1
|
Zhou H, Li J, He Y, Xia X, Liu J, Xiong H. SLC25A17 inhibits autophagy to promote triple-negative breast cancer tumorigenesis by ROS-mediated JAK2/STAT3 signaling pathway. Cancer Cell Int 2024; 24:85. [PMID: 38402166 PMCID: PMC10893722 DOI: 10.1186/s12935-024-03270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND SLC25A17, a peroxisomal solute carrier, has been implicated in various physiological and pathological processes. However, its precise roles and underlying mechanisms in triple-negative breast cancer (TNBC) remain incompletely understood. METHODS The expression and survival data of breast cancer were derived from TCGA and GEO databases. A variety of in vitro assays were conducted, including proliferation, apoptosis, cell cycle, migration, and invasion. Reactive oxygen species (ROS) were measured by immunofluorescence microscopy and flow cytometry. The levels of autophagy were assessed by mRFP-GFP-LC3 confocal microscopy scanning, western blotting, and electron microscopy. RESULTS SLC25A17 was highly expressed in breast cancer tissues, which was found to be associated with unfavorable prognosis. Functional assays demonstrated that SLC25A17 knockdown suppressed proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion. Moreover, it prompted apoptosis and autophagy. On the other hand, SLC25A17 knockdown promoted autophagy through triggering ROS accumulation, which was counteracted by N-acetyl-l-cysteine (NAC). Furthermore, the pro-apoptotic effect of SLC25A17 knockdown was reversed when treated with autophagy inhibitor 3-MA in TNBC cells, suggesting that SLC25A17 knockdown-induced autophagic cell death. Mechanistically, SLC25A17 performed its function through regulation JAK2/STAT3 signaling in TNBC. In a nude mice xenograft study, SLC25A17 knockdown markedly decreased breast tumor growth and metastasis. CONCLUSION SLC25A17 up-regulation may be a critical factor driving TNBC progression by modulating ROS production and autophagy. Consequently, targeting SLC25A17 could be an effective therapeutic strategy against TNBC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, P.R. China
| | - Jiahao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, P.R. China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P.R. China
| | - Xiaohui Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, P.R. China
| | - Junxia Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, P.R. China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, P.R. China.
| |
Collapse
|
2
|
Costa CF, Lismont C, Chornyi S, Koster J, Li H, Hussein MAF, Van Veldhoven PP, Waterham HR, Fransen M. The solute carrier SLC25A17 sustains peroxisomal redox homeostasis in diverse mammalian cell lines. Free Radic Biol Med 2024; 212:241-254. [PMID: 38159891 DOI: 10.1016/j.freeradbiomed.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.
Collapse
Affiliation(s)
- Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium; Department of Biochemistry, Faculty of Pharmacy, Assiut University, 71515, Asyut, Egypt
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Wrobel TJ, Brilhaus D, Stefanski A, Stühler K, Weber APM, Linka N. Mapping the castor bean endosperm proteome revealed a metabolic interaction between plastid, mitochondria, and peroxisomes to optimize seedling growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1182105. [PMID: 37868318 PMCID: PMC10588648 DOI: 10.3389/fpls.2023.1182105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023]
Abstract
In this work, we studied castor-oil plant Ricinus communis as a classical system for endosperm reserve breakdown. The seeds of castor beans consist of a centrally located embryo with the two thin cotyledons surrounded by the endosperm. The endosperm functions as major storage tissue and is packed with nutritional reserves, such as oil, proteins, and starch. Upon germination, mobilization of the storage reserves requires inter-organellar interplay of plastids, mitochondria, and peroxisomes to optimize growth for the developing seedling. To understand their metabolic interactions, we performed a large-scale organellar proteomic study on castor bean endosperm. Organelles from endosperm of etiolated seedlings were isolated and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Computer-assisted deconvolution algorithms were applied to reliably assign the identified proteins to their correct subcellular localization and to determine the abundance of the different organelles in the heterogeneous protein samples. The data obtained were used to build a comprehensive metabolic model for plastids, mitochondria, and peroxisomes during storage reserve mobilization in castor bean endosperm.
