain) are important to CsSCS7 protein function in hyphal growth. The fatty acid assay results revealed that the CsSCS7 gene is important for balancing the contents of multiple mid-long- and short-chain fatty acids. Additionally, the retarded growth and virulence of C. siamense ΔCsSCS7 can be recovered partly by the reintroduction of homologous sequences from Magnaporthe oryzae and Fusarium graminearum but not SCS7 of S. cerevisiae. In addition, the spraying of C. siamense with naked CsSCS7-double-stranded RNA (dsRNAs), which leads to RNAi, increases the inhibition of hyphal growth and slightly decreases disease lesions. Then, we used nano material Mg-Al-layered double hydroxide as carriers to deliver dsRNA, which significantly enhanced the control effect of dsRNA, and the lesion area was obviously reduced. These data indicated that CsSCS7 is an important factor for hyphal growth and affects virulence and may be a potential control target in C. siamense and even in filamentous plant pathogenic fungi.IMPORTANCECsSCS7, which is homologous to yeast fatty acid 2-hydroxylase SCS7, was confirmed to play a key role in the hyphal growth of Colletotrichum siamense and affect its virulence. The CsSCS7 gene is involved in the synthesis and metabolism of fatty acids. Homologs from the filamentous fungi Magnaporthe oryzae and Fusarium graminearum can recover the retarded growth and virulence of C. siamense ΔCsSCS7. The spraying of double-stranded RNAs targeting CsSCS7 can inhibit hyphal growth and reduce the disease lesion area to some extent. After using nano material Mg-Al layered double hydroxide as carrier, the inhibition rates were significantly increased. We demonstrated that CsSCS7 is an important factor for hyphal growth and affects virulence and may be a potential control target in C. siamense and even in filamentous plant pathogenic fungi.
Collapse
Affiliation(s)
- Yitao Xi
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiping Long
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Miao Song
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yu Liu
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jingting Yan
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yanyun Lv
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hong Yang
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Yu Zhang
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Weiguo Miao
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chunhua Lin
- Sanya Institute of Breeding and Mutiplication, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
6
|
Ushio M, Ishikawa T, Matsuura T, Mori IC, Kawai-Yamada M, Fukao Y, Nagano M. MHP1 and MHL generate odd-chain fatty acids from 2-hydroxy fatty acids in sphingolipids and are related to immunity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111840. [PMID: 37619867 DOI: 10.1016/j.plantsci.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In plants, the 2-hydroxy fatty acids (HFAs) of sphingolipids are important for plant growth and stress responses. Although the synthetic pathway of HFAs is well understood, their degradation has not yet been elucidated. In Saccharomyces cerevisiae, Mpo1 has been identified as a dioxygenase that degrades HFAs. This study examined the functions of two homologs of yeast Mpo1, MHP1 and MHL, in Arabidopsis thaliana. The mhp1 and mhp1mhl mutants showed a dwarf phenotype compared to that of the wild type. Lipid analysis of the mutants revealed the involvement of MHP1 and MHL in synthesizing odd-chain fatty acids (OCFAs), possibly by the degradation of HFAs. OCFAs are present in trace amounts in plants; however, their physiological significance is largely unknown. RNA sequence analysis of the mhp1mhl mutant revealed that growth-related genes decreased, whereas genes involved in stress response increased. Additionally, the mhp1mhl mutant had increased expression of defense-related genes and increased resistance to infection by Pseudomonas syringae pv. tomato DC3000 (Pto), and Pto carrying the effector AvrRpt2. Phytohormone analysis demonstrated that jasmonic acid in mhp1mhl was higher than that in the wild type. These results indicate that MHP1 and MHL are involved in synthesizing OCFAs and immunity in Arabidopsis.
Collapse
Affiliation(s)
- Marina Ushio
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Yoichiro Fukao
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
7
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
8
|
Liu CJ. Cytochrome b 5: A versatile electron carrier and regulator for plant metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:984174. [PMID: 36212330 PMCID: PMC9539407 DOI: 10.3389/fpls.2022.984174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome b 5 (CB5) is a small heme-binding protein, known as an electron donor delivering reducing power to the terminal enzymes involved in oxidative reactions. In plants, the CB5 protein family is substantially expanded both in its isoform numbers and cellular functions, compared to its yeast and mammalian counterparts. As an electron carrier, plant CB5 proteins function not only in fatty acid desaturation, hydroxylation and elongation, but also in the formation of specialized metabolites such as flavonoids, phenolic esters, and heteropolymer lignin. Furthermore, plant CB5s are found to interact with different non-catalytic proteins such as ethylene signaling regulator, cell death inhibitor, and sugar transporters, implicating their versatile regulatory roles in coordinating different metabolic and cellular processes, presumably in respect to the cellular redox status and/or carbon availability. Compared to the plentiful studies on biochemistry and cellular functions of mammalian CB5 proteins, the cellular and metabolic roles of plant CB5 proteins have received far less attention. This article summarizes the fragmentary information pertaining to the discovery of plant CB5 proteins, and discusses the conventional and peculiar functions that plant CB5s might play in different metabolic and cellular processes. Gaining comprehensive insight into the biological functions of CB5 proteins could offer effective biotechnological solutions to tailor plant chemodiversity and cellular responses to environment stimuli.
Collapse
|
9
|
Groux R, Fouillen L, Mongrand S, Reymond P. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2535-2553. [PMID: 35608326 PMCID: PMC9342989 DOI: 10.1093/plphys/kiac242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
10
|
Ukawa T, Banno F, Ishikawa T, Kasahara K, Nishina Y, Inoue R, Tsujii K, Yamaguchi M, Takahashi T, Fukao Y, Kawai-Yamada M, Nagano M. Sphingolipids with 2-hydroxy fatty acids aid in plasma membrane nanodomain organization and oxidative burst. PLANT PHYSIOLOGY 2022; 189:839-857. [PMID: 35312013 PMCID: PMC9157162 DOI: 10.1093/plphys/kiac134] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 05/21/2023]
Abstract
Plant sphingolipids mostly possess 2-hydroxy fatty acids (HFA), the synthesis of which is catalyzed by FA 2-hydroxylases (FAHs). In Arabidopsis (Arabidopsis thaliana), two FAHs (FAH1 and FAH2) have been identified. However, the functions of FAHs and sphingolipids with HFAs (2-hydroxy sphingolipids) are still unknown because of the lack of Arabidopsis lines with the complete deletion of FAH1. In this study, we generated a FAH1 mutant (fah1c) using CRISPR/Cas9-based genome editing. Sphingolipid analysis of fah1c, fah2, and fah1cfah2 mutants revealed that FAH1 hydroxylates very long-chain FAs (VLCFAs), whereas the substrates of FAH2 are VLCFAs and palmitic acid. However, 2-hydroxy sphingolipids are not completely lost in the fah1cfah2 double mutant, suggesting the existence of other enzymes catalyzing the hydroxylation of sphingolipid FAs. Plasma membrane (PM) analysis and molecular dynamics simulations revealed that hydroxyl groups of sphingolipid acyl chains play a crucial role in the organization of nanodomains, which are nanoscale liquid-ordered domains mainly formed by sphingolipids and sterols in the PM, through hydrogen bonds. In the PM of the fah1cfah2 mutant, the expression levels of 26.7% of the proteins, including defense-related proteins such as the pattern recognition receptors (PRRs) brassinosteroid insensitive 1-associated receptor kinase 1 and chitin elicitor receptor kinase 1, NADPH oxidase respiratory burst oxidase homolog D (RBOHD), and heterotrimeric G proteins, were lower than that in the wild-type. In addition, reactive oxygen species (ROS) burst was suppressed in the fah1cfah2 mutant after treatment with the pathogen-associated molecular patterns flg22 and chitin. These results indicated that 2-hydroxy sphingolipids are necessary for the organization of PM nanodomains and ROS burst through RBOHD and PRRs during pattern-triggered immunity.
