1
|
Ji J, Han X, Zang L, Li Y, Lin L, Hu D, Sun S, Ren Y, Maker G, Lu Z, Wang L. Integrative multi-omics data provide insights into the biosynthesis of furanocoumarins and mechanisms regulating their accumulation in Angelica dahurica. Commun Biol 2025; 8:649. [PMID: 40269101 PMCID: PMC12019236 DOI: 10.1038/s42003-025-08076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Furocoumarins (FCs), important natural compounds with biodefense roles and pharmacological activities, are notably abundant in medicinal plant Angelica dahurica. However, its accumulation patterns over development stages in FC-enriched tissue, biosynthetic pathways, and regulatory mechanisms in A. dahurica remain elusive. Here, we quantified the concentration dynamics of 17 coumarins across six developmental stages of root and found a gradual decrease in FC concentration as the roots develop. Using a de-novo assembled chromosome-level genome for A. dahurica, we conducted integrative multi-omics analyses to screen out candidate genes to fill in the sole missing step in the biosynthesis of imperatorin and isoimperatorin. This revealed that CYP71AZ18 catalyzes hydroxylation at the C-5 position of psoralen to generate bergaptol, while CYP71AZ19 and CYP83F95 catalyze hydroxylation at the C-8 position to produce xanthotoxol, notably indicating that a single step is catalyzed by two genes from distinct CYP450 subfamilies in this species. CYP71AZ19 originated from a proximal duplication event of CYP71AZ18, specific to A. dahurica, and subsequently underwent neofunctionalization. Accessible chromatin regions (ACRs), especially proximal ACRs, correlated with high gene expression levels, and the three validated genes exhibited strong signals of ACRs, showing the importance of chromosomal accessibility in regulating metabolite biosynthesis.
Collapse
Grants
- 32300223, 32070242, and 82373837 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China, grant 2023YFA0915800; Shenzhen Fundamental Research Program, grant 20220817165436004; Shenzhen Science and Technology Program, grant KQTD2016113010482651; Key Project at Central Government Level (The ability establishment of sustainable use for valuable Chinese medicine resources), grant 2060302; Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District, grants RC201901-05 and PT201901-19; Basic and Applied Basic Research Fund of Guangdong, grant 2020A1515110912; Science, Technology, and Innovation Commission of Shenzhen Municipality of China, grant ZDSYS20200811142605017
Collapse
Affiliation(s)
- Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yushan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Donghua Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Garth Maker
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan 528000, Foshan, China.
| |
Collapse
|
2
|
Tian J, Bai D, He S, Li Z, Bai L, Pan L. Overexpression of cytochrome P450 CYP71AF43 contributing resistance to fenoxaprop-P-ethyl in Alopecurus myosuroides from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106355. [PMID: 40082045 DOI: 10.1016/j.pestbp.2025.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Black-grass (Alopecurus myosuroides), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control Alopecurus myosuroides populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of Alopecurus myosuroides from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene CYP71AF43 in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of AmCYP71AF43 was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the AmCYP71AF43 gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of CYP71AF43 may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in Alopecurus myosuroides. This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.
Collapse
Affiliation(s)
- Junhui Tian
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Dingyi Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sifen He
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
He Y, Zhang J, He Y, Tian Y, Liu H, Wang C, Guan G, Lu X, Yuan L, Xiang W, Zeng J, Zhong X. Integrated metabolome and transcriptome analyses revealed key cytochrome P450 genes involved in the biosynthesis of oleanane-type saponins in Hedera helix L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109818. [PMID: 40147328 DOI: 10.1016/j.plaphy.2025.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Hedera helix L. is a traditional Chinese medicinal and industrial crop commonly used to treat coughs and upper respiratory tract diseases. Additionally, it can be utilized as insecticidal, mosquito repellent and biopesticide. Its primary components are pentacyclic triterpenoid saponins include oleanolic acid, hederagenin, hederacoside C, etc. Currently, cytochrome P450 (CYP450) has been shown to be closely associated with the structural diversification and functional modification of the triterpenoid. However, the research on H. helix is still shallow, especially the functional characterization of CYP450 gene in the stage of modifying pentacyclic triterpenoid skeleton. This study integrated analyzed transcriptome and the accumulation modes of the main metabolites of H. helix and screened six CYP450 candidate genes. RT-qPCR results showed that candidate genes exhibited tissue specificity and inducible expression specificity. Based on in vitro and in vivo validation, both HhCYP716A409 and HhCYP716S11 showed activity of oxidase in β-amyrin C-28, producing oleanolic acid by participating in the C-28 oxidization of β-amyrin. HhCYP72D57, HhCYP72A1140, and HhCYP72A1141 produced hederagenin by participating in the hydroxylation of oleanolic acid C-23. Additionally, HhCYP72D57, HhCYP72A1139, and HhCYP72A1141 were also involved in the hydroxylation of hederagenin C-16 to produce 16-OH hederagenin. This study confirms the pivotal roles of CYP716 and CYP72 families in oleanane-type triterpenoid biosynthesis and establishes a method to efficiently produce hederacoside C and derivatives, providing a genetic toolkit for metabolic engineering of H. helix to scale saponin production for pharmaceuticals, agrochemicals, or synthetic biology-driven design of novel triterpenoid biopesticides.
Collapse
Affiliation(s)
- Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jing Zhang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China; College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yuewei He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Guiping Guan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lei Yuan
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Xiang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
4
|
Jiang K, Møller BL, Luo S, Yang Y, Nelson DR, Jakobsen Neilson EH, Christensen JM, Hua K, Hu C, Zeng X, Motawie MS, Wan T, Hu GW, Onjalalaina GE, Wang Y, Gaitán-Espitia JD, Wang Z, Xu XY, He J, Wang L, Li Y, Peng DH, Lan S, Zhang H, Wang QF, Liu ZJ, Huang WC. Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid. MOLECULAR PLANT 2025; 18:392-415. [PMID: 39702965 DOI: 10.1016/j.molp.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A. sesquipedale flower emits a complex blend of scent compounds dominated by diurnally regulated oximes (R1R2C = N-OH) to attract crepuscular and nocturnal pollinators. The molecular mechanism of oxime biosynthesis remains unclear in orchids. Here, we present the chromosome-level genome of A. sesquipedale. The haploid genome size is 2.10 Gb and represents 19 pseudochromosomes. Cytochrome P450 encoding genes of the CYP79 family known to be involved in oxime biosynthesis in seed plants are not present in the A. sesquipedale genome nor the genomes of other members of the orchid family. Metabolomic analysis of the A. sesquipedale flower revealed a substantial release of oximes at dusk during the blooming stage. By integrating metabolomic and transcriptomic correlation approaches, flavin-containing monooxygenases (FMOs) encoded by six tandem-repeat genes in the A. sesquipedale genome are identified as catalyzing the formation of oximes present. Further in vitro and in vivo assays confirm the function of FMOs in the oxime biosynthesis. We designate these FMOs as orchid oxime synthases 1-6. The evolutionary aspects related to the CYP79 gene losses and neofunctionalization of FMO-catalyzed biosynthesis of oximes in Darwin's orchid provide new insights into the convergent evolution of biosynthetic pathways.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Shaofan Luo
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Møller Christensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Kai Hua
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Chao Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xinhua Zeng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Mohammed Saddik Motawie
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guy Eric Onjalalaina
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; University of Antananarivo, Antananarivo, Madagascar
| | - Yijiao Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Xiao-Yan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiamin He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linying Wang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong-Hui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Key Laboratory of Plant Design, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Wei-Chang Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
5
|
Bouillé A, Larbat R, Kumari R, Olry A, Charles C, Nelson DR, Thornton J, Villard C, Hehn A. Lineage-specific patterns in the Moraceae family allow identification of convergent P450 enzymes involved in furanocoumarin biosynthesis. THE NEW PHYTOLOGIST 2025; 245:2085-2102. [PMID: 39776411 DOI: 10.1111/nph.20381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Specialized metabolites are molecules involved in plants' interaction with their environment. Elucidating their biosynthetic pathways is a challenging but rewarding task, leading to societal applications and ecological insights. Furanocoumarins emerged multiple times in Angiosperms, raising the question of how different enzymes evolved into catalyzing identical reactions. To identify enzymes producing lineage-specific metabolites, an evolutionary-based approach was developed and applied to furanocoumarin biosynthesis in Ficus carica (Moraceae). This led to the characterization of CYP71B129-131a, three P450 enzymes whose evolution of the function was investigated using phylogenetics, structural comparisons and site-directed mutagenesis. CYP71B129 and CYP71B130,131a were found to hydroxylate umbelliferone (coumarin) and xanthotoxin (furanocoumarin), respectively. Results suggest that CYP71Bs xanthotoxin hydroxylase activity results from duplications and functional divergence of umbelliferone hydroxylase genes. Structural comparisons highlighted an amino acid affecting CYP71Bs substrate specificity, which may play a key role in allowing xanthotoxin hydroxylation in several P450 subfamilies. CYP71B130-131a characterization validates the proposed enzyme-discovery approach, which can be applied to different pathways and help to avoid the classic bottlenecks of specialized metabolism elucidation. The CYP71Bs also exemplify how furanocoumarin-biosynthetic enzymes can stem from coumarin-biosynthetic ones and provides insights into the molecular mechanisms underlying the multiple emergences of xanthotoxin hydroxylation in distant P450 subfamilies.