Collapse
Affiliation(s)
- Thomas J. Wrobel
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Universitätsklinikum, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Universitätsklinikum, Düsseldorf, Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Turkolmez S, Chornyi S, Alhajouj S, IJlst L, Waterham HR, Mitchell PJ, Hettema EH, van Roermund CWT. Peroxisomal NAD(H) Homeostasis in the Yeast Debaryomyces hansenii Depends on Two Redox Shuttles and the NAD + Carrier, Pmp47. Biomolecules 2023; 13:1294. [PMID: 37759694 PMCID: PMC10526880 DOI: 10.3390/biom13091294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Debaryomyces hansenii is considered an unconventional yeast with a strong biotechnological potential, which can produce and store high amounts of lipids. However, relatively little is known about its lipid metabolism, and genetic tools for this yeast have been limited. The aim of this study was to explore the fatty acid β-oxidation pathway in D. hansenii. To this end, we employed recently developed methods to generate multiple gene deletions and tag open reading frames with GFP in their chromosomal context in this yeast. We found that, similar as in other yeasts, the β-oxidation of fatty acids in D. hansenii was restricted to peroxisomes. We report a series of experiments in D. hansenii and the well-studied yeast Saccharomyces cerevisiae that show that the homeostasis of NAD+ in D. hansenii peroxisomes is dependent upon the peroxisomal membrane protein Pmp47 and two peroxisomal dehydrogenases, Mdh3 and Gpd1, which both export reducing equivalents produced during β-oxidation to the cytosol. Pmp47 is the first identified NAD+ carrier in yeast peroxisomes.
Collapse
Affiliation(s)
- Selva Turkolmez
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sondos Alhajouj
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Amsterdam, The Netherlands
| | - Phil J. Mitchell
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Ewald H. Hettema
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Carlo W. T. van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Shi W, Wang L, Yao L, Hao W, Han C, Fan M, Wang W, Bai MY. Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis. Nat Commun 2022; 13:5040. [PMID: 36028510 PMCID: PMC9418256 DOI: 10.1038/s41467-022-32770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Stomatal pores allow gas exchange between plant and atmosphere. Stomatal development is regulated by multiple intrinsic developmental and environmental signals. Here, we show that spatially patterned hydrogen peroxide (H2O2) plays an essential role in stomatal development. H2O2 is remarkably enriched in meristemoids, which is established by spatial expression patterns of H2O2-scavenging enzyme CAT2 and APX1. SPEECHLESS (SPCH), a master regulator of stomatal development, directly binds to the promoters of CAT2 and APX1 to repress their expression in meristemoid cells. Mutations in CAT2 or APX1 result in an increased stomatal index. Ectopic expression of CAT2 driven by SPCH promoter significantly inhibits the stomatal development. Furthermore, H2O2 activates the energy sensor SnRK1 by inducing the nuclear localization of the catalytic α-subunit KIN10, which stabilizes SPCH to promote stomatal development. Overall, these results demonstrate that the spatial pattern of H2O2 in epidermal leaves is critical for the optimal stomatal development in Arabidopsis. Stomatal development is regulated by multiple intrinsic developmental and environmental signals. Here, the authors show that spatially patterned hydrogen peroxide activates the energy sensor SnRK1 to stabilize the SPCH transcription factor and optimize stomatal development in Arabidopsis.
Collapse
Affiliation(s)
- Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenfei Wang
- College of Horticulture, College of Life Sciences, Hai xia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Feitosa-Araujo E, da Fonseca-Pereira P, Pena MM, Lana-Costa J, Coelho DG, de Oliveira Silva FM, Medeiros DB, Linka N, Araújo WL, Weber APM, Fernie AR, Nunes-Nesi A. Mitochondrial and peroxisomal NAD + uptake are important for improved photosynthesis and seed yield under elevated CO 2 concentrations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:713-730. [PMID: 35644998 DOI: 10.1111/tpj.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
As sessile organisms, plants must adapt their physiology and developmental processes to cope with challenging environmental circumstances, such as the ongoing elevation in atmospheric carbon dioxide (CO2 ) levels. Nicotinamide adenine dinucleotide (NAD+ ) is a cornerstone of plant metabolism and plays an essential role in redox homeostasis. Given that plants impaired in NAD metabolism and transport often display growth defects, low seed production and disturbed stomatal development/movement, we hypothesized that subcellular NAD distribution could be a candidate for plants to exploit the effects of CO2 fertilization. We report that an efficient subcellular NAD+ distribution is required for the fecundity-promoting effects of elevated CO2 levels. Plants with reduced expression of either mitochondrial (NDT1 or NDT2) or peroxisomal (PXN) NAD+ transporter genes grown under elevated CO2 exhibited reduced total leaf area compared with the wild-type while PXN mutants also displayed reduced leaf number. NDT2 and PXN lines grown under elevated CO2 conditions displayed reduced rosette dry weight and lower photosynthetic rates coupled with reduced stomatal conductance. Interestingly, high CO2 doubled seed production and seed weight in the wild-type, whereas the mutants were less responsive to increases in CO2 levels during reproduction, producing far fewer seeds than the wild-type under both CO2 conditions. These data highlight the importance of mitochondrial and peroxisomal NAD+ uptake mediated by distinct NAD transporter proteins to modulate photosynthesis and seed production under high CO2 levels.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Mateus Miranda Pena