Collapse
Affiliation(s)
- Tomomi Ukawa
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Fumihiko Banno
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuuta Nishina
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Rika Inoue
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keigo Tsujii
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Author for correspondence:
| |
Collapse
|
11
|
Iqbal T, Das D. Biochemical Investigation of Membrane-Bound Cytochrome b5 and the Catalytic Domain of Cytochrome b5 Reductase from Arabidopsis thaliana. Biochemistry 2022; 61:909-921. [PMID: 35475372 DOI: 10.1021/acs.biochem.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) membrane of plant cells contains several enzymes responsible for the biosynthesis of a diverse range of molecules essential for plant growth and holds potential for industrial applications. Many of these enzymes are dependent on electron transfer proteins to sustain their catalytic cycles. In plants, two crucial ER-bound electron transfer proteins are cytochrome b5 and cytochrome b5 reductase, which catalyze the stepwise transfer of electrons from NADH to redox enzymes such as fatty acid desaturases, cytochrome P450s, and plant aldehyde decarbonylase. Despite the high significance of plant cytochrome b5 and cytochrome b5 reductase, they have eluded detailed characterization to date. Here, we overexpressed the full-length membrane-bound cytochrome b5 isoform B from the model plant Arabidopsis thaliana in Escherichia coli, purified the protein employing detergents as well as styrene-maleic acid (SMA) copolymers, and biochemically characterized the protein. The SMA-encapsulated cytochrome b5 exhibits a discoidal shape and the characteristic features of the active heme-bound state. We also overexpressed and purified the soluble domain of cytochrome b5 reductase from A. thaliana, establishing its activity, stability, and kinetic parameters. Further, we demonstrated that the plant cytochrome b5, purified in detergents and styrene maleic acid lipid particles (SMALPs), readily accepts electrons from the cognate plant cytochrome b5 reductase and distant electron mediators such as plant NADPH-cytochrome P450 oxidoreductase and cyanobacterial NADPH-ferredoxin reductase. We also measured the kinetic parameters of cytochrome b5 reductase for cytochrome b5. Our studies are the first to report the purification and detailed biochemical characterization of the plant cytochrome b5 and cytochrome b5 reductase from the bacterial overexpression system.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
12
|
König S, Gömann J, Zienkiewicz A, Zienkiewicz K, Meldau D, Herrfurth C, Feussner I. Sphingolipid-Induced Programmed Cell Death is a Salicylic Acid and EDS1-Dependent Phenotype in Arabidopsis Fatty Acid Hydroxylase (Fah1, Fah2) and Ceramide Synthase (Loh2) Triple Mutants. PLANT & CELL PHYSIOLOGY 2022; 63:317-325. [PMID: 34910213 PMCID: PMC8917834 DOI: 10.1093/pcp/pcab174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Ceramides (Cers) and long-chain bases (LCBs) are plant sphingolipids involved in the induction of plant programmed cell death (PCD). The fatty acid hydroxylase mutant fah1 fah2 exhibits high Cer levels and moderately elevated LCB levels. Salicylic acid glucoside level is increased in this mutant, but no cell death can be detected by trypan blue staining. To determine the effect of Cers with different chain lengths, fah1 fah2 was crossed with ceramide synthase mutants longevity assurance gene one homologue1-3 (loh1, loh2 and loh3). Surprisingly, only triple mutants with loh2 show cell death detected by trypan blue staining under the selected conditions. Sphingolipid profiling revealed that the greatest differences between the triple mutant plants are in the LCB and LCB-phosphate (LCB-P) fraction. fah1 fah2 loh2 plants accumulate LCB d18:0, LCB t18:0 and LCB-P d18:0. Crossing fah1 fah2 loh2 with the salicylic acid (SA) synthesis mutant sid2-2 and with the SA signaling mutants enhanced disease susceptibility 1-2 (eds1-2) and phytoalexin deficient 4-1 (pad4-1) revealed that lesions are SA- and EDS1-dependent. These quadruple mutants also confirm that there may be a feedback loop between SA and sphingolipid metabolism as they accumulated less Cers and LCBs. In conclusion, PCD in fah1 fah2 loh2 is a SA- and EDS1-dependent phenotype, which is likely due to accumulation of LCBs.
Collapse
Affiliation(s)
- Stefanie König
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Jasmin Gömann
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | | | | | - Dorothea Meldau
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | | |
Collapse
|
13
|
An endoplasmic reticulum-localized cytochrome b 5 regulates high-affinity K + transport in response to salt stress in rice. Proc Natl Acad Sci U S A 2021; 118:2114347118. [PMID: 34876526 PMCID: PMC8685926 DOI: 10.1073/pnas.2114347118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
High-affinity K+ (HAK) transporter-mediated K+ uptake has an important role when plants are subjected to stresses. This work identifies a mechanism of HAK regulation. The affinity of HAK at the plasma membrane for K+ depends on the binding of a cytochrome (CYB5) protein at the endoplasmic reticulum. This improves K+ uptake and the ability of plants to survive under saline conditions. The HAK–CYB5 interaction not only constitutes a mechanism of HAK regulation but also reflects interorganelle communication mediated by functional protein interactions under conditions of stress. Potassium (K+) is an essential element for growth and development in both animals and plants, while high levels of environmental sodium (Na+) represent a threat to most plants. The uptake of K+ from high-saline environments is an essential mechanism to maintain intracellular K+/Na+ homeostasis, which can help reduce toxicity caused by Na+ accumulation, thereby improving the salt tolerance of plants. However, the mechanisms and regulation of K+-uptake during salt stress remain poorly understood. In this study, we identified an endoplasmic reticulum–localized cytochrome b5 (OsCYB5-2) that interacted with a high-affinity K+ transporter (OsHAK21) at the plasma membrane. The association of OsCYB5-2 with the OsHAK21 transporter caused an increase in transporter activity by enhancing the apparent affinity for K+-binding but not Na+-binding. Heme binding to OsCYB5-2 was essential for the regulation of OsHAK21. High salinity directly triggered the OsHAK21–OsCYB5-2 interaction, promoting OsHAK21-mediated K+-uptake and restricting Na+ entry into cells; this maintained intracellular K+/Na+ homeostasis in rice cells. Finally, overexpression of OsCYB5-2 increased OsHAK21-mediated K+ transport and improved salt tolerance in rice seedlings. This study revealed a posttranslational regulatory mechanism for HAK transporter activity mediated by a cytochrome b5 and highlighted the coordinated action of two proteins to perceive Na+ in response to salt stress.
Collapse
|
14
|
Li X, Li S, Liu Y, He Q, Liu W, Lin C, Miao W. HbLFG1, a Rubber Tree ( Hevea brasiliensis) Lifeguard Protein, Can Facilitate Powdery Mildew Infection by Suppressing Plant Immunity. PHYTOPATHOLOGY 2021; 111:1648-1659. [PMID: 34047620 DOI: 10.1094/phyto-08-20-0362-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known about the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein (HbLFG1) with a focus on its function in regulating defense against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.