Collapse
Affiliation(s)
| | - Romain Larbat
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Rashmi Kumari
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD, Cambridge, UK
| | - Alexandre Olry
- Université de Lorraine, INRAE, LAE, 54000, Nancy, France
| | | | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Janet Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD, Cambridge, UK
| | - Cloé Villard
- Biosystematics Group, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, 54000, Nancy, France
| |
Collapse
|
6
|
Li L, Li X, Gao X, Liao W, Guo H, He C, Lu J, Ye X, Sun W, Liu C, Fan Y, Bai X, Wu Q. Global investigation into the CqCYP76AD and CqDODA families in Chenopodium quinoa: Identification, evolutionary history, and their functional roles in betalain biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109569. [PMID: 39892247 DOI: 10.1016/j.plaphy.2025.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Betalains are water-soluble pigments mainly distributed in the core Caryophyllales plants. Betalains provide plant with striking colors to attract pollinators and are beneficial to human health due to the strong antioxidant activity. To date, many studies regarding to betalain biosynthesis have been exerted in sugar beet (Beta vulgaris) and four-O-clock (Mirabilis jalapa), however, the key regulators in betalain pigmentation of quinoa (Chenopodium quinoa) remain to be elucidated. CYP76AD and DODA genes encode core enzymes converting L-DOPA to cyclo-DOPA and betalamic acid, respectively, in betalain biosynthesis. In this study, 44 CqCYP76AD (5 α-clade, 6 β-clade and 33 γ-clade homologs) and 18 CqDODA (10 α-clade, 2 β-clade and 6 γ-clade homologs) members were identified in quinoa genome. Expression analysis and cis-element analysis indicated that light and ABA are involved in the regulation of CqCYP76AD and CqDODA. We found application of exogenous ABA and darkness repressed the betalain production in quinoa seedlings. Tandem duplication is the major driving force for CqCYP76AD and CqDODA family expansion. Evolutionary history analysis on the duplication events of quinoa and its close relatives, sugar beet, C. pallidicaule, C. suecicum and C. formosanum, identified the quinoa-specific tandem duplications CqCYP76AD-α2/-α3, CqDODA-α1/-α6 in Chr04, and CqCYP76AD-α1/-α4/-α5, CqDODA-α3/-α4/-α5 in Chr03, which are absent in sugar beet. The close co-location of the CqCYP76AD-α-CqDODA-α gene clusters suggests they are putative enhanced regulatory units for betalain biosynthesis in quinoa, similar to the operon BvCYP76AD1-BvDODA1 in sugar beet. The functions of α-, β- and γ-clade CqCYP76ADs and CqDODAs were investigated by transient expression system in tobacco leaves and hairy root transformation in quinoa. The results indicated that CqCYP76AD-α1, CqCYP76AD-β3, CqDODA-α1, CqDODA-α3 and CqDODA-α5 are the important positive regulators for betalain accumulation in quinoa. Correlation between pigment contents and expression levels at different developmental stages indicates their roles in pigmentation of leaf, stem and spike tissues of in betalain-enriched quinoa. Overall, this study performed genome-wide identification and functional characterization of the important functional enzymes of CqCYP76ADs and CqDODAs for betalain biosynthesis in quinoa, which will deep our understanding of the mechanisms of betalain pigmentation in quinoa.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xiao'an Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xiaoli Gao
- Research Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, 850032, Lhasa, Tibet, China
| | - Wenhua Liao
- Research Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, 850032, Lhasa, Tibet, China
| | - Huihui Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Cailin He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Jing Lu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, 610106, Chengdu, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Landau OA, Jamison BV, Riechers DE. Transcriptomic analysis reveals cloquintocet-mexyl-inducible genes in hexaploid wheat (Triticum aestivum L.). PLoS One 2025; 20:e0319151. [PMID: 39965030 PMCID: PMC11835315 DOI: 10.1371/journal.pone.0319151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Identification and characterization of genes encoding herbicide-detoxifying enzymes is lacking in allohexaploid wheat (Triticum aestivum L.). Gene expression is frequently induced by herbicide safeners and implies the encoded enzymes serve a role in herbicide metabolism and detoxification. Cloquintocet-mexyl (CM) is a safener commonly utilized with halauxifen-methyl (HM), a synthetic auxin herbicide whose phytotoxic form is halauxifen acid (HA). Our first objective was to identify candidate HA-detoxifying genes via RNA-Seq by comparing untreated and CM-treated leaf tissue. On average, 81% of RNA-Seq library reads mapped uniquely to the reference genome and 76.4% of reads were mapped to a gene. Among the 103 significant differentially expressed genes (DEGs), functional annotations indicate the majority of DEGs encode proteins associated with herbicide or xenobiotic metabolism. This finding was further corroborated by gene ontology (GO) enrichment analysis, where several genes were assigned GO terms indicating oxidoreductase activity (34 genes) and transferase activity (45 genes). One of the significant DEGs is a member of the CYP81A subfamily of cytochrome P450s (CYPs; denoted as CYP81A-5A), which are of interest due to their ability to catalyze synthetic auxin detoxification. To investigate CYP expression induced by HM and/or CM, our second objective was to measure gene-specific expression of CYP81A-5A and its homoeologs (CYP81A-5B and CYP81A-5D) in untreated leaf tissue and leaf tissue treated with CM and HM over time using RT-qPCR. Relative to the reference gene (β-tubulin), basal CYP expression is high, expression among these CYPs varies over time, and expression for all CYPs is CM-inducible but not HM-inducible. Further analysis of CYP81A-5A, such as gene knock-out, overexpression experiments, or in vitro activity assays with purified enzyme are necessary to test the hypotheses that the encoded CYP detoxifies HA and that CM upregulates this reaction.
Collapse
Affiliation(s)
- Olivia A. Landau
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Brendan V. Jamison
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
8
|
Méteignier LV, Szwarc S, Barunava P, Durand M, Zamar DL, Birer Williams C, Gautron N, Dutilleul C, Koudounas K, Lezin E, Perrot T, Oudin A, Pateyron S, Delannoy E, Brunaud V, Lanoue A, Abbasi BH, St-Pierre B, Jensen MK, Papon N, Sun C, Le Pogam P, Yuan L, Beniddir MA, Besseau S, Courdavault V. Harnessing the spatial and transcriptional regulation of monoterpenoid indole alkaloid metabolism in Alstonia scholaris leads to the identification of broad geissoschizine cyclase activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109363. [PMID: 39657422 DOI: 10.1016/j.plaphy.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2. These transcriptomic studies notably demonstrated that the first steps of the MIA pathway are successively distributed in the internal phloem associated parenchyma and epidermis, and that MYC2 exerts a remarkable transcriptional effect by modulating the expression of around 1000 genes. By combining these distinct datasets, we initiated the search for MIA-related genes encoding CYP71, based on the similarity of expression compared to already known MIA genes. Transient expression of these candidates in Nicotiana benthamiana leaves and yeast notably led to the identification of a related isoform of rhazimal synthase (RHS) capable of converting the MIA precursor geissoschizine into akuammicine, strictamine and 16-epi-pleiocarpamine. Investigating its catalytic mechanism revealed that strictamine results from rhazimal deformylation and that a similar mechanism may also explain 16-epi-pleiocarpamine synthesis. This prompted us to rename these enzymes geissoschizine cyclase due to their capacity of cyclizing geissoschizine into three different MIA scaffolds and to form both C-C and C-N bonds. This identification thus illustrates the potential of integrating spatial and transcriptional regulation analysis for MIA gene identification.
Collapse
Affiliation(s)
| | - Sarah Szwarc
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Patra Barunava
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Duchesse-Lacours Zamar
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Gautron
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Thomas Perrot
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Veronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France.