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jaciara Lana-Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Daniel Gomes Coelho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - David Barbosa Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Nicole Linka
- Institute for Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
8
|
Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Front Cell Dev Biol 2022; 10:883491. [PMID: 35592252 PMCID: PMC9110829 DOI: 10.3389/fcell.2022.883491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are present in eukaryotic cells and have essential roles in various biological processes. Plant peroxisomes proliferate by de novo biosynthesis or division of pre-existing peroxisomes, degrade, or replace metabolic enzymes, in response to developmental stages, environmental changes, or external stimuli. Defects of peroxisome functions and biogenesis alter a variety of biological processes and cause aberrant plant growth. Traditionally, peroxisomal function-based screening has been employed to isolate Arabidopsis thaliana mutants that are defective in peroxisomal metabolism, such as lipid degradation and photorespiration. These analyses have revealed that the number, subcellular localization, and activity of peroxisomes are closely related to their efficient function, and the molecular mechanisms underlying peroxisome dynamics including organelle biogenesis, protein transport, and organelle interactions must be understood. Various approaches have been adopted to identify factors involved in peroxisome dynamics. With the development of imaging techniques and fluorescent proteins, peroxisome research has been accelerated. Image-based analyses provide intriguing results concerning the movement, morphology, and number of peroxisomes that were hard to obtain by other approaches. This review addresses image-based analysis of peroxisome dynamics in plants, especially A. thaliana and Marchantia polymorpha.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsuyuki T. Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Shoji Mano
| |
Collapse
|
9
|
Miniero DV, Monné M, Di Noia MA, Palmieri L, Palmieri F. Evidence for Non-Essential Salt Bridges in the M-Gates of Mitochondrial Carrier Proteins. Int J Mol Sci 2022; 23:ijms23095060. [PMID: 35563451 PMCID: PMC9104175 DOI: 10.3390/ijms23095060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corresponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing.
Collapse
Affiliation(s)
- Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (M.M.); (M.A.D.N.)
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (M.M.); (M.A.D.N.)
- Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Antonietta Di Noia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (M.M.); (M.A.D.N.)
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (M.M.); (M.A.D.N.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
- Correspondence: (L.P.); (F.P.)
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (D.V.M.); (M.M.); (M.A.D.N.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
- Correspondence: (L.P.); (F.P.)
| |
Collapse
|
10
|
Nounurai P, Afifah A, Kittisenachai S, Roytrakul S. Phosphorylation of CAD1, PLDdelta, NDT1, RPM1 Proteins Induce Resistance in Tomatoes Infected by Ralstonia solanacearum. PLANTS 2022; 11:plants11060726. [PMID: 35336608 PMCID: PMC8954572 DOI: 10.3390/plants11060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Ralstonia solanacaerum is one of the most devastating bacteria causing bacterial wilt disease in more than 200 species of plants, especially those belonging to the family Solanaceae. To cope with this pathogen, plants have evolved different resistance mechanisms depending on signal transduction after perception. Phosphorylation is the central regulatory component of the signal transduction pathway. We investigated a comparative phosphoproteomics analysis of the stems of resistant and susceptible tomatoes at 15 min and 30 min after inoculation with Ralstonia solanacearum to determine the phosphorylated proteins involved in induced resistance. Phosphoprotein profiling analyses led to the identification of 969 phosphoproteins classified into 10 functional categories. Among these, six phosphoproteins were uniquely identified in resistant plants including cinnamyl alcohol dehydrogenase 1 (CAD1), mitogen-activated protein kinase kinase kinase 18 (MAPKKK18), phospholipase D delta (PLDDELTA), nicotinamide adenine dinucleotide transporter 1 (NDT1), B3 domain-containing transcription factor VRN1, and disease resistance protein RPM1 (RPM1). These proteins are typically involved in defense mechanisms across different plant species. qRT-PCR analyses were performed to evaluate the level of expression of these genes in resistant and susceptible tomatoes. This study provides useful data, leading to an understanding of the early defense mechanisms of tomatoes against R. solanacearum.