Collapse
Affiliation(s)
- Xiao Li
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Sipeng Li
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yuhan Liu
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Qiguang He
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Chunhua Lin
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| |
Collapse
|
15
|
Steinberger AR, Merino WO, Cahoon RE, Cahoon EB, Lynch DV. Disruption of long-chain base hydroxylation alters growth and impacts sphingolipid synthesis in Physcomitrella patens. PLANT DIRECT 2021; 5:e336. [PMID: 34355113 PMCID: PMC8320657 DOI: 10.1002/pld3.336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 05/24/2023]
Abstract
Sphingolipids have roles as membrane structural components and as bioactive molecules in plants. In Physcomitrella patens, 4-hydroxysphinganine (phytosphingosine, t18:0) is the predominant sphingolipid long-chain base (LCB). To assess the functional significance of t18:0, CRISPR-Cas9 mutagenesis was used to generate mutant lines lacking the sole SPHINGOID BASE HYDROXYLASE (SBH) gene encoding the hydroxylase responsible for converting sphinganine (d18:0) to t18:0. Total sphingolipid content in sbh protonemata was 2.4-fold higher than in wild-type. Modest changes in glycosyl inositolphosphorylceramide (GIPC) glycosylation patterns occurred. Sphingolipidomic analyses of mutants lacking t18:0 indicated modest alterations in acyl-chain pairing with d18:0 in GIPCs and ceramides, but dramatic alterations in acyl-chain pairing in glucosylceramides, in which 4,8-sphingadienine (d18:2) was the principal LCB. A striking accumulation of free and phosphorylated LCBs accompanied loss of the hydroxylase. The sbh lines exhibited altered morphology, including smaller chloronemal cell size, irregular cell shape, reduced gametophore size, and increased pigmentation. In the presence of the synthetic trihydroxy LCB t17:0, the endogenous sphingolipid content of sbh lines decreased to wild-type levels, and the mutants exhibited phenotypes more similar to wild-type plants. These results demonstrate the importance of sphingolipid content and composition to Physcomitrella growth. They also illuminate similarities in regulating sphingolipid content but differences in regulating sphingolipid species composition between the bryophyte P. patens and angiosperm A. thaliana.
Collapse
Affiliation(s)
| | | | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of NebraskaLincolnNEUSA
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of NebraskaLincolnNEUSA
| | | |
Collapse
|
16
|
Ma D, Tang H, Reichelt M, Piirtola EM, Salminen JP, Gershenzon J, Constabel CP. Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by up-regulating the flavonoid 3',5'-hydroxylase gene. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3864-3880. [PMID: 33711094 DOI: 10.1093/jxb/erab116] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/14/2023]
Abstract
Flavonoids, such as anthocyanins, proanthocyanidins, and flavonols, are widespread plant secondary metabolites and important for plant adaptation to diverse abiotic and biotic stresses. Flavonoids can be variously hydroxylated and decorated; their biological activity is partly dependent on the degree of hydroxylation of the B-ring. Flavonoid biosynthesis is regulated by MYB transcription factors, which have been identified and characterized in a diversity of plants. Here we characterize a new MYB activator, MYB117, in hybrid poplar (Populus tremula×tremuloides). When overexpressed in transgenic poplar plants, MYB117 enhanced anthocyanin accumulation in all tissues. Transcriptome analysis of MYB117-overexpressing poplars confirmed the up-regulation of flavonoid and anthocyanin biosynthesis genes, as well as two flavonoid 3',5'-hydroxylase (F3'5'H) genes. We also identified up-regulated cytochrome b5 genes, required for full activity of F3'5'H . Phytochemical analysis demonstrated a corresponding increase in B-ring hydroxylation of anthocyanins, proanthocyanidins, and flavonols in these transgenics. Similarly, overexpression of F3'5'H1 directly in hybrid poplar also resulted in increased B-ring hydroxylation, but without affecting overall flavonoid content. However, the overexpression of the cytochrome b5 gene in F3'5'H1-overexpressing plants did not further increase B-ring hydroxylation. Our data indicate that MYB117 regulates the biosynthesis of anthocyanins in poplar, but also enhances B-ring hydroxylation by up-regulating F3'5'H1.
Collapse
Affiliation(s)
- Dawei Ma
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia,Canada, V8P5C2
| | - Hao Tang
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia,Canada, V8P5C2
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena,Germany
| | - Eerik-Mikael Piirtola
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku,Finland
| | - Juha-Pekka Salminen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20500 Turku,Finland
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena,Germany
| | - C Peter Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia,Canada, V8P5C2
| |
Collapse
|
17
|
Mamode Cassim A, Grison M, Ito Y, Simon-Plas F, Mongrand S, Boutté Y. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses. FEBS Lett 2020; 594:3719-3738. [PMID: 33151562 DOI: 10.1002/1873-3468.13987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids are fundamental lipids involved in various cellular, developmental and stress-response processes. As such, they orchestrate not only vital molecular mechanisms of living cells but also act in diseases, thus qualifying as potential pharmaceutical targets. Sphingolipids are universal to eukaryotes and are also present in some prokaryotes. Some sphingolipid structures are conserved between animals, plants and fungi, whereas others are found only in plants and fungi. In plants, the structural diversity of sphingolipids, as well as their downstream effectors and molecular and cellular mechanisms of action, are of tremendous interest to both basic and applied researchers, as about half of all small molecules in clinical use originate from plants. Here, we review recent advances towards a better understanding of the biosynthesis of sphingolipids, the diversity in their structures as well as their functional roles in membrane architecture, cellular processes such as membrane trafficking and cell polarity, and cell responses to environmental or developmental signals.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Agroécologie, AgroSup Dijon, INRAE, ERL 6003 CNRS, University of Bourgogne Franche-Comté, Dijon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Yoko Ito
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Francoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRAE, ERL 6003 CNRS, University of Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| |
Collapse
|
18
|
Zeng HY, Li CY, Yao N. Fumonisin B1: A Tool for Exploring the Multiple Functions of Sphingolipids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:600458. [PMID: 33193556 PMCID: PMC7652989 DOI: 10.3389/fpls.2020.600458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 05/25/2023]
Abstract
Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.
Collapse
Affiliation(s)
- Hong-Yun Zeng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Nagano M, Ueda H, Fukao Y, Kawai-Yamada M, Hara-Nishimura I. Generation of Arabidopsis lines with a red fluorescent marker for endoplasmic reticulum using a tail-anchored protein cytochrome b5 -B. PLANT SIGNALING & BEHAVIOR 2020; 15:1790196. [PMID: 32633191 PMCID: PMC8550181 DOI: 10.1080/15592324.2020.1790196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle that performs multiple cellular activities in eukaryotes. Visualizing ER using fluorescent proteins is a powerful method of analyzing its dynamics and to understand its functions. However, red fluorescent proteins with both an N-terminal signal peptide (SP) and a C-terminal ER retention tetrapeptide (HDEL) often cause mislocalization to vacuoles or extracellular spaces when they are constitutively expressed in Arabidopsis. To obtain a red fluorescent ER marker, we selected Arabidopsis cytochrome b5 -B (Cb5-B), a tail-anchored (TA) protein on the ER membrane. Its localization is determined by the transmembrane domain (TMD) and tail domain at the C-terminus. We fused the TMD and the tail domain of Cb5-B to the C-terminus of a red fluorescent protein, tdTomato (tdTomato-CTT). When tdTomato-CTT was constitutively expressed under the ubiquitin10 promoter in Arabidopsis, the fluorescent signal was exclusively detected at the ER by means of the reliable ER marker SP-GFP-HDEL. Therefore, tdTomato-CTT can accurately visualize the ER in stable Arabidopsis lines. Additionally, transient assays showed that tdTomato-CTT can also be used as an ER marker in onion, rice, and Nicotiana benthamiana. We believe that TA proteins could be used to generate various organellar membrane markers in plants.