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|
9
|
Zhou A, Kane A, Wu S, Wang K, Santiago M, Ishiguro Y, Yoneyama K, Palayam M, Shabek N, Xie X, Nelson DC, Li Y. Evolution of interorganismal strigolactone biosynthesis in seed plants. Science 2025; 387:eadp0779. [PMID: 39818909 DOI: 10.1126/science.adp0779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 01/19/2025]
Abstract
Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms. Using synthetic biology, we investigated the function of CYP722A, an evolutionary predecessor of CYP722C. CYP722A converts CLA into 16-hydroxy-CLA (16-OH-CLA), a noncanonical SL detected exclusively in the shoots of various flowering plants. 16-OH-CLA application restores control of shoot branching to SL-deficient mutants in Arabidopsis thaliana and is perceived by the SL signaling pathway. We hypothesize that biosynthesis of 16-OH-CLA by CYP722A was a metabolic stepping stone in the evolution of canonical SLs that mediate rhizospheric signaling in many flowering plants.
Collapse
Affiliation(s)
- Anqi Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| | - Annalise Kane
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sheng Wu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaibiao Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| | - Michell Santiago
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yui Ishiguro
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Kaori Yoneyama
- Department Research and Development Bureau, Saitama University, Saitama-shi, Japan
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Yanran Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
10
|
Koleva DT, Liu M, Dusak B, Ghosh S, Krogh CT, Hellebek IR, Cortsen MT, Motawie MS, Jørgensen FS, McKinley BA, Mullet JE, Sørensen M, Møller BL. Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor. PHYSIOLOGIA PLANTARUM 2025; 177:e70029. [PMID: 39749417 PMCID: PMC11696484 DOI: 10.1111/ppl.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs). CYP79A61 uses phenylalanine as a substrate, whereas CYP79A91, CYP79A93, and CYP79A95 use valine and isoleucine as substrates, with CYP79A93 showing the ability also to use phenylalanine. CYP79A94 uses isoleucine as a substrate. Analysis of 249 sorghum transcriptomes from two different sorghum cultivars showed the expression levels and tissue-specific expression of the CYP79As. CYP79A1 is the committed gene in dhurrin formation and was the highest expressed gene in most tissues/organs. CYP79A61 was primarily expressed in fully developed leaf blades and leaf sheaths. CYP79A91 and CYP79A92 were expressed mainly in roots >200 cm below ground, while CYP79A93 and CYP79A94 were most highly expressed in the leaf collar and leaf sheath, respectively. The possible signalling effects of the oximes and their metabolites produced in different sorghum tissues are discussed.
Collapse
Affiliation(s)
- Donka Teneva Koleva
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Mengqi Liu
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Barbara Dusak
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Stavaniya Ghosh
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Camilla Timmermann Krogh
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Ida Rye Hellebek
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Mathilde Troensegaard Cortsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Mohammed Saddik Motawie
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | | | - Brian Adam McKinley
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - John E. Mullet
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
- R&D Research, Novo Nordisk Pharmatech A/SKøgeDenmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| |
Collapse
|
11
|
Xian B, Zhou Y, Hu Y, Peng Y, Song X, Xi Z, Li Y, Yan J, Ren C, Pei J, Chen J. Genome-wide screen and multi-omics analysis reveal OGT1 participate in the biosynthesis of safflower flavonoid glycosides. HORTICULTURE RESEARCH 2024; 11:uhae261. [PMID: 39664694 PMCID: PMC11632156 DOI: 10.1093/hr/uhae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 12/13/2024]
Abstract
Safflower, an economic crop, is renowned for its flowers, which are widely used in medicines for treating cardiovascular and cerebrovascular diseases and in dyes for food and industry. The utility of safflower depends on its flavonoid glycosides. Therefore, the biosynthesis of safflower flavonoid glycosides has been a focus of attention, but the present mechanisms remain poorly understood. This study aims to identify functional genes associated with flavonoid glycoside biosynthesis in safflower through a comprehensive approach that integrates whole-genome screen and multi-omics correlation studies. CYP and UGT are two crucial genes families involved in flavonoid glycoside biosynthesis. We have screened 264 CYP genes and 140 UGT genes in the genome of safflower and conducted analyzes including phylogenetic relationships, conserved motifs, gene structures, cis-acting elements, and chromosome mapping, which provided extensive and comprehensive data on the CYP and UGT gene families. Integration of phenotype and metabolic data from safflower different tissues helped narrow down the screening by confirming that HSYA is synthesized only in flowers. Based on the gene expression patterns and phylogenetic analysis, CtOGT1 was ultimately identified, which could catalyze the generation of glycosides using various flavonoid substrates and exhibited strong substrate affinity. Moreover, molecular docking studies elucidated CtOGT1's highly active intrinsic mechanism. In conclusion, this study effectively identified genes responsible for flavonoid glycoside biosynthesis in safflower through the integration of whole-genome screen and multi-omics analysis, established a comprehensive foundation of data, methodology, and experimental evidence for further elucidating the pathways of safflower flavonoid glycoside biosynthesis.
Collapse
Affiliation(s)
- Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Yanxun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Yueying Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Yanni Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Ziqing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Yuhang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| |
Collapse
|
12
|
de Vries J, de Vries S, Fernie AR. Current and future perspectives for enhancing our understanding of the evolution of plant metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240253. [PMID: 39343013 PMCID: PMC11439503 DOI: 10.1098/rstb.2024.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024] Open
Abstract
The special issue 'The evolution of plant metabolism' has brought together original research, reviews and opinions that cover various aspects from the full breath of plant metabolism including its interaction with the environment including other species. Here, we briefly summarize these efforts and attempts to extract a consensus opinion of the best manner in which to tackle this subject both now and in the future. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr.1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
13
|
Kunz CF, de Vries S, de Vries J. Plant terrestrialization: an environmental pull on the evolution of multi-sourced streptophyte phenolics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230358. [PMID: 39343031 PMCID: PMC11528360 DOI: 10.1098/rstb.2023.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
Phenolic compounds of land plants are varied: they are chemodiverse, are sourced from different biosynthetic routes and fulfil a broad spectrum of functions that range from signalling phytohormones, to protective shields against stressors, to structural compounds. Their action defines the biology of land plants as we know it. Often, their roles are tied to environmental responses that, however, impacted already the algal progenitors of land plants, streptophyte algae. Indeed, many streptophyte algae successfully dwell in terrestrial habitats and have homologues for enzymatic routes for the production of important phenolic compounds, such as the phenylpropanoid pathway. Here, we synthesize what is known about the production of specialized phenolic compounds across hundreds of millions of years of streptophyte evolution. We propose an evolutionary scenario in which selective pressures borne out of environmental cues shaped the chemodiversity of phenolics in streptophytes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Cäcilia F. Kunz
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen37077, Germany
| |
Collapse
|
14
|
de Vries S, Feussner I. Biotic interactions, evolutionary forces and the pan-plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230362. [PMID: 39343027 PMCID: PMC11449213 DOI: 10.1098/rstb.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 10/01/2024] Open
Abstract
Plant specialized metabolism has a complex evolutionary history. Some aspects are conserved across the green lineage, but many metabolites are unique to certain lineages. The network of specialized metabolism continuously diversified, simplified or reshaped during the evolution of streptophytes. Many routes of pan-plant specialized metabolism are involved in plant defence. Biotic interactions are recalled as major drivers of lineage-specific metabolomic diversification. However, the consequences of this diversity of specialized metabolism in the context of plant terrestrialization and land plant diversification into the major lineages of bryophytes, lycophytes, ferns, gymnosperms and angiosperms remain only little explored. Overall, this hampers conclusions on the evolutionary scenarios that shaped specialized metabolism. Recent efforts have brought forth new streptophyte model systems, an increase in genetically accessible species from distinct major plant lineages, and new functional data from a diversity of land plants on specialized metabolic pathways. In this review, we will integrate the recent data on the evolution of the plant immune system with the molecular data of specialized metabolism and its recognition. Based on this we will provide a contextual framework of the pan-plant specialized metabolism, the evolutionary aspects that shape it and the impact on adaptation to the terrestrial environment.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, Goettingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| |
Collapse
|
15
|
Yang T, Zhuang R, Wang S, Lv W, Wen Y. Genome-wide identification and functional analysis of CYP450 genes in eggplant (Solanum melongena L.) with a focus on anthocyanin accumlation. BMC Genomics 2024; 25:1056. [PMID: 39511492 PMCID: PMC11545158 DOI: 10.1186/s12864-024-10990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND In plants, Cytochrome P450 (CYP450) constitutes the largest family of metabolic enzymes and plays a crucial role in various physiological processes, including plant growth and development. Eggplants are well-known for their peel's high concentration of anthocyanin compounds that provide significant health benefits to humans. The accumulation of anthocyanins in eggplant peels is an important process during growth and development. Therefore, it is essential to identify the CYP450 genes in eggplant (SmCYPs) and analyze their expression profiles during the period of anthocyanin accumulation in the peel. RESULTS A total of 180 SmCYPs were identified in the eggplant genome and classified into eight subfamilies based on phylogenetic analysis. These SmCYPs exhibited highly conserved gene structure (exon/intron) and protein motifs, especially within their respective subgroup. Sixteen pairs of genes with collinearity were identified through gene duplication analysis. Promoter cis-acting element analysis revealed that SmCYPs are involved in various responses, including growth and development, stress responsiveness, and light responsiveness. Transcriptome data analysis revealed that all SmCYPs were expressed in various eggplant tissues, such as roots, stems, leaves, flowers, and fruits; with diverse expression patterns among members. The expression patterns of SmCYPs in eggplant peel also exhibited diversity during different stages of anthocyanin accumulation. qRT-PCR analysis demonstrated similar expression patterns for 15 selected SmCYPs as observed in the transcriptome data. Metabolomics analysis further suggested that SmCYPs are involved in the biosynthesis of secondary metabolites and metabolic pathways related to flavonoid and flavone/flavonol biosynthesis. Notably, three specific SmCYPs (SmCYP73A1/75A/98A1) play a significant role in flavonoid biosynthesis, particularly in anthocyanin synthesis in eggplant. CONCLUSION Genome-wide identification, phylogenetic analysis, expression profile analysis, and exploration of metabolic pathways related to SmCYPs provide valuable insights into the roles of these genes in anthocyanin accumulation in various tissues and organs, including eggplant peel. The findings from this study lay a foundation for the functional analysis of SmCYPs involvement in anthocyanin accumulation in eggplant peel, providing a molecular basis for breeders to cultivate novel varieties of eggplants with high levels of anthocyanin content.