Collapse
Affiliation(s)
- Prachumporn Nounurai
- Innovative Plant Biotechnology and Precision Agriculture Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- Correspondence: (P.N.); (S.R.); Tel.: +66-25646700 (P.N. & S.R.)
| | - Anis Afifah
- Molecular and Applied Microbiology Laboratory, Diponegoro University, Jawa Tengah 50275, Indonesia;
| | - Suthathip Kittisenachai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
- Correspondence: (P.N.); (S.R.); Tel.: +66-25646700 (P.N. & S.R.)
| |
Collapse
|
11
|
Knockdown of Quinolinate Phosphoribosyltransferase Results in Decreased Salicylic Acid-Mediated Pathogen Resistance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22168484. [PMID: 34445186 PMCID: PMC8395217 DOI: 10.3390/ijms22168484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living cells. The homeostasis of NAD is required for plant growth, development, and adaption to environmental stresses. Quinolinate phosphoribosyltransferase (QPRT) is a key enzyme in NAD de novo synthesis pathway. T-DNA-based disruption of QPRT gene is embryo lethal in Arabidopsis thaliana. Therefore, to investigate the function of QPRT in Arabidopsis, we generated transgenic plants with decreased QPRT using the RNA interference approach. While interference of QPRT gene led to an impairment of NAD biosynthesis, the QPRT RNAi plants did not display distinguishable phenotypes under the optimal condition in comparison with wild-type plants. Intriguingly, they exhibited enhanced sensitivity to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-avrRpt2), which was accompanied by a reduction in salicylic acid (SA) accumulation and down-regulation of pathogenesis-related genes expression as compared with the wild type. Moreover, oxidative stress marker genes including GSTU24, OXI1, AOX1 and FER1 were markedly repressed in the QPRT RNAi plants. Taken together, these data emphasized the importance of QPRT in NAD biosynthesis and immunity defense, suggesting that decreased antibacterial immunity through the alteration of NAD status could be attributed to SA- and reactive oxygen species-dependent pathways.
Collapse
|
12
|
Welcome to the Family: Identification of the NAD + Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules 2021; 11:biom11060880. [PMID: 34198503 PMCID: PMC8231866 DOI: 10.3390/biom11060880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Subcellular compartmentation is a fundamental property of eukaryotic cells. Communication and metabolic and regulatory interconnectivity between organelles require that solutes can be transported across their surrounding membranes. Indeed, in mammals, there are hundreds of genes encoding solute carriers (SLCs) which mediate the selective transport of molecules such as nucleotides, amino acids, and sugars across biological membranes. Research over many years has identified the localization and preferred substrates of a large variety of SLCs. Of particular interest has been the SLC25 family, which includes carriers embedded in the inner membrane of mitochondria to secure the supply of these organelles with major metabolic intermediates and coenzymes. The substrate specificity of many of these carriers has been established in the past. However, the route by which animal mitochondria are supplied with NAD+ had long remained obscure. Only just recently, the existence of a human mitochondrial NAD+ carrier was firmly established. With the realization that SLC25A51 (or MCART1) represents the major mitochondrial NAD+ carrier in mammals, a long-standing mystery in NAD+ biology has been resolved. Here, we summarize the functional importance and structural features of this carrier as well as the key observations leading to its discovery.
Collapse
|
13
|
Kuhnert F, Schlüter U, Linka N, Eisenhut M. Transport Proteins Enabling Plant Photorespiratory Metabolism. PLANTS 2021; 10:plants10050880. [PMID: 33925393 PMCID: PMC8146403 DOI: 10.3390/plants10050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/21/2023]
Abstract
Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.