Collapse
Affiliation(s)
- Minoru Nagano
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | |
Collapse
|
20
|
Genome-Wide Identification and Analysis of the Cytochrome B5 Protein Family in Chinese Cabbage ( Brassica rapa L. ssp. Pekinensis). Int J Genomics 2019; 2019:2102317. [PMID: 31871927 PMCID: PMC6913312 DOI: 10.1155/2019/2102317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Cytochrome B5 (CB5) family proteins play an important role in various oxidation/reduction reactions in cells as the electron donor and are involved in a variety of biotic and abiotic stress processes. However, the function of the CB5s in Brassica rapa is still unclear. In this study, we carried out genome-wide identification, characterization, and expression analysis of BrCB5s in different tissues under adversities and stresses. It was identified that fifteen BrCB5s were distributed on different chromosomes, which were classified into seven groups (A-G) according to its phylogenetic relationship. Phylogenetic analysis of the CB5 protein sequences from six species showed that the BrCB5s conduct a close evolutionary process with the CB5s of Arabidopsis thaliana and far from those of Oryza sativa. Protein interaction analysis showed that 40 interaction patterns were predicted including two Sucrose Transporter 4 subfamily proteins (SUT 4) and Fatty Acid Hydroxylase 2 protein (FAH 2) can interact with most members of BrCB5s. The expression profile analysis indicated that BrCB5s were differentially expressed in different tissues, and the transcript abundances were significantly different under various abiotic stresses and plant hormone treatments. Our study provides a basis for a better understanding of the characteristics and biological functions of the CB5 family genes in Chinese cabbage during plant development, especially in plant responses to multiple stresses.
Collapse
|
21
|
Nagano M, Kakuta C, Fukao Y, Fujiwara M, Uchimiya H, Kawai-Yamada M. Arabidopsis Bax inhibitor-1 interacts with enzymes related to very-long-chain fatty acid synthesis. JOURNAL OF PLANT RESEARCH 2019; 132:131-143. [PMID: 30604175 DOI: 10.1007/s10265-018-01081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 05/12/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cell death regulator that confers resistance to environmental stress in plants. Previous studies suggest that Arabidopsis thaliana BI-1 (AtBI-1) modifies sphingolipids by interacting with cytochrome b5 (AtCb5), an electron-transfer protein. To reveal how AtBI-1 regulates sphingolipid synthesis, we screened yeast sphingolipid-deficient mutants and identified yeast ELO2 and ELO3 as novel enzymes that are essential for AtBI-1 function. ELO2 and ELO3 are condensing enzymes that synthesize very-long-chain fatty acids (VLCFAs), major fatty acids in plant sphingolipids. In Arabidopsis, we identified four ELO homologs (AtELO1-AtELO4), localized in the endoplasmic reticulum membrane. Of those AtELOs, AtELO1 and AtELO2 had a characteristic histidine motif and were bound to AtCb5-B. This result suggests that AtBI-1 interacts with AtELO1 and AtELO2 through AtCb5. AtELO2 and AtCb5-B also interact with KCR1, PAS2, and CER10, which are essential for the synthesis of VLCFAs. Therefore, AtELO2 may participate in VLCFA synthesis with AtCb5 in Arabidopsis. In addition, our co-immunoprecipitation/mass spectrometry analysis demonstrated that AtBI-1 forms a complex with AtELO2, KCR1, PAS2, CER10, and AtCb5-D. Furthermore, AtBI-1 contributes to the rapid synthesis of 2-hydroxylated VLCFAs in response to oxidative stress. These results indicate that AtBI-1 regulates VLCFA synthesis by interacting with VLCFA-synthesizing enzymes.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Chikako Kakuta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yoichiro Fukao
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masayuki Fujiwara
- Institute of Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- YANMAR Co., Ltd, Chayamachi 1-32, Kita-ku, Osaka, 530-8311, Japan
| | - Hirofumi Uchimiya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama, 338-8570, Japan
| |
Collapse
|
22
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
23
|
Identification of progesterone receptor membrane component-1 as an interaction partner and possible regulator of fatty acid 2-hydroxylase. Biochem J 2018; 475:853-871. [PMID: 29438993 DOI: 10.1042/bcj20170963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
The fatty acid 2-hydroxylase (FA2H) is essential for synthesis of 2-hydroxylated fatty acids in myelinating and other cells, and deficiency of this enzyme causes a complicated form of hereditary spastic paraplegia also known as fatty acid hydroxylase-associated neurodegeneration. Despite its important role in sphingolipid metabolism, regulation of FA2H and its interaction with other proteins involved in the same or other metabolic pathways is poorly understood. To identify potential interaction partners of the enzyme, quantitative mass spectrometry using stable isotope labeling of cells was combined with formaldehyde cross-linking and proximity biotinylation, respectively. Besides other enzymes involved in sphingolipid synthesis and intermembrane transfer of ceramide, and putative redox partners of FA2H, progesterone receptor membrane component-1 (PGRMC1) and PGRMC2 were identified as putative interaction partners. These two related heme-binding proteins are known to regulate several cytochrome P450 enzymes. Bimolecular fluorescence complementation experiments confirmed the interaction of FA2H with PGRMC1. Moreover, the PGRMC1 inhibitor AG-205 significantly reduced synthesis of hydroxylated ceramide and glucosylceramide in FA2H-expressing cells. This suggests that PGRMC1 may regulate FA2H activity, possibly through its heme chaperone activity.
Collapse
|
24
|
Lu PP, Yu TF, Zheng WJ, Chen M, Zhou YB, Chen J, Ma YZ, Xi YJ, Xu ZS. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:20. [PMID: 29403525 PMCID: PMC5786567 DOI: 10.3389/fpls.2018.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/05/2018] [Indexed: 05/20/2023]
Abstract
Bax inhibitor-1 (BI-1) is an endoplasmic reticulum (ER)-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg)-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA) treatment and down-regulated by an abscisic acid (ABA) treatment. Based on β-glucuronidase (GUS) staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst) DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.
Collapse
Affiliation(s)
- Pan-Pan Lu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ming Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| | - Zhao-Shi Xu
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| |
Collapse
|
25
|
Nintemann SJ, Vik D, Svozil J, Bak M, Baerenfaller K, Burow M, Halkier BA. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2028. [PMID: 29238354 PMCID: PMC5712850 DOI: 10.3389/fpls.2017.02028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 05/20/2023]
Abstract
Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches-split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens-to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.