Collapse
Affiliation(s)
- Ting Yang
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Statistics and Applications, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruijie Zhuang
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiyu Wang
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanping Lv
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongxian Wen
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China.
- Institute of Statistics and Applications, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
16
|
Xu B, Huang JP, Peng G, Cao W, Liu Z, Chen Y, Yao J, Wang YJ, Li J, Zhang G, Chen S, Huang SX. Total biosynthesis of the medicinal triterpenoid saponin astragalosides. NATURE PLANTS 2024; 10:1826-1837. [PMID: 39433972 DOI: 10.1038/s41477-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Astragalus membranaceus has been used in traditional Chinese medicine for over 2,000 years. Its major active triterpenoid saponins, astragalosides, have attracted great attention due to their multiple health benefits and applications in medicine. Despite this, the biosynthetic machinery for astragalosides remains enigmatic. Here a chromosome-level genome assembly of A. membranaceus was generated. The identification of two tailoring enzymes required for astragaloside biosynthesis enabled the discovery of a triterpenoid biosynthetic gene cluster, leading to elucidation of the complete astragaloside biosynthetic pathway. This pathway is characterized by a sequence of selective hydroxylation, epoxidation and glycosylation reactions, which are mediated by three cytochrome P450s, one 2-oxoglutarate-dependent dioxygenase and two glycosyltransferases. Reconstitution of this biosynthetic machinery in Nicotiana benthamiana allowed for heterologous production of astragaloside IV. These findings build a solid foundation for addressing the sourcing issues associated with astragalosides and broaden our understanding of the diversity of terpene biosynthetic gene clusters.
Collapse
Affiliation(s)
- Bingyan Xu
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Ping Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guoqing Peng
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenying Cao
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Westlake University, Hangzhou, China
| | - Zhong Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yin Chen
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yong-Jiang Wang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Li
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shilin Chen
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Xiong Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Yao S, Yin H, Li Y, Yang Q, Yuan S, Deng W. Cytochrome P450 CYP81A104 in Eleusine indica confers resistance to multiherbicide with different modes of action. PEST MANAGEMENT SCIENCE 2024; 80:5791-5798. [PMID: 39003629 DOI: 10.1002/ps.8310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Developing herbicide-resistant (HR) crop cultivars is an efficient way to control weeds and minimize crop yield losses. However, widespread and long-term herbicide application has led to the evolution of resistant weeds. Here, we established a resistant (R) E. indica population, collected from imidazolinone-resistant rice cultivar fields. RESULTS The R population evolved 4.5-fold resistance to imazamox. Acetolactate synthase (ALS) gene sequencing and ALS activity assays excluded the effect of target-site resistance in this population. P450 inhibitor malathion pretreatment significantly reversed resistance to imazamox. RNA sequencing showed that a P450 gene CYP81A104 was expressed higher in R versus susceptible (S) plants. Arabidopsis overexpressing CYP81A104 showed resistance to ALS inhibitors (imazamox, tribenuron-methyl, penoxsulam and flucarbazone-sodium), PSII inhibitor (bentazone), hydroxyphenyl pyruvate dioxygenase inhibitor (mesotrione) and auxin mimics (MCPA), which was generally consistent with the results presented in the R population. CONCLUSION This study confirmed that the CYP81A104 gene endowed resistance to multiherbicides with different modes-of-action. Our findings provide an insight into the molecular characteristics of resistance and contribute to formulating an appropriate strategy for weed management in HR crops. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sai Yao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hanqi Yin
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Qian Yang
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China
| | - Shuzhong Yuan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei Deng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
19
|
Pan L, Huang R, Lu Z, Duan W, Sun S, Yan L, Cui G, Niu L, Wang Z, Zeng W. Combined transcriptome and metabolome analysis identifies triterpenoid-induced defense responses in Myzus persicae Sülzer-infested peach. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6644-6662. [PMID: 39110720 DOI: 10.1093/jxb/erae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2024] [Indexed: 11/01/2024]
Abstract
Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid infestation induced larger changes in aphid-resistant than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed highly significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid-susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, and NACs) were strongly induced upon GPA infestation in aphid-resistant, but not in aphid-susceptible peaches. These results suggested that the accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.
Collapse
Affiliation(s)
- Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Rui Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhenhua Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Lele Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhiqiang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
20
|
Sun M, Li J, Xu S, Gu Y, Wang J. Genome-Wide Identification and Characterization of Diterpenoid Pathway CYPs in Andrographis paniculata and Analysis of Their Expression Patterns under Low Temperature Stress. Int J Mol Sci 2024; 25:10741. [PMID: 39409070 PMCID: PMC11476908 DOI: 10.3390/ijms251910741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Andrographis paniculata is known for its diterpenoid medicinal compounds with antibacterial and anti-inflammatory properties. However, it faces production and cultivation challenges due to low temperatures (LTs). Cytochrome P450 monooxygenases (CYPs) are key enzymes in diterpenoid accumulation. Nevertheless, the functions and LT-related expression patterns of diterpenoid pathway CYPs in Andrographis paniculata remain poorly understood. In this study, 346 CYPs were discovered in Andrographis paniculata. Among them, 328 CYPs belonged to 42 known subfamilies. The remaining 17 CYPs might have represented novel subfamilies unique to this species. A total of 65 candidate CYPs associated with diterpenoid modification were identified. Of these, 50 were transmembrane proteins, and 57 were localized to chloroplasts. The CYP71 subfamily was the most abundant and had the highest motif diversity. Promoters of all candidate CYPs commonly contained elements responsive to gibberellins (GAs), methyl jasmonate (MeJA), and abiotic stresses. Notably, the XP_051152769 protein, corresponding to a CYP gene over 40,000 bp in length, featured an extraordinarily long intron (40,751 nts). Functional elements within this intron were related to LT, GAs, and dehydration pathways. Based on the promoter element arrangement and subfamily classification, 10 representative candidate CYPs were selected. Under LT stress, significant expression changes were observed in three representative CYPs: CYP71D, ent-kaurenoic acid oxidase (KAO), and ent-kaurene oxidase (KO). KAO and KO were significantly upregulated during early LT stress. KAO and KO interacted with each other and jointly interacted with GA20OX2-like. CYP71D acted as a negative response factor to LT stress. Among the 37 proteins interacting with CYP71D, 95% were CYPs. This study provides a critical preliminary foundation for investigating the functions of diterpenoid pathway CYPs in Andrographis paniculata, thereby facilitating the development of LT-tolerant cultivars.