Collapse
|
14
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Tragni V, Cotugno P, De Grassi A, Massari F, Di Ronzo F, Aresta AM, Zambonin C, Sanzani SM, Ippolito A, Pierri CL. Targeting mitochondrial metabolite transporters in Penicillium expansum for reducing patulin production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:158-181. [PMID: 33250320 DOI: 10.1016/j.plaphy.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 06/12/2023]
Abstract
There is an increasing need of alternative treatments to control fungal infection and consequent mycotoxin accumulation in harvested fruits and vegetables. Indeed, only few biological targets of antifungal agents have been characterized and can be used for limiting fungal spread from decayed fruits/vegetables to surrounding healthy ones during storage. On this concern, a promising target of new antifungal treatments may be represented by mitochondrial proteins due to some species-specific functions played by mitochondria in fungal morphogenesis, drug resistance and virulence. One of the most studied mycotoxins is patulin produced by several species of Penicillium and Aspergillus genera. Patulin is toxic to many biological systems including bacteria, higher plants and animalia. Although precise biochemical mechanisms of patulin toxicity in humans are not completely clarified, its high presence in fresh and processed apple fruits and other apple-based products makes necessary developing a strategy for limiting its presence/accumulation. Patulin biosynthetic pathway consists of an enzymatic cascade, whose first step is represented by the synthesis of 6-methylsalicylic acid, obtained from the condensation of one acetyl-CoA molecule with three malonyl-CoA molecules. The most abundant acetyl-CoA precursor is represented by citrate produced by mitochondria. In the present investigation we report about the possibility to control patulin production through the inhibition of mitochondrial/peroxisome transporters involved in the export of acetyl-CoA precursors from mitochondria and/or peroxisomes, with specific reference to the predicted P. expansum mitochondrial Ctp1p, DTC, Sfc1p, Oac1p and peroxisomal PXN carriers.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy
| | - Federica Massari
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Di Ronzo
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Antonella Maria Aresta
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Zambonin
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | | | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
16
|
Biochemical and functional characterization of a mitochondrial citrate carrier in Arabidopsis thaliana. Biochem J 2020; 477:1759-1777. [PMID: 32329787 DOI: 10.1042/bcj20190785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
A homolog of the mitochondrial succinate/fumarate carrier from yeast (Sfc1p) has been found in the Arabidopsis genome, named AtSFC1. The AtSFC1 gene was expressed in Escherichia coli, and the gene product was purified and reconstituted in liposomes. Its transport properties and kinetic parameters demonstrated that AtSFC1 transports citrate, isocitrate and aconitate and, to a lesser extent, succinate and fumarate. This carrier catalyzes a fast counter-exchange transport as well as a low uniport of substrates, exhibits a higher transport affinity for tricarboxylates than dicarboxylates, and is inhibited by pyridoxal 5'-phosphate and other inhibitors of mitochondrial carriers to various degrees. Gene expression analysis indicated that the AtSFC1 transcript is mainly present in heterotrophic tissues, and fusion with a green-fluorescent protein localized AtSFC1 to the mitochondria. Furthermore, 35S-AtSFC1 antisense lines were generated and characterized at metabolic and physiological levels in different organs and at various developmental stages. Lower expression of AtSFC1 reduced seed germination and impaired radicle growth, a phenotype that was related to reduced respiration rate. These findings demonstrate that AtSFC1 might be involved in storage oil mobilization at the early stages of seedling growth and in nitrogen assimilation in root tissue by catalyzing citrate/isocitrate or citrate/succinate exchanges.
Collapse
|
17
|
Feitosa-Araujo E, da Fonseca-Pereira P, Pena MM, Medeiros DB, Perez de Souza L, Yoshida T, Weber APM, Araújo WL, Fernie AR, Schwarzländer M, Nunes-Nesi A. Changes in intracellular NAD status affect stomatal development in an abscisic acid-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1149-1168. [PMID: 32996222 DOI: 10.1111/tpj.15000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mateus M Pena
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Takuya Yoshida
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Andreas P M Weber
- Department of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
18
|
van Roermund CWT, IJlst L, Baker A, Wanders RJA, Theodoulou FL, Waterham HR. The Saccharomyces cerevisiae ABC subfamily D transporter Pxa1/Pxa2p co-imports CoASH into the peroxisome. FEBS Lett 2020; 595:763-772. [PMID: 33112423 DOI: 10.1002/1873-3468.13974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) subfamily D transporters are important for the uptake of fatty acids and other beta-oxidation substrates into peroxisomes. Genetic and biochemical evidence indicates that the transporters accept fatty acyl-coenzyme A that is cleaved during the transport cycle and then re-esterified in the peroxisomal lumen. However, it is not known whether free coenzyme A (CoA) is released inside or outside the peroxisome. Here we have used Saccharomyces cerevisiae and isolated peroxisomes to demonstrate that free CoA is released in the peroxisomal lumen. Thus, ABC subfamily D transporter provide an import pathway for free CoA that controls peroxisomal CoA homeostasis and tunes metabolism according to the cell's demands.
Collapse
Affiliation(s)
- Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | | | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
19
|
Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules 2020; 10:biom10091226. [PMID: 32846873 PMCID: PMC7565455 DOI: 10.3390/biom10091226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.