Collapse
Affiliation(s)
- Sebastian J. Nintemann
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Vik
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Julia Svozil
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael Bak
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | | | - Meike Burow
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara A. Halkier
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Xu G, Wang S, Han S, Xie K, Wang Y, Li J, Liu Y. Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death. Autophagy 2017; 13:1161-1175. [PMID: 28537463 PMCID: PMC5529081 DOI: 10.1080/15548627.2017.1320633] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process and is involved in the regulation of programmed cell death during the plant immune response. However, mechanisms regulating autophagy and cell death are incompletely understood. Here, we demonstrate that plant Bax inhibitor-1 (BI-1), a highly conserved cell death regulator, interacts with ATG6, a core autophagy-related protein. Silencing of BI-1 reduced the autophagic activity induced by both N gene-mediated resistance to Tobacco mosaic virus (TMV) and methyl viologen (MV), and enhanced N gene-mediated cell death. In contrast, overexpression of plant BI-1 increased autophagic activity and surprisingly caused autophagy-dependent cell death. These results suggest that plant BI-1 has both prosurvival and prodeath effects in different physiological contexts and both depend on autophagic activity.
Collapse
Affiliation(s)
- Guoyong Xu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Department of Biology, Duke University, Durham, NC, USA
| | - Shanshan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaojie Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ke Xie
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinlin Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,CONTACT Yule Liu School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Ning P, Zhou Y, Gao L, Sun Y, Zhou W, Liu F, Yao Z, Xie L, Wang J, Gong C. Unraveling the microRNA of Caragana korshinskii along a precipitation gradient on the Loess Plateau, China, using high-throughput sequencing. PLoS One 2017; 12:e0172017. [PMID: 28207805 PMCID: PMC5313209 DOI: 10.1371/journal.pone.0172017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/02/2022] Open
Abstract
Drought remains one of the main factors that negatively affect plant growth and development. Caragana korshinskii is widely distributed on the Loess Plateau, China, where it mediates soil and water loss and helps prevent desertification. However, little is known about the stress response mechanisms of C. korshinskii in water-starved environments. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several types of biotic and abiotic stress. Here, we describe the miRNAs of wild C. korshinskii from Huangling, Yulin, and Dalad Banner, which occur along a precipitation gradient. Using next-generation sequencing technology, we obtained a total of 13 710 681, 15 048 945, and 15 198 442 reads for each location, respectively; after filtering and BLAST analysis, 490 conserved miRNAs and 96 novel miRNAs were characterized from the sRNAome data, with key functions determined using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We also designed stem-loop qRT-PCR to validate the expression patterns of 5 conserved miRNAs (miR390, miR398, miR530, miR2119, and miR5559) that obviously responded to water stress in plants grown both under natural and experimental water stress conditions and found that the expression levels of miR2119 and miR5559 were negatively correlated with their predicted target genes. This study is the first to identify miRNAs from wild C. korshinskii and provides a basis for future studies of miRNA-mediated gene regulation of stress responses in C. korshinskii.
Collapse
Affiliation(s)
- Pengbo Ning
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Yulu Zhou
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lifang Gao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Sun
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfei Zhou
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Furong Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenye Yao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lifang Xie
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhui Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunmei Gong
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Abstract
Purpose of Review We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from Sorghum bicolor as a case study. Recent Findings Sessile plants control their metabolism to prioritize their resources between growth and development, or defense. This requires fine-tuned complex dynamic regulation of the metabolic networks involved. Within the recent years, numerous studies point to the formation of dynamic metabolons playing a major role in controlling the metabolic fluxes within such networks. Summary We propose that P450s and their partners interact and associate dynamically with POR, which acts as a charging station possibly in concert with Cytb5. Solvent environment, lipid composition, and non-catalytic proteins guide metabolon formation and thereby activity, which have important implications for synthetic biology approaches aiming to produce high-value specialized metabolites in heterologous hosts.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608 USA
| |
Collapse
|
29
|
Gaguancela OA, Zúñiga LP, Arias AV, Halterman D, Flores FJ, Johansen IE, Wang A, Yamaji Y, Verchot J. The IRE1/bZIP60 Pathway and Bax Inhibitor 1 Suppress Systemic Accumulation of Potyviruses and Potexviruses in Arabidopsis and Nicotiana benthamiana Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:750-766. [PMID: 27578623 DOI: 10.1094/mpmi-07-16-0147-r] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor. When activated, it splices the bZIP60 mRNA, producing a truncated transcription factor that upregulates genes involved in the unfolded protein response. Bax inhibitor 1 (BI-1) is another ER stress sensor that regulates cell death in response to environmental assaults. The potyvirus 6K2 and potexvirus TGB3 proteins are known to reside in the ER, serving, respectively, as anchors for the viral replicase and movement protein complex. This study used green fluorescent protein (GFP)-tagged Turnip mosaic virus (TuMV), Plantago asiatica mosaic virus (PlAMV), Potato virus Y (PVY), and Potato virus X (PVX) to determine that the IRE1/bZIP60 pathway and BI-1 machinery are induced early in virus infection in Arabidopsis thaliana, Nicotiana benthamiana, and Solanum tuberosum. Agrodelivery of only the potyvirus 6K2 or TGB3 genes into plant cells activated bZIP60 and BI-1 expression in Arabidopsis thaliana, N. benthamiana, and S. tuberosum. Homozygous ire1a-2, ire1b-4, and ire1a-2/ire1b-4 mutant Arabidopsis plants were inoculated with TuMV-GFP or PlAMV-GFP. PlAMV accumulates to a higher level in ire1a-2 or ire1a-2/ire1b-4 mutant plants than in ire1b-4 or wild-type plants. TuMV-GFP accumulates to a higher level in ire1a-2, ire1b-4, or ire1a-2/ire1b-4 compared with wild-type plants, suggesting that both isoforms contribute to TuMV-GFP infection. Gene silencing was used to knock down bZIP60 and BI-1 expression in N. benthamiana. PVX-GFP and PVY-GFP accumulation was significantly elevated in these silenced plants compared with control plants. This study demonstrates that two ER stress pathways, namely IRE1/bZIP60 and the BI-1 pathway, limit systemic accumulation of potyvirus and potexvirus infection. Silencing BI-1 expression also resulted in systemic necrosis. These data suggest that ER stress-activated pathways, led by IRE1 and BI-1, respond to invading potyvirus and potexviruses to restrict virus infection and enable physiological changes enabling plants to tolerate virus assault.
Collapse
Affiliation(s)
- Omar Arias Gaguancela
- 1 Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Lizbeth Peña Zúñiga
- 1 Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Alexis Vela Arias
- 2 Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n, Sangolquí, Pichincha, Ecuador
| | - Dennis Halterman
- 3 Agricultural Research Service, Vegetable Crops Research Unit, U.S. Department of Agriculture ARS, Madison, WI, U.S.A
| | - Francisco Javier Flores
- 2 Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Av. General Rumiñahui s/n, Sangolquí, Pichincha, Ecuador
| | - Ida Elisabeth Johansen
- 4 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Aiming Wang
- 5 Southern Crop Protection and Food Research Centre, AAFC, 1391 Sandford Street, London, Ontario N5V 4T3, Canada; and
| | - Yasuyuki Yamaji
- 6 Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jeanmarie Verchot
- 1 Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
30
|
Vik D, Crocoll C, Andersen TG, Burow M, Halkier BA. CB5C affects the glucosinolate profile in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2016; 11:e1160189. [PMID: 27454255 PMCID: PMC5022417 DOI: 10.1080/15592324.2016.1160189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 05/26/2023]
Abstract
Cytochrome b5 (CB5) proteins are small heme-binding proteins, that influence cytochrome P450 activity. While only one CB5 isoform is found in mammals, higher plants have several isoforms of these proteins. The roles of the many CB5 isoforms in plants remain unknown. We hypothesized that CB5 proteins support the cytochrome P450 enzymes of plant specialized metabolism and found CB5C from Arabidopsis thaliana to co-express with glucosinolate biosynthetic genes. We characterized the glucosinolate profiles of 2 T-DNA insertion mutants of CB5C, and found that long-chained aliphatic glucosinolates were reduced in one of the mutant lines - a phenotype that was exaggerated upon methyl-jasmonate treatment. These results support the hypothesis, that CB5C influences glucosinolate biosynthesis, however, the mode of action remains unknown. Furthermore, the mutants differed in their biomass response to methyl jasmonate treatment. Thereby, our results highlight the varying effects of T-DNA insertion sites, as the 2 analyzed alleles show different phenotypes.