Collapse
Affiliation(s)
- Mingyang Sun
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Jingyu Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| |
Collapse
|
21
|
Kelsang GA, Ni L, Zhao Z. Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim. DNA Res 2024; 31:dsae022. [PMID: 39017645 PMCID: PMC11375616 DOI: 10.1093/dnares/dsae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological, and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb 'Qinjiao'. Herein, we present its first chromosome-level genome sequence assembly and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5 Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70 Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.
Collapse
Affiliation(s)
- Gyab Ala Kelsang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Mentseekhang, Traditional Tibetan Hospital, Lhasa 850000, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
22
|
Srivastava G, Vyas P, Kumar A, Singh A, Bhargav P, Dinday S, Ghosh S. Unraveling the role of cytochrome P450 enzymes in oleanane triterpenoid biosynthesis in arjuna tree. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2687-2705. [PMID: 39072959 DOI: 10.1111/tpj.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated β-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed β-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Poonam Vyas
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Anamika Singh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandeep Dinday
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
23
|
Ngo I, Kumar R, Li L, Kim SW, Kwon M, Ro DK. Identification of clerodane diterpene modifying cytochrome P450 (CYP728D26) in Salvia divinorum - en route to psychotropic salvinorin A biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14569. [PMID: 39377159 DOI: 10.1111/ppl.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Salvia divinorum is a hallucinogenic plant native to the Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A but, to date, only two enzymes in the Salvinorin A pathway have been identified. Here, we identify CYP728D26 that catalyzes a C18 oxygenation on crotonolide G, which bears a clerodane backbone. Biochemical identity of CYP728D26 was validated by in vivo reconstitution in yeast, 1H- and 13C-NMR analyses of the purified product, and kinetic analysis of CYP728D26 with a Km value of 13.9 μM. Beyond the single oxygenation on C18, collision-induced dissociation analysis suggested two additional oxygenations are catalyzed by CYP728D26 to form crotonoldie G acid, although this carboxylic acid form is a minor product. Its close homologue CYP728D25 exhibited a C1-hydroxylation on the clerodane backbone in a reconstituted yeast system. However, CYP728D25 showed no activity in in vitro assays. This result implies that catalytic activities observed from overexpression systems should be interpreted cautiously. This work identified a new CYP catalyst and advanced our knowledge of salvinorin A biosynthesis.
Collapse
Affiliation(s)
- Iris Ngo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | - Liang Li
- The Metabolomics Innovation Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
- Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Zhang Y, Zhang Q, Liu Q, Zhao Y, Xu W, Hong C, Xu C, Qi X, Qi X, Liu B. Fine mapping and functional validation of the maize nicosulfuron-resistance gene CYP81A9. FRONTIERS IN PLANT SCIENCE 2024; 15:1443413. [PMID: 39157517 PMCID: PMC11328016 DOI: 10.3389/fpls.2024.1443413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Nicosulfuron, a widely utilized herbicide, is detrimental to some maize varieties due to their sensitivity. Developing tolerant varieties with resistance genes is an economical and effective way to alleviate phytotoxicity. In this study, map-based cloning revealed that the maize resistance gene to nicosulfuron is Zm00001eb214410 (CYP81A9), which encodes a cytochrome P450 monooxygenase. qRT- PCR results showed that CYP81A9 expression in the susceptible line JS188 was significantly reduced compared to the resistant line B73 during 0-192 hours following 80 mg/L nicosulfuron spraying. Meanwhile, a CYP81A9 overexpression line exhibited normal growth under a 20-fold nicosulfuron concentration (1600 mg/L), while the transgenic acceptor background material Zong31 did not survive. Correspondingly, silencing CYP81A9 through CRISPR/Cas9 mutagenesis and premature transcription termination mutant EMS4-06e182 resulted in the loss of nicosulfuron resistance in maize. Acetolactate Synthase (ALS), the target enzyme of nicosulfuron, exhibited significantly reduced activity in the roots, stems, and leaves of susceptible maize post-nicosulfuron spraying. The CYP81A9 expression in the susceptible material was positively correlated with ALS activity in vivo. Therefore, this study identified CYP81A9 as the key gene regulating nicosulfuron resistance in maize and discovered three distinct haplotypes of CYP81A9, thereby laying a solid foundation for further exploration of the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Yongzhong Zhang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Qingrong Zhang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhi Liu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Yan Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Wei Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Cuiping Hong
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Changli Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xiushan Qi
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xinli Qi
- Department of Maize Breeding, Taian Denghai WuYue Taishan Seed Industry CO., LTD, Taian, Shandong, China
| | - Baoshen Liu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
25
|
Gorina SS, Lantsova NV, Iljina TM, Toporkova YY, Grechkin AN. Oxylipin biosynthesis via an unprecedented 16-hydroperoxide lyase pathway in green tissues of cucumber (Cucumis sativus L.) plants. PHYTOCHEMISTRY 2024; 224:114151. [PMID: 38768880 DOI: 10.1016/j.phytochem.2024.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.). In the present work, an array of products biosynthesized through the conversions of α-linolenic acid 16-hydroperoxide (16-HPOT) was detected. Firstly, a prominent 15-hydroxy-9,12-pentadecadienoic acid (Me/TMS) was detected, the product of hydroperoxide lyase (HPL) chain cleavage of 16-HPOT and further reduction of aldehyde 15-oxo-9,12-pentadecadienoic acid to alcohol. Besides, the presence of dicarboxylic acid, 3,6-pentadecadiene-1,15-dioic acid, was deduced from the detection of its catalytic hydrogenation product, pentadecane-1,15-dioic acid. Finally, 12,15-dihydroxypentadecanoic acid (Me/TMS) was detected amongst the hydrogenated products, thus indicating the presence of the parent 12,15-dihydroxy-9,13-pentadecadienoic acid. To confirm the proposed HPL chain cleavage, the 16(S)-HPOT was prepared and incubated with the recombinant cucumber HPL CYP74B6 enzyme. The CYP74B6 possessed high activity towards 16-HPOT. Chain cleavage yields the (9Z,12Z)-15-oxo-9,12-pentadecadienoic acid, undergoing a spontaneous isomerization into (9Z,13E)-15-oxo-9,13-pentadecadienoic acid. Thus, the cucumber plants as well as the recombinant cucumber HPL CYP74B6 possessed unprecedented 16-HPL activity, cleaving 16-HPOT into a C15 fragment, 15-oxo-9,12-pentadecadienoic acid, and a complementary volatile C3 fragment, propionic aldehyde. The 16-LOX/16-HPL route of oxylipin biosynthesis presents a novel facet of the plant LOX pathway.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| |
Collapse
|
26
|
Li Q, Jiao X, Li X, Shi W, Ma Y, Tan X, Gan J, Liu J, Yang J, Wang J, Jin B, Chen T, Su P, Zhao Y, Zhang Y, Tang J, Cui G, Chen Y, Guo J, Huang L. Identification of the cytochrome P450s responsible for the biosynthesis of two types of aporphine alkaloids and their de novo biosynthesis in yeast. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1703-1717. [PMID: 38953746 DOI: 10.1111/jipb.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.
Collapse
Affiliation(s)
- Qishuang Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Jiao
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Xinyi Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenlong Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiangmei Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingyi Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujun Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
27
|
Wang JY, Chen GTE, Braguy J, Al-Babili S. Distinguishing the functions of canonical strigolactones as rhizospheric signals. TRENDS IN PLANT SCIENCE 2024; 29:925-936. [PMID: 38521698 DOI: 10.1016/j.tplants.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.
Collapse
Affiliation(s)
- Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guan-Ting Erica Chen
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justine Braguy
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
28
|
Wang J, Yang B, Zhang F, Wang J, Xue K, Hussain Chang B, Zhang J, Qin X. Identification and Expression Analysis of Cytochrome P450 Genes Probably Involved in Triterpenoid Saponins Biosynthesis in Astragalus mongholicus. Int J Mol Sci 2024; 25:8333. [PMID: 39125903 PMCID: PMC11312233 DOI: 10.3390/ijms25158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Cytochromes P450 (P450s) are one of the largest enzymatic protein families and play critical roles in the synthesis and metabolism of plant secondary metabolites. Astragaloside IV (AS-IV) is one of the primary active components in Astragalus herbs, exhibiting diverse biological activities and pharmacological effects. However, P450s involved in the astragaloside biosynthesis have not been systematically analyzed in Astragalus mongholicus (A. mongholicus). In this study, we identified 209 P450 genes from the genome of A. mongholicus (AmP450s), which were classified into nine clans and 47 families and performed a systematic overview of their physical and chemical properties, phylogeny, gene structures and conserved motifs. Weighted gene co-expression network analysis (WGCNA) revealed that AmP450s are critical in the astragaloside biosynthesis pathway. The expression levels of these AmP450s were verified by quantitative real-time PCR (qRT-PCR) analysis in the root, stem and leaf, showing that most AmP450s are abundant in the root. Additionally, the correlation analysis between gene expressions and AS-IV content showed that twelve AmP450s, especially CYP71A28, CYP71D16 and CYP72A69, may have significant potential in the biosynthesis of astragaloside. This study systematically investigates the P450s of A. mongholicus and offers valuable insights into further exploring the functions of CYP450s in the astragaloside biosynthesis pathway.