Collapse
|
20
|
Peroxisomal Cofactor Transport. Biomolecules 2020; 10:biom10081174. [PMID: 32806597 PMCID: PMC7463629 DOI: 10.3390/biom10081174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
Collapse
|
21
|
Cao X, Yang S, Cao C, Zhou YJ. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synth Syst Biotechnol 2020; 5:179-186. [PMID: 32637671 PMCID: PMC7332497 DOI: 10.1016/j.synbio.2020.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Current yeast metabolic engineering in isoprenoids production mainly focuses on rewiring of cytosolic metabolic pathway. However, the precursors, cofactors and the enzymes are distributed in various sub-cellular compartments, which may hamper isoprenoid biosynthesis. On the other side, pathway compartmentalization provides several advantages for improving metabolic flux toward target products. We here summarize the recent advances on harnessing sub-organelle for isoprenoids biosynthesis in yeast, and analyze the knowledge about the localization of enzymes, cofactors and metabolites for guiding the rewiring of the sub-organelle metabolism. This review may provide some insights for constructing efficient yeast cell factories for production of isoprenoids and even other natural products.
Collapse
Affiliation(s)
- Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chunyang Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| |
Collapse
|
22
|
Lim SL, Voon CP, Guan X, Yang Y, Gardeström P, Lim BL. In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD + fluorescent protein sensors. Nat Commun 2020; 11:3238. [PMID: 32591540 PMCID: PMC7320160 DOI: 10.1038/s41467-020-17056-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The challenge of monitoring in planta dynamic changes of NADP(H) and NAD(H) redox states at the subcellular level is considered a major obstacle in plant bioenergetics studies. Here, we introduced two circularly permuted yellow fluorescent protein sensors, iNAP and SoNar, into Arabidopsis thaliana to monitor the dynamic changes in NADPH and the NADH/NAD+ ratio. In the light, photosynthesis and photorespiration are linked to the redox states of NAD(P)H and NAD(P) pools in several subcellular compartments connected by the malate-OAA shuttles. We show that the photosynthetic increases in stromal NADPH and NADH/NAD+ ratio, but not ATP, disappear when glycine decarboxylation is inhibited. These observations highlight the complex interplay between chloroplasts and mitochondria during photosynthesis and support the suggestions that, under normal conditions, photorespiration supplies a large amount of NADH to mitochondria, exceeding its NADH-dissipating capacity, and the surplus NADH is exported from the mitochondria to the cytosol through the malate-OAA shuttle.
Collapse
Affiliation(s)
- Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaoqian Guan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
23
|
Feitosa-Araujo E, de Souza Chaves I, Florian A, da Fonseca-Pereira P, Condori Apfata JA, Heyneke E, Medeiros DB, Pires MV, Mettler-Altmann T, Neuhaus HE, Palmieri F, Ara�jo WL, Obata T, Weber APM, Linka N, Fernie AR, Nunes-Nesi A. Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:897-908. [PMID: 32065636 PMCID: PMC7217668 DOI: 10.1093/pcp/pcaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
Despite the fundamental importance of nicotinamide adenine dinucleotide (NAD+) for metabolism, the physiological roles of NAD+ carriers in plants remain unclear. We previously characterized the Arabidopsis thaliana gene (At1g25380), named AtNDT2, encoding a protein located in the mitochondrial inner membrane, which imports NAD+ from the cytosol using ADP and AMP as counter-exchange substrates for NAD+. Here, we further investigated the physiological roles of NDT2, by isolating a T-DNA insertion line, generating an antisense line and characterizing these genotypes in detail. Reduced NDT2 expression affected reproductive phase by reducing total seed yield. In addition, reduced seed germination and retardation in seedling establishment were observed in the mutant lines. Moreover, remarkable changes in primary metabolism were observed in dry and germinated seeds and an increase in fatty acid levels was verified during seedling establishment. Furthermore, flowers and seedlings of NDT2 mutants displayed upregulation of de novo and salvage pathway genes encoding NAD+ biosynthesis enzymes, demonstrating the transcriptional control mediated by NDT2 activity over these genes. Taken together, our results suggest that NDT2 expression is fundamental for maintaining NAD+ balance amongst organelles that modulate metabolism, physiology and developmental processes of heterotrophic tissues.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Izabel de Souza Chaves
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Alexandra Florian
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - Paula da Fonseca-Pereira
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Jorge Alberto Condori Apfata
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Elmien Heyneke
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - David Barbosa Medeiros
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - Marcel Viana Pires
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Tabea Mettler-Altmann
- Department of Plant Biochemistry, Heinrich Heine University D�sseldorf, D�sseldorf 40225, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70125, Italy
| | - Wagner L Ara�jo
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - Andreas P M Weber
- Department of Plant Biochemistry, Heinrich Heine University D�sseldorf, D�sseldorf 40225, Germany
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich Heine University D�sseldorf, D�sseldorf 40225, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
- Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| | - Adriano Nunes-Nesi
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
- Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| |
Collapse
|
24
|
Kataya ARA, Elshobaky A, Heidari B, Dugassa NF, Thelen JJ, Lillo C. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development. PLANTA 2020; 251:98. [PMID: 32306103 PMCID: PMC7214503 DOI: 10.1007/s00425-020-03389-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 05/13/2023]
Abstract
This work reveals information about new peroxisomal targeting signals type 1 and identifies trehalose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress response. A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289-1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Ahmed Elshobaky
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nemie-Feyissa Dugassa
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| |
Collapse
|
25
|
Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E. Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid. Front Cell Dev Biol 2020; 8:144. [PMID: 32266253 PMCID: PMC7106852 DOI: 10.3389/fcell.2020.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and β-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid β-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.