Collapse
Affiliation(s)
- Daniel Vik
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence & Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence & Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | | | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence & Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Barbara Ann Halkier
- Department of Plant and Environmental Sciences, DynaMo Center of Excellence & Copenhagen Plant Science Center, University of Copenhagen, Denmark
| |
Collapse
|
31
|
Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai-Yamada M, Shimamoto K. Plasma Membrane Microdomains Are Essential for Rac1-RbohB/H-Mediated Immunity in Rice. THE PLANT CELL 2016; 28:1966-83. [PMID: 27465023 PMCID: PMC5006704 DOI: 10.1105/tpc.16.00201] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 07/20/2016] [Indexed: 05/18/2023]
Abstract
Numerous plant defense-related proteins are thought to congregate in plasma membrane microdomains, which consist mainly of sphingolipids and sterols. However, the extent to which microdomains contribute to defense responses in plants is unclear. To elucidate the relationship between microdomains and innate immunity in rice (Oryza sativa), we established lines in which the levels of sphingolipids containing 2-hydroxy fatty acids were decreased by knocking down two genes encoding fatty acid 2-hydroxylases (FAH1 and FAH2) and demonstrated that microdomains were less abundant in these lines. By testing these lines in a pathogen infection assay, we revealed that microdomains play an important role in the resistance to rice blast fungus infection. To illuminate the mechanism by which microdomains regulate immunity, we evaluated changes in protein composition, revealing that microdomains are required for the dynamics of the Rac/ROP small GTPase Rac1 and respiratory burst oxidase homologs (Rbohs) in response to chitin elicitor. Furthermore, FAHs are essential for the production of reactive oxygen species (ROS) after chitin treatment. Together with the observation that RbohB, a defense-related NADPH oxidase that interacts with Rac1, is localized in microdomains, our data indicate that microdomains are required for chitin-induced immunity through ROS signaling mediated by the Rac1-RbohB pathway.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama 338-8570, Japan
| | - Masayuki Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoji Kawano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan Shanghai Center for Plant Stress Biology, Shanghai 201602, P.R. China
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakuraku, Saitama 338-8570, Japan
| | - Ko Shimamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
32
|
De Bigault Du Granrut A, Cacas JL. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants? FRONTIERS IN PLANT SCIENCE 2016; 7:1490. [PMID: 27803703 PMCID: PMC5067520 DOI: 10.3389/fpls.2016.01490] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/20/2016] [Indexed: 05/18/2023]
Abstract
Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed.
Collapse
Affiliation(s)
- Antoine De Bigault Du Granrut
- UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Centre Institut National de la Recherche Agronomique de Versailles-Grignon, Institut Jean-Pierre BourginVersailles, France
| | - Jean-Luc Cacas
- UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Centre Institut National de la Recherche Agronomique de Versailles-Grignon, Institut Jean-Pierre BourginVersailles, France
- Département Sciences de la Vie et Santé, AgroParisTech, UFR de Physiologie VégétaleParis, France
- *Correspondence: Jean-Luc Cacas ;
| |
Collapse
|
33
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
34
|
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress. PLANT PHYSIOLOGY 2015; 169:1333-43. [PMID: 26297139 PMCID: PMC4587443 DOI: 10.1104/pp.15.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/17/2015] [Indexed: 05/22/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiko Aki
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Uchimiya
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
35
|
Chen Y, Duan Z, Chen P, Shang Y, Wang C. The Bax inhibitor MrBI-1 regulates heat tolerance, apoptotic-like cell death, and virulence in Metarhizium robertsii. Sci Rep 2015; 5:10625. [PMID: 26023866 PMCID: PMC4448503 DOI: 10.1038/srep10625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Bax inhibitor 1 (BI-1) is a highly conserved protein originally identified as a suppressor of the proapoptotic protein Bax to inhibit cell death in animals and plants. The orthologs of BI-1 are widely distributed in filamentous fungi but their functions remain largely unknown. Herein, we report the identification and characterizations of MrBI-1, an ortholog of BI-1, in the entomopathogenic fungus Metarhizium robertsii. First, we found that MrBI-1 could partially rescue mammalian Bax-induced cell death in yeast. Deletion of MrBI-1 impaired fungal development, virulence and heat tolerance in M. robertsii. We also demonstrated that inactivation of MrBI-1 reduced fungal resistance to farnesol but not to hydrogen peroxide, suggesting that MrBI-1 contributes to antiapoptotic-like cell death via the endoplasmic reticulum stress-signaling pathway rather than the classical mitochondrium-dependent pathway. In particular, we found that unlike the observations in yeasts and plants, expression of mammalian Bax did not lead to a lethal effect in M. robertsii; however, it did aggravate the fungal apoptotic effect of farnesol. The results of this study advance our understanding of BI-1-like protein functions in filamentous fungi.