Collapse
Affiliation(s)
- Junxiu Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Baoping Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Fusheng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Jiaorui Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; (J.W.); (B.Y.); (F.Z.); (J.W.)
| | - Kunlun Xue
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
| | - Babar Hussain Chang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
- Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Jianqin Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
| | - Xuemei Qin
- College of Life Science, Shanxi University, Taiyuan 030006, China; (K.X.); (B.H.C.)
| |
Collapse
|
29
|
Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci 2024; 25:8122. [PMID: 39125690 PMCID: PMC11311414 DOI: 10.3390/ijms25158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to β-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from β-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Richard Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| |
Collapse
|
30
|
Ruan B, Jiang Y, Ma Y, Zhou M, Chen F, Zhang Y, Yu Y, Wu L. Characterization of the ddt1 Mutant in Rice and Its Impact on Plant Height Reduction and Water Use Efficiency. Int J Mol Sci 2024; 25:7629. [PMID: 39062872 PMCID: PMC11277124 DOI: 10.3390/ijms25147629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Rice (Oryza sativa L.), a fundamental global staple, nourishes over half of the world's population. The identification of the ddt1 mutant in rice through EMS mutagenesis of the indica cultivar Shuhui527 revealed a dwarf phenotype, characterized by reduced plant height, smaller grain size, and decreased grain weight. Detailed phenotypic analysis and map-based cloning pinpointed the mutation to a single-base transversion in the LOC_Os03g04680 gene, encoding a cytochrome P450 enzyme, which results in a premature termination of the protein. Functional complementation tests confirmed LOC_Os03g04680 as the DDT1 gene responsible for the observed phenotype. We further demonstrated that the ddt1 mutation leads to significant alterations in gibberellic acid (GA) metabolism and signal transduction, evidenced by the differential expression of key GA-related genes such as OsGA20OX2, OsGA20OX3, and SLR1. The mutant also displayed enhanced drought tolerance, as indicated by higher survival rates, reduced water loss, and rapid stomatal closure under drought conditions. This increased drought resistance was linked to the mutant's improved antioxidant capacity, with elevated activities of antioxidant enzymes and higher expression levels of related genes. Our findings suggest that DDT1 plays a crucial role in regulating both plant height and drought stress responses. The potential for using gene editing of DDT1 to mitigate the dwarf phenotype while retaining improved drought resistance offers promising avenues for rice improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (B.R.); (Y.J.); (Y.M.); (M.Z.); (F.C.); (Y.Z.); (Y.Y.)
| |
Collapse
|
31
|
Saito R, Morikawa M, Muto T, Saito S, Kaji T, Ueda M. SlCYP94B18 and SlCYP94B19 monooxygenases for the catabolic turnover of jasmonates in tomato leaves. PHYTOCHEMISTRY 2024; 223:114141. [PMID: 38750708 DOI: 10.1016/j.phytochem.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
(3R,7S)-Jasmonoyl-L-isoleucine (JA-Ile) is a plant hormone that regulates plant defense responses and other physiological functions. The mechanism of attenuation of JA-Ile signaling in the plant body is essential because prolonged JA-Ile signaling can be detrimental to plant survival. In Arabidopsis thaliana, the cytochrome P450 monooxygenases, CYP94B1/B3/C1, inactivate JA-Ile by converting it into 12-hydroxy-jasmonoyl-L-isoleucine (12-OH-JA-Ile), and CYP94C1 converts 12-OH-JA-Ile into 12-carboxy-jasmonoyl-L-isoleucine (12-COOH-JA-Ile). In the present study, we aimed to identify the cytochrome P450 monooxygenases involved in the catabolic pathway of JA-Ile in tomato leaves. Based on a gene expression screening of SlCYP94 subfamily monooxygenases using qPCR and the time-course of JA-Ile catabolism, we identified SlCYP94B18 and SlCYP94B19 expressed in tomato leaves as candidate monooxygenases catalyzing the two-step catabolism of JA-Ile. An in vitro enzymatic assay using a yeast expression system revealed that these enzymes efficiently converted JA-Ile to 12-OH-JA-Ile, and then to 12-COOH-JA-Ile. SlCYP94B18 and SlCYP94B19 also catalyzed the oxidative catabolism of several JA-amino acid conjugates (JA-AAs), JA-Leu and JA-Val, in tomatoes. These results suggest that SlCYP94B18 and SlCYP94B19 plays a role in the two-step oxidation of JA-AAs, suggesting their broad involvement in regulating jasmonate signaling in tomatoes. Our results contribute to a deeper understanding of jasmonate signaling in tomatoes and may help to improve tomato cultivation and quality.
Collapse
Affiliation(s)
- Rina Saito
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Mai Morikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshiya Muto
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Sayaka Saito
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Takuya Kaji
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Minoru Ueda
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
32
|
Dhabalia Ashok A, de Vries S, Darienko T, Irisarri I, de Vries J. Evolutionary assembly of the plant terrestrialization toolkit from protein domains. Proc Biol Sci 2024; 291:20240985. [PMID: 39081174 PMCID: PMC11289646 DOI: 10.1098/rspb.2024.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
33
|
Cabello-Hurtado F, El Amrani A. Phenanthrene-Induced Cytochrome P450 Genes and Phenanthrene Tolerance Associated with Arabidopsis thaliana CYP75B1 Gene. PLANTS (BASEL, SWITZERLAND) 2024; 13:1692. [PMID: 38931123 PMCID: PMC11207427 DOI: 10.3390/plants13121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) form an important group of organic pollutants due to their distribution in the environment and their carcinogenic and/or mutagenic effects. In order to identify at the molecular level some of the players in the biodegradation and tolerance response to PAHs in plants, we have phenotyped 32 Arabidopsis thaliana T-DNA mutant lines corresponding to 16 cytochrome P450 (CYP) genes that showed to be differentially expressed under contrasted stress conditions induced by phenanthrene, a 3-ring PAH. This screening has allowed us to identify CYP75B1 (At5g07990) T-DNA mutants as the only ones being sensitive to phenanthrene-induced stress, supporting that CYP75B1 protein is necessary for PAH tolerance. CYP75B1 codes for a 3'flavonol hydroxylase. CYP75B1 gene was heterologously expressed on yeast in order to investigate whether it affects the A. thaliana response to phenanthrene by participating in its metabolization. Heterologously-produced CYP75B1 enzyme shows to be catalytically efficient against its physiological substrates (e.g., naringenin) but unable to metabolize phenanthrene or 9-phenanthrenol. In contrast, CYP75B1 seems rather involved in phenanthrene tolerance as a crucial element by regulating concentration of antioxidants through the production of 3'-hydroxylated flavonoids such as quercetin and cyanidin. In particular, we report a highly increased generation of reactive oxygen species (H2O2 and singlet oxygen) in cyp75b1 mutants compared to control plants in response to phenanthrene treatment. Overall, CYP75B1 shows to play an important role in the response to the deleterious effects of phenanthrene exposure and this is related to oxidative stress sensitivity rather than metabolization.