Collapse
Affiliation(s)
| | - Evelyn de Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen G. Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - An Zwijsen
- Laboratory of Developmental Signaling, Department Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Espeel
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Elke Van Ael
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
27
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
28
|
de Souza Chaves I, Feitosa-Araújo E, Florian A, Medeiros DB, da Fonseca‐Pereira P, Charton L, Heyneke E, Apfata JA, Pires MV, Mettler‐Altmann T, Araújo WL, Neuhaus HE, Palmieri F, Obata T, Weber AP, Linka N, Fernie AR, Nunes‐Nesi A. The mitochondrial NAD + transporter (NDT1) plays important roles in cellular NAD + homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:487-504. [PMID: 31278825 PMCID: PMC6900047 DOI: 10.1111/tpj.14452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/20/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.
Collapse
Affiliation(s)
- Izabel de Souza Chaves
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Elias Feitosa-Araújo
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Alexandra Florian
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - David B. Medeiros
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Paula da Fonseca‐Pereira
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Lennart Charton
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Elmien Heyneke
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - Jorge A.C. Apfata
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Marcel V. Pires
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - Tabea Mettler‐Altmann
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Wagner L. Araújo
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
| | - H. Ekkehard Neuhaus
- Department of Plant PhysiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari70125BariItaly
| | - Toshihiro Obata
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - Andreas P.M. Weber
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Nicole Linka
- Department of Plant BiochemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| | - Adriano Nunes‐Nesi
- Max Planck Partner GroupDepartamento de Biologia VegetalUniversidade Federal de Viçosa36570‐900ViçosaMinas GeraisBrazil
- Max‐Planck‐Institute of Molecular Plant Physiology Am Mühlenberg 114476Potsdam‐GolmGermany
| |
Collapse
|
29
|
Zhang F, Xin M, Yu S, Liu D, Zhou X, Qin Z. Expression and Functional Analysis of the Propamocarb-Related Gene CsMCF in Cucumber. FRONTIERS IN PLANT SCIENCE 2019; 10:871. [PMID: 31333707 PMCID: PMC6620734 DOI: 10.3389/fpls.2019.00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Propamocarb (PM), a carbamate fungicide, can effectively control downy mildew on cucumber. However, due to the large-scale and high-dose use of this fungicide, PM residues have become a major problem in cucumber production. In this report, the cucumber cultivar "D0351" (with the lowest residual PM content) and the cucumber cultivar "D9320" (with the highest residual PM content) were used as experimental materials. The candidate gene CsMCF, which is related to a low residual PM content in cucumber, was screened by high-throughput tag-sequencing (Tag-Seq) and PM analysis, and its role in reducing PM residue in cucumber was explored. CsMCF was cloned and obtained. This gene contains an open reading frame of 1026 bp, encodes 341 amino acids and contains 3 Mito-carr domains. The encoded protein is a hydrophobic protein with 4 distinct transmembrane structures but no signal peptide cleavage sites. The subcellular localization of the protein is the cytoplasm. Evolutionary tree analysis showed that CsMCF had the highest homology to a gene from the melon Cucumis melo L. (XM_008464998.2). The core elements of the promoter include cis-acting elements, such as those related to salicylic acid (SA), jasmonic acid (JA), gibberellin (GA), and abscisic acid (ABA). Following PM treatment, CsMCF was significantly upregulated at most time points in different parts of the fruit, leaf, stem and root of "D0351," while expression was downregulated at most time points in the fruit, leaf and stem of "D9320." The order of the expression levels in different cucumber organs was as follows: fruit>leaf > stem > root. CsMCF was specifically expressed in the stems and leaves of "D0351." The PM residues in CsMCF (+)-overexpressing T0 and T1 cucumber fruits were significantly lower than those in the wild type, while the PM residues in CsMCF (-)-overexpressing T0 and T1 cucumber fruits were significantly higher. The qRT-PCR results showed that CsMCF can respond to biotic and abiotic stresses, actively respond to PM treatment and play a role in reducing PM residues in cucumber fruits.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Qin
- *Correspondence: Zhiwei Qin, orcid.org/0000-0003-1768-4325
| |
Collapse
|
30
|
Charton L, Plett A, Linka N. Plant peroxisomal solute transporter proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:817-835. [PMID: 30761734 PMCID: PMC6767901 DOI: 10.1111/jipb.12790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid β-oxidation, photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle. This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids (ABC transporter) and large cofactor molecules (carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300-400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane. In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.