Collapse
Affiliation(s)
- Yixiong Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhibing Duan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Current address:Department of Neuroscience &Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway NJ, 08854, USA
| | - Peilin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfang Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
37
|
Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L, Wang FZ, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Shi J, Zhang JH, Aharoni A, Yao N, Shu W, Xiao S. Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 2015; 11:e1005143. [PMID: 25822663 PMCID: PMC4379176 DOI: 10.1371/journal.pgen.1005143] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/12/2015] [Indexed: 01/16/2023] Open
Abstract
Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo-Xian Chen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Ren Zhu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. PLANTA 2014; 240:77-89. [PMID: 24687220 DOI: 10.1007/s00425-014-2065-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/13/2014] [Indexed: 05/04/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cell death suppressor localized in the endoplasmic reticulum membrane. Our previous results revealed that Arabidopsis BI-1 (AtBI-1) interacts with not only Arabidopsis cytochrome b 5 (Cb5), an electron transfer protein, but also a Cb5-like domain (Cb5LD)-containing protein, Saccharomyces cerevisiae fatty acid 2-hydroxylase 1, which 2-hydroxylates sphingolipid fatty acids. We have now found that AtBI-1 binds Arabidopsis sphingolipid Δ8 long-chain base (LCB) desaturases AtSLD1 and AtSLD2, which are Cb5LD-containing proteins. The expression of both AtBI-1 and AtSLD1 was increased by cold exposure. However, different phenotypes were observed in response to cold treatment between an atbi-1 mutant and a sld1sld2 double mutant. To elucidate the reasons behind the difference, we analyzed sphingolipids and found that unsaturated LCBs in atbi-1 were not altered compared to wild type, whereas almost all LCBs in sld1sld2 were saturated, suggesting that AtBI-1 may not be necessary for the desaturation of LCBs. On the other hand, the sphingolipid content in wild type increased in response to low temperature, whereas total sphingolipid levels in atbi-1 were unaltered. In addition, the ceramide-modifying enzymes AtFAH1, sphingolipid base hydroxylase 2 (AtSBH2), acyl lipid desaturase 2 (AtADS2) and AtSLD1 were highly expressed under cold stress, and all are likely to be related to AtBI-1 function. These findings suggest that AtBI-1 contributes to synthesis of sphingolipids during cold stress by interacting with AtSLD1, AtFAH1, AtSBH2 and AtADS2.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chang J, Clay JM, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:558-67. [PMID: 24635651 PMCID: PMC4040253 DOI: 10.1111/tpj.12401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
Ethylene plays important roles in plant growth, development and stress responses, and is perceived by a family of receptors that repress ethylene responses when ethylene is absent. Repression by the ethylene receptor ETR1 depends on an integral membrane protein, REVERSION TO ETHYLENE SENSITIVITY1 (RTE1), which acts upstream of ETR1 in the endoplasmic reticulum (ER) membrane and Golgi apparatus. To investigate RTE1 function, we screened for RTE1-interacting proteins using the yeast split-ubiquitin assay, which yielded the ER-localized cytochrome b(5) (Cb5) isoform D. Cb5s are small hemoproteins that perform electron transfer reactions in all eukaryotes, but their roles in plants are relatively uncharacterized. Using bimolecular fluorescence complementation (BiFC), we found that all four ER-localized Arabidopsis Cb5 isoforms (AtCb5–B, -C, -D and -E) interact with RTE1 in plant cells. In support of this interaction, atcb5 mutants exhibited phenotypic parallels with rte1 mutants in Arabidopsis. Phenotypes included partial suppression of etr1–2 ethylene insensitivity, and no suppression of RTE1-independent ethylene receptor isoforms. The single loss-of-function mutants atcb5–b, -c and -d appeared similar to the wild-type, but double mutant combinations displayed slight ethylene hypersensitivity. Over-expression of AtCb5–D conferred reduced ethylene sensitivity similar to that conferred by RTE1 over-expression, and genetic analyses suggested that AtCb5–D acts upstream of RTE1 in the ethylene response. These findings suggest an unexpected role for Cb5, in which Cb5 and RTE1 are functional partners in promoting ETR1-mediated repression of ethylene signaling.
Collapse
Affiliation(s)
| | | | - Caren Chang
- Corresponding author: Caren Chang, Department of Cell Biology and Molecular Genetics, Bioscience Research Building, Bldg 413, University of Maryland, College Park, MD 20742, USA, Phone: 301-405-1643, Fax: 301-314-1248,
| |
Collapse
|
40
|
Wayne LL, Browse J. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana. F1000Res 2013; 2:203. [PMID: 24555099 DOI: 10.12688/f1000research.2-203.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 11/20/2022] Open
Abstract
Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA.
Collapse
Affiliation(s)
- Laura L Wayne
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA ; Dow AgroSciences, Indianapolis, IN 46268, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| |
Collapse
|
41
|
Wayne LL, Browse J. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana. F1000Res 2013; 2:203. [PMID: 24555099 PMCID: PMC3893003 DOI: 10.12688/f1000research.2-203.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 11/20/2022] Open
Abstract
Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA.
Collapse
Affiliation(s)
- Laura L Wayne
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA ; Dow AgroSciences, Indianapolis, IN 46268, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| |
Collapse
|
42
|
Weis C, Pfeilmeier S, Glawischnig E, Isono E, Pachl F, Hahne H, Kuster B, Eichmann R, Hückelhoven R. Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. MOLECULAR PLANT PATHOLOGY 2013; 14:791-802. [PMID: 23782494 PMCID: PMC6638788 DOI: 10.1111/mpp.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER)-resident BAX INHIBITOR-1 (BI-1) protein is one of a few cell death suppressors known to be conserved in animals and plants. The function of BI-1 proteins in response to various biotic and abiotic stress factors is well established. However, little is known about the underlying mechanisms. We conducted co-immunoprecipitation (co-IP) experiments to identify Arabidopsis thaliana BI-1-interacting proteins to obtain a potentially better understanding of how BI-1 functions during plant-pathogen interactions and as a suppressor of cell death. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identified 95 proteins co-immunoprecipitated with green fluorescing protein (GFP)-tagged BI-1. Five selected candidate proteins, a RIBOPHORIN II (RPN2) family protein, VACUOLAR ATP SYNTHASE SUBUNIT A (VHA-A), cytochrome P450 83A1 (CYP83A1), H(+) -ATPASE 1 (AHA1) and PROHIBITIN 2 (PHB2), were further investigated with regard to their role in BI-1-associated processes. To this end, we analysed a set of Arabidopsis mutants in the interaction with the adapted powdery mildew fungus Erysiphe cruciferarum and on cell death-inducing treatments. Two independent rpn2 knock-down mutants tended to better support powdery mildew, and a phb2 mutant showed altered responses to cell death-inducing Alternaria alternata f.sp. lycopersici (AAL) toxin treatment. Two independent cyp83a1 mutants showed a strong powdery mildew resistance phenotype and enhanced sensitivity to AAL toxin. Moreover, co-localization studies and fluorescence resonance energy transfer (FRET) experiments suggested a direct interaction of BI-1 with CYP83A1 at the ER.
Collapse
Affiliation(s)
- Corina Weis
- Lehrstuhl für Phytopathologie, Technische Universität München, 85354 Freising, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weis C, Hückelhoven R, Eichmann R. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3855-67. [PMID: 23888068 PMCID: PMC3745739 DOI: 10.1093/jxb/ert217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.
Collapse
Affiliation(s)
| | | | - Ruth Eichmann
- * Present address: School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB. Plant sphingolipids: function follows form. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:350-7. [PMID: 23499054 DOI: 10.1016/j.pbi.2013.02.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/09/2013] [Accepted: 02/19/2013] [Indexed: 05/20/2023]
Abstract
Plant sphingolipids are structurally diverse molecules that are important as membrane components and bioactive molecules. An appreciation of the relationship between structural diversity and functional significance of plant sphingolipids is emerging through characterization of Arabidopsis mutants coupled with advanced analytical methods. It is increasingly apparent that modifications such as hydroxylation and desaturation of the sphingolipid nonpolar long-chain bases and fatty acids influence their metabolic routing to particular complex sphingolipid classes and their functions in signaling pathways and other cellular processes, such as membrane protein targeting. Here, we review recent reports investigating some of the more prevalent sphingolipid structural modifications and their functional importance in plants.