Collapse
|
34
|
Jiang Y, He G, Li R, Wang K, Wang Y, Zhao M, Zhang M. Functional Validation of the Cytochrome P450 Family PgCYP309 Gene in Panax ginseng. Biomolecules 2024; 14:715. [PMID: 38927118 PMCID: PMC11201774 DOI: 10.3390/biom14060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is an ancient and valuable Chinese herbal medicine, and ginsenoside, as the main active ingredient of ginseng, has received wide attention because of its various pharmacological active effects. Cytochrome P450 is the largest family of enzymes in plant metabolism and is involved in the biosynthesis of terpenoids, alkaloids, lipids, and other primary and secondary plant metabolites. It is significant to explore more PgCYP450 genes with unknown functions and reveal their roles in ginsenoside synthesis. In this study, based on the five PgCYP450 genes screened in the pre-laboratory, through the correlation analysis with the content of ginsenosides and the analysis of the interactions network of the key enzyme genes for ginsenoside synthesis, we screened out those highly correlated with ginsenosides, PgCYP309, as the target gene from among the five PgCYP450 genes. Methyl jasmonate-induced treatment of ginseng adventitious roots showed that the PgCYP309 gene responded to methyl jasmonate induction and was involved in the synthesis of ginsenosides. The PgCYP309 gene was cloned and the overexpression vector pBI121-PgCYP309 and the interference vector pART27-PgCYP309 were constructed. Transformation of ginseng adventitious roots by the Agrobacterium fermentum-mediated method and successful induction of transgenic ginseng hairy roots were achieved. The transformation rate of ginseng hairy roots with overexpression of the PgCYP309 gene was 22.7%, and the transformation rate of ginseng hairy roots with interference of the PgCYP309 gene was 40%. Analysis of ginseng saponin content and relative gene expression levels in positive ginseng hairy root asexual lines revealed a significant increase in PPD, PPT, and PPT-type monomeric saponins Re and Rg2. The relative expression levels of PgCYP309 and PgCYP716A53v2 genes were also significantly increased. PgCYP309 gene promotes the synthesis of ginsenosides, and it was preliminarily verified that PgCYP309 gene can promote the synthesis of dammarane-type ginsenosides.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Ruiqi Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
35
|
Meng F, Zhang S, Su J, Zhu B, Pan X, Qiu X, Cui X, Wang C, Niu L, Li C, Lu S. Characterization of two CYP80 enzymes provides insights into aporphine alkaloid skeleton formation in Aristolochia contorta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1439-1454. [PMID: 38379355 DOI: 10.1111/tpj.16686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.
Collapse
Affiliation(s)
- Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jiaxian Su
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Butuo Zhu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xinyun Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunling Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Lili Niu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
36
|
Huang X, Li Y, Chang Z, Yan W, Xu C, Zhang B, He Z, Wang C, Zheng M, Li Z, Xia J, Li G, Tang X, Wu J. Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1972-1990. [PMID: 38506334 DOI: 10.1111/tpj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhaohuan He
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guoliang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
37
|
Lu J, Yan S, Xue Z. Biosynthesis and functions of triterpenoids in cereals. J Adv Res 2024:S2090-1232(24)00211-X. [PMID: 38788922 DOI: 10.1016/j.jare.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Triterpenoids are versatile secondary metabolites with a diverse array of physiological activities, possessing valuable pharmacological effects and influencing the growth and development of plants. As more triterpenoids in cereals are unearthed and characterized, their biological roles in plant growth and development are gaining recognition. AIM OF THE REVIEW This review provides an overview of the structures, biosynthetic pathways, and diverse biological functions of triterpenoids identified in cereals. Our goal is to establish a basis for further exploration of triterpenoids with novel structures and functional activities in cereals, and to facilitate the potential application of triterpenoids in grain breeding, thus accelerating the development of superior grain varieties. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This review consolidates information on various triterpenoid skeletons and derivatives found in cereals, and summarizes the pivotal enzyme genes involved, including oxidosqualene cyclase (OSC) and other triterpenoid modifying enzymes like cytochrome P450, glycosyltransferase, and acyltransferase. Triterpenoid-modifying enzymes exhibit specificity towards catalytic sites within triterpenoid skeletons, generating a diverse array of functional triterpenoid derivatives. Furthermore, triterpenoids have been shown to significantly impact the nutritional value, yield, disease resistance, and stress response of cereals.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Shan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China; State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
38
|
Font-Farre M, Brown D, Toth R, Mahadevan C, Brazier-Hicks M, Morimoto K, Kaschani F, Sinclair J, Dale R, Hall S, Morris M, Kaiser M, Wright AT, Burton J, van der Hoorn RAL. Discovery of active mouse, plant and fungal cytochrome P450s in endogenous proteomes and upon expression in planta. Sci Rep 2024; 14:10091. [PMID: 38698065 PMCID: PMC11066006 DOI: 10.1038/s41598-024-60333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Eukaryotes produce a large number of cytochrome P450s that mediate the synthesis and degradation of diverse endogenous and exogenous metabolites. Yet, most of these P450s are uncharacterized and global tools to study these challenging, membrane-resident enzymes remain to be exploited. Here, we applied activity profiling of plant, mouse and fungal P450s with chemical probes that become reactive when oxidized by P450 enzymes. Identification by mass spectrometry revealed labeling of a wide range of active P450s, including six plant P450s, 40 mouse P450s and 13 P450s of the fungal wheat pathogen Zymoseptoria tritici. We next used transient expression of GFP-tagged P450s by agroinfiltration to show ER-targeting and NADPH-dependent, activity-based labeling of plant, mouse and fungal P450s. Both global profiling and transient expression can be used to detect a broad range of active P450s to study e.g. their regulation and discover selective inhibitors.
Collapse
Affiliation(s)
- Maria Font-Farre
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Daniel Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Reka Toth
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - John Sinclair
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Richard Dale
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Samantha Hall
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Melloney Morris
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Jonathan Burton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
39
|
Tang M, Zhang W, Lin R, Li L, He L, Yu J, Zhou Y. Genome-wide characterization of cytochrome P450 genes reveals the potential roles in fruit ripening and response to cold stress in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14332. [PMID: 38710502 DOI: 10.1111/ppl.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.
Collapse
Affiliation(s)
- Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenjing Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| |
Collapse
|
40
|
Mai TD, Kim HM, Park SY, Ma SH, Do JH, Choi W, Jang HM, Hwang HB, Song EG, Shim JS, Joung YH. Metabolism of phenolic compounds catalyzed by Tomato CYP736A61. Enzyme Microb Technol 2024; 176:110425. [PMID: 38479200 DOI: 10.1016/j.enzmictec.2024.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
Cytochrome P450s (CYPs) regulate plant growth and stress responses by producing diverse primary and secondary metabolites. However, the function of many plant CYPs remains unknown because, despite their structural similarity, predicting the enzymatic activity of CYPs is difficult. In this study, one member of the CYP736A subfamily (CYP736A61) from tomatoes was isolated and characterized its enzymatic functions. CYP736A61 was successfully expressed in Escherichia coli through co-expression with molecular chaperones. The purified CYP736A61 showed hydroxylation activity toward 7-ethoxycoumarin, producing 7-hydroxycoumarin or 3-hydroxy 7-ethoxycoumarin. Further substrate screening revealed that dihydrochalcone and stilbene derivates (resveratrol and polydatin) are the substrates of CYP736A61. CYP736A61 also mediated the hydroxylation of resveratrol and polydatin, albeit with low activity. Importantly, CYP736A61 mediated the cleavage of resveratrol and polydatin as well as pinostilbene and pterostilbene. Interestingly, CY736A61 also converted phloretin to naringenin chalcone. These results suggest that CYP736A61 is a novel CYP enzyme with stilbene cleavage activity.
Collapse
Affiliation(s)
- Thanh Dat Mai
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Won Choi
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hye Min Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hyeon Bae Hwang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Eun Gyeong Song
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea.
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea.
| |
Collapse
|
41
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
42
|
Surendran K, Pradeep S, Pillai PP. Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers. PLANT CELL REPORTS 2024; 43:122. [PMID: 38642121 DOI: 10.1007/s00299-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
Collapse
Affiliation(s)
- Karuna Surendran
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | - Siya Pradeep
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | | |
Collapse
|
43
|
Kaixuan W, Zeng H, Yiqun D, Zixuan W, Huanying T, Li J, Xingchen L, Jiang N, Xie G, Zhu Y, Zhao Y, Qin M. Three types of enzymes complete the furanocoumarins core skeleton biosynthesis in Angelica sinensis. PHYTOCHEMISTRY 2024:114102. [PMID: 38641144 DOI: 10.1016/j.phytochem.2024.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2'-hydroxylase (AsC2'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.