Collapse
Affiliation(s)
- Lennart Charton
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Anastasija Plett
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| |
Collapse
|
31
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Kim YI, Nam IK, Lee DK, Bhandari S, Charton L, Kwak S, Lim JY, Hong K, Kim SJ, Lee JN, Kwon SW, So HS, Linka N, Park R, Choe SK. Slc25a17 acts as a peroxisomal coenzyme A transporter and regulates multiorgan development in zebrafish. J Cell Physiol 2019; 235:151-165. [PMID: 31187491 DOI: 10.1002/jcp.28954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023]
Abstract
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.
Collapse
Affiliation(s)
- Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - In-Koo Nam
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dong-Kyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sushil Bhandari
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Lennart Charton
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - SeongAe Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, South Korea
| | - Jae-Young Lim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - KwangHeum Hong
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Se-Jin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Joon No Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hong-Seob So
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Wonkwang Medical Institute, Wonkwang University School of Medicine, Iksan, South Korea
| |
Collapse
|
33
|
Li J, Tietz S, Cruz JA, Strand DD, Xu Y, Chen J, Kramer DM, Hu J. Photometric screens identified Arabidopsis peroxisome proteins that impact photosynthesis under dynamic light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:460-474. [PMID: 30350901 DOI: 10.1111/tpj.14134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 05/02/2023]
Abstract
Plant peroxisomes function collaboratively with other subcellular organelles, such as chloroplasts and mitochondria, in several metabolic processes. To comprehensively investigate the impact of peroxisomal function on photosynthesis, especially under conditions that are more relevant to natural environments, a systematic screen of over 150 Arabidopsis mutants of genes encoding peroxisomal proteins was conducted using the automated Dynamic Environment Photosynthesis Imager (DEPI). Dynamic and high-light (HL) conditions triggered significant photosynthetic defects in a subset of the mutants, including those of photorespiration (PR) and other peroxisomal processes, some of which may also be related to PR. Further analysis of the PR mutants revealed activation of cyclic electron flow (CEF) around photosystem I and higher accumulation of hydrogen peroxide (H2 O2 ) under HL conditions. We hypothesize that impaired PR disturbs the balance of ATP and NADPH, leading to the accumulation of H2 O2 that activates CEF to produce ATP to compensate for the imbalance of reducing equivalents. The identification of peroxisomal mutants involved in PR and other peroxisomal functions in the photometric screen will enable further investigation of regulatory links between photosynthesis and PR and interorganellar interaction at the mechanistic level.
Collapse
Affiliation(s)
- Jiying Li
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stefanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeffrey A Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Ye Xu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
34
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
35
|
Abstract
Microbial synthesis represents an alternative approach for the sustainable production of chemicals, fuels, and medicines. However, construction of biosynthetic pathways always suffers from side reactions, toxicity of intermediates, or low efficiency of substrate channeling. Subcellular compartmentalization may contribute to a more efficient production of target products by reducing side reactions and toxic effects within a compact insular space. The peroxisome, a type of organelle that is involved in catabolism of fatty acids and reactive oxygen species, has attracted a great deal of attention in the construction of eukaryotic cell factories with little impact on essential cellular function. In this