Collapse
Affiliation(s)
- Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | | | | | |
Collapse
|
45
|
Ishikawa T, Uchimiya H, Kawai-Yamada M. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death. Methods Enzymol 2013; 527:239-56. [PMID: 23830635 DOI: 10.1016/b978-0-12-405882-8.00013-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen peroxide (H2O2) is known to be a typical endogenous signaling molecule that triggers programmed cell death in plants and metazoan. In this respect, they seem to share the mechanism of cell death caused by H2O2 and other reactive oxygen species (ROS). Bax inhibitor-1 (BI-1) is a well-conserved protein in plants and animals that serves as the inhibitor of mammalian proapoptotic proteins as well as plant ROS-induced cell death. As a target of H2O2, mitochondrion is considered to be an organelle of the primary ROS generation and perception. Thus, analysis of mitochondrial behavior in relation to functional roles of regulatory proteins (e.g., BI-1) will lead us to understand the core mechanisms of cell death regulation conserved in eukaryotes. In this chapter, we first introduce techniques of analyzing H2O2- (and ROS-) mediated changes in mitochondrial behavior. Next, we describe our understanding of the functions of plant BI-1 in regulation of ROS-induced cell death, with a technical basis for assessment of tolerance to ROS-mediated cell death in model plant systems.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama City, Saitama, Japan
| | | | | |
Collapse
|
46
|
König S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, Ternes P, Karlovsky P, Lipka V, Feussner I. Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. THE NEW PHYTOLOGIST 2012; 196:1086-1097. [PMID: 23025549 DOI: 10.1111/j.1469-8137.2012.04351.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the fatty acid moiety of sphingolipids is mainly α-hydroxylated. The consequences of a reduction in this modification were analysed. Mutants of both Fatty Acid Hydroxylase genes (AtFAH1 and AtFAH2) were analysed for sphingolipid profiles. To elucidate further consequences of the mutations, metabolic analyses were performed and the influence on pathogen defence was determined. Ceramide and glucosylceramide profiles of double-mutant plants showed a reduction in sphingolipids with α-hydroxylated fatty acid moieties, and an accumulation of sphingolipids without these moieties. In addition, the free trihydroxylated long-chain bases and ceramides were increased by five- and ten-fold, respectively, whereas the amount of glucosylceramides was decreased by 25%. Metabolite analysis of the double mutant revealed salicylates as enriched metabolites. Infection experiments supported the metabolic changes, as the double mutant showed an enhanced disease-resistant phenotype for infection with the obligate biotrophic pathogen Golovinomyces cichoracearum. In summary, these results suggest that fatty acid hydroxylation of ceramides is important for the biosynthesis of complex sphingolipids. Its absence leads to the accumulation of long-chain bases and ceramides as their precursors. This increases salicylate levels and resistance towards obligate biotrophic fungal pathogens, confirming a role of sphingolipids in salicylic acid-dependent defence reactions.
Collapse
Affiliation(s)
- Stefanie König
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Marnie Schwarz
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tim Iven
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Philipp Ternes
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Petr Karlovsky
- Department of Crop Sciences, Molecular Phytopathology and Mycotoxin Research Group, Georg-August-University, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| |
Collapse
|
47
|
Nagano M, Uchimiya H, Kawai-Yamada M. Plant sphingolipid fatty acid 2-hydroxylases have unique characters unlike their animal and fungus counterparts. PLANT SIGNALING & BEHAVIOR 2012; 7:1388-1392. [PMID: 22918503 PMCID: PMC3548854 DOI: 10.4161/psb.21825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
2-Hydroxy fatty acids mainly contained in sphingolipids are synthesized by a sphingolipid fatty acid 2-hydroxylase (FAH). Recently, two FAH homologs in Arabidopsis thaliana (AtFAH1 and AtFAH2), without any cytochrome b₅(Cb5)-like domains, which are essential for the function of Saccharomyces cerevisiae and mammalian FAH, were identified and both AtFAHs were shown to be activated by the interaction with Cb5. In this study, we compared FAHs of various plants, animals and fungi. Interestingly, only plants had two FAH homologs and none of plant FAHs had any Cb5-like domains. In addition, we showed from the interaction and expression analyses that AtFAHs interacted with multiple Cb5s probably in various tissues. Thus, plant FAHs may have evolved unlike animal and fungus FAHs.
Collapse
Affiliation(s)
- Minoru Nagano
- Graduate School of Biological Science; Nara Institute of Science and Technology; Takayama, Ikoma, Japan
| | - Hirofumi Uchimiya
- Institute for Environmental Science and Technology; Saitama University; Sakura-ku, Saitama, Japan
| | - Maki Kawai-Yamada
- Institute for Environmental Science and Technology; Saitama University; Sakura-ku, Saitama, Japan
- Graduate School of Science and Engineering; Saitama University; Sakura-ku, Saitama, Japan
| |
Collapse
|
48
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
49
|
Kumar R, Tran LSP, Neelakandan AK, Nguyen HT. Higher plant cytochrome b5 polypeptides modulate fatty acid desaturation. PLoS One 2012; 7:e31370. [PMID: 22384013 PMCID: PMC3285619 DOI: 10.1371/journal.pone.0031370] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Synthesis of polyunsaturated fatty acids (PUFAs) in the endoplasmic reticulum of plants typically involves the fatty acid desaturases FAD2 and FAD3, which use cytochrome b(5) (Cb5) as an electron donor. Higher plants are reported to have multiple isoforms of Cb5, in contrast to a single Cb5 in mammals and yeast. Despite the wealth of information available on the roles of FAD2 and FAD3 in PUFA synthesis, information regarding the contributions of various Cb5 isoforms in desaturase-mediated reactions is limited. RESULTS The present functional characterization of Cb5 polypeptides revealed that all Arabidopsis Cb5 isoforms are not similarly efficient in ω-6 desaturation, as evidenced by significant variation in their product outcomes in yeast-based functional assays. On the other hand, characterization of Cb5 polypeptides of soybean (Glycine max) suggested that similar ω-6 desaturation efficiencies were shared by various isoforms. With regard to ω-3 desaturation, certain Cb5 genes of both Arabidopsis and soybean were shown to facilitate the accumulation of more desaturation products than others when co-expressed with their native FAD3. Additionally, similar trends of differential desaturation product accumulation were also observed with most Cb5 genes of both soybean and Arabidopsis even if co-expressed with non-native FAD3. CONCLUSIONS The present study reports the first description of the differential nature of the Cb5 genes of higher plants in fatty acid desaturation and further suggests that ω-3/ω-6 desaturation product outcome is determined by the nature of both the Cb5 isoform and the fatty acid desaturases.
Collapse
Affiliation(s)
- Rajesh Kumar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Lam-Son Phan Tran
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Anjanasree K. Neelakandan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
50
|
Kühl T, Sahoo N, Nikolajski M, Schlott B, Heinemann SH, Imhof D. Determination of hemin-binding characteristics of proteins by a combinatorial peptide library approach. Chembiochem 2011; 12:2846-55. [PMID: 22045633 DOI: 10.1002/cbic.201100556] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Indexed: 12/28/2022]
Abstract
Studies of the binding of heme/hemin to proteins or peptides have recently intensified as it became evident that heme serves not only as a prosthetic group, but also as a regulator and effector molecule interacting with transmembrane and cytoplasmic proteins. The iron-ion-containing heme group can associate with these proteins in different ways, with the amino acids Cys, His, and Tyr allowing individual modes of binding. Strong coordinate-covalent binding, such as in cytochrome c, is known, and reversible attachment is also discussed. Ligands for both types of binding have been reported independently, though sometimes with different affinities for similar sequences. We applied a combinatorial approach using the library (X)(4) (C/H/Y)(X)(4) to characterize peptide ligands with considerable hemin binding capacities. Some of the library-selected peptides were comparable in terms of hemin association independently of whether or not a cysteine residue was present in the sequence. Indeed, a preference for His-based (≈39 %) and Tyr-based (≈40 %) sequences over Cys-based ones (≈21 %) was detected. The binding affinities for the library-selected peptides, as determined by UV/Vis spectroscopy, were in the nanomolar range. Moreover, selected representatives efficiently competed for hemin binding with the human BK channel hSlo1, which is known to be regulated by heme through binding to its heme-binding domain.
Collapse
Affiliation(s)
- Toni Kühl
- Department of Biochemistry and Biophysics, Friedrich Schiller University of Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|