Collapse
Affiliation(s)
- Wang Kaixuan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dai Yiqun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wang Zixuan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tang Huanying
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junde Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lu Xingchen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi, PR China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 210014, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 210014, China.
| |
Collapse
|
44
|
Wang H, Li P, Wang Y, Chi C, Ding G. Genome-wide identification of the CYP82 gene family in cucumber and functional characterization of CsCYP82D102 in regulating resistance to powdery mildew. PeerJ 2024; 12:e17162. [PMID: 38560464 PMCID: PMC10981884 DOI: 10.7717/peerj.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
The cytochrome P450 (CYP450) gene family plays a vital role in basic metabolism, hormone signaling, and enhances plant resistance to stress. Among them, the CYP82 gene family is primarily found in dicots, and they are typically activated in response to various specific environmental stresses. Nevertheless, their roles remain considerably obscure, particularly within the context of cucumber. In the present study, 12 CYP82 subfamily genes were identified in the cucumber genome. Bioinformatics analysis included gene structure, conserved motif, cis-acting promoter element, and so on. Subcellular localization predicted that all CYP82 genes were located in the endoplasmic reticulum. The results of cis element analysis showed that CYP82s may significantly affect the response to stress, hormones, and light exposure. Expression patterns of the CYP82 genes were characterized by mining available RNA-seq data followed by qRT-PCR (quantitative real-time polymerase chain reaction) analysis. Members of CYP82 genes display specific expression profiles in different tissues, and in response to PM and abiotic stresses in this study, the role of CsCYP82D102, a member of the CYP82 gene family, was investigated. The upregulation of CsCYP82D102 expression in response to powdery mildew (PM) infection and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) was demonstrated. Further research found that transgenic cucumber plants overexpressing CsCYP82D102 display heightened resistance against PM. Wild-type (WT) leaves exhibited average lesion areas of approximately 29.7% at 7 dpi upon powdery mildew inoculation. In contrast, the two independent CsCYP82D102 overexpression lines (OE#1 and OE#3) displayed significantly reduced necrotic areas, with average lesion areas of approximately 13.4% and 5.7%. Additionally, this enhanced resistance is associated with elevated expression of genes related to the SA/MeJA signaling pathway in transgenic cucumber plants. This study provides a theoretical basis for further research on the biological functions of the P450 gene in cucumber plants.
Collapse
Affiliation(s)
- Hongyu Wang
- Harbin Normal University, Harbin, Harbin, China
| | - Pengfei Li
- Harbin Normal University, Harbin, Harbin, China
| | - Yu Wang
- Harbin Normal University, Harbin, Harbin, China
| | - Chunyu Chi
- Harbin Normal University, Harbin, Harbin, China
| | - Guohua Ding
- Harbin Normal University, Harbin, Harbin, China
| |
Collapse
|
45
|
Fu H, Guo C, Peng J, Shao F, Sheng S, Wang S. Transcriptomic Insights and Cytochrome P450 Gene Analysis in Kadsura coccinea for Lignan Biosynthesis. Genes (Basel) 2024; 15:270. [PMID: 38540329 PMCID: PMC10969973 DOI: 10.3390/genes15030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.
Collapse
Affiliation(s)
- Hanyu Fu
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
| | - Chuan Guo
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Jiqing Peng
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Fengxia Shao
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Song Sheng
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Sen Wang
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| |
Collapse
|
46
|
Wang Y, Sun Y, Li Y, Shao H, Cheng X, Wang X, Yong B, Tao X. Genome-wide identification and expression profiles of the Phytophthora infestans responsive CYPome (cytochrome P450 complement) in Solanum tuberosum. Biosci Biotechnol Biochem 2024; 88:283-293. [PMID: 38115610 DOI: 10.1093/bbb/zbad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cytochrome P450s represent one of the largest protein families across all domains of life. In plants, biotic stress can regulate the expression of some P450 genes. However, the CYPome (cytochrome P450 complement) in Solanum tuberosum and its response to Phytophthora infestans infection remains unrevealed. In this study, 488 P450 genes were identified from potato genome, which can be divided into 41 families and 57 subfamilies. Responding to the infection of P. infestans, 375 potato P450 genes were expressed in late blight resistant or susceptible cultivars. A total of 14 P450 genes were identified as resistant related candidates, and 81 P450 genes were identified as late blight responsive candidates. Several phytohormone biosynthesis, brassinosteroid biosynthesis, and phenylpropanoid biosynthesis involved P450 genes were differentially expressed during the potato-pathogen interactions. This study firstly reported the CYPome in S. tuberosum, and characterized the expression patterns of these P450 genes during the infection of P. infestans.
Collapse
Affiliation(s)
- Yajie Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yining Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoyang Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
47
|
Yu K, Liang P, Yu H, Liu H, Guo J, Yan X, Li Z, Li G, Wang Y, Wang C. Integrating Transcriptome and Chemical Analyses to Provide Insights into Biosynthesis of Terpenoids and Flavonoids in the Medicinal Industrial Crop Andrographis paniculate and Its Antiviral Medicinal Parts. Molecules 2024; 29:852. [PMID: 38398604 PMCID: PMC10893308 DOI: 10.3390/molecules29040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.
Collapse
Affiliation(s)
- Kuo Yu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Pengjie Liang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Hui Liu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Xiaohui Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Guoqiang Li
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| |
Collapse
|
48
|
Lei W, Zhu H, Cao M, Zhang F, Lai Q, Lu S, Dong W, Sun J, Ru D. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. Int J Biol Macromol 2024; 257:128727. [PMID: 38092109 DOI: 10.1016/j.ijbiomac.2023.128727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Man Cao
- Gansu Pharmacovigilance Center, Lanzhou 730070, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shengming Lu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
49
|
Wang Z, Zhou J, Pan J, Cheng W, Fang J, Lv Q, Lin X, Cheng W, Zhang L, Cheng K. Insights into the Superrosids phylogeny and flavonoid synthesis from the telomere-to-telomere gap-free genome assembly of Penthorum chinense Pursh. HORTICULTURE RESEARCH 2024; 11:uhad274. [PMID: 38344651 PMCID: PMC10857932 DOI: 10.1093/hr/uhad274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/11/2023] [Indexed: 10/28/2024]
Abstract
The completion of the first telomere-to-telomere (T2T) genome assembly of Penthorum chinense Pursh (PC), a prominent medicinal plant in China, represents a significant achievement. This assembly spans a length of 257.5 Mb and consists of nine chromosomes. PC's notably smaller genome size in Saxifragales, compared to that of Paeonia ostii, can be attributed to the low abundance of transposable elements. By utilizing single-copy genes from 30 species, including 28 other Superrosids species, we successfully resolved a previously debated Superrosids phylogeny. Our findings unveiled Saxifragales as the sister group to the core rosids, with both being the sister group to Vitales. Utilizing previously characterized cytochrome P450 (CYP) genes, we predicted the compound classes that most CYP genes of PC are involved in synthesizing, providing insight into PC's potential metabolic diversity. Metabolomic and transcriptomic data revealed that the richest sources of the three most noteworthy medicinal components in PC are young leaves and flowers. We also observed higher activity of upstream genes in the flavonoid synthesis pathway in these plant parts. Additionally, through weighted gene co-expression network analysis, we identified gene regulatory networks associated with the three medicinal components. Overall, these findings deepen our understanding of PC, opening new avenues for further research and exploration.
Collapse
Affiliation(s)
- Zhoutao Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 311300, China
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
- Product Development Department, Zhejiang Shaowei Yuanzhi Science and Technology Development Co., Ltd, Lishui 323000, China
| | - Junmei Zhou
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Junjie Pan
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Wei Cheng
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 311300, China
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Jie Fang
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Qundan Lv
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Xiaodan Lin
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenliang Cheng
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 311300, China
| | - Kejun Cheng
- Postdoctoral Research Enter, Zhejiang Kangning Pharmaceutical Co., Ltd, Lishui 323000, China
- Product Development Department, Zhejiang Shaowei Yuanzhi Science and Technology Development Co., Ltd, Lishui 323000, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
50
|
Zonnequin M, Belcour A, Delage L, Siegel A, Blanquart S, Leblanc C, Markov GV. Empirical evidence for metabolic drift in plant and algal lipid biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1339132. [PMID: 38357267 PMCID: PMC10864609 DOI: 10.3389/fpls.2024.1339132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metabolic pathway drift has been formulated as a general principle to help in the interpretation of comparative analyses between biosynthesis pathways. Indeed, such analyses often indicate substantial differences, even in widespread pathways that are sometimes believed to be conserved. Here, our purpose is to check how much this interpretation fits to empirical data gathered in the field of plant and algal biosynthesis pathways. After examining several examples representative of the diversity of lipid biosynthesis pathways, we explain why it is important to compare closely related species to gain a better understanding of this phenomenon. Furthermore, this comparative approach brings us to the question of how much biotic interactions are responsible for shaping this metabolic plasticity. We end up introducing some model systems that may be promising for further exploration of this question.
Collapse
Affiliation(s)
- Maëlle Zonnequin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
- Univ. Grenoble Alpes, Inria, Grenoble, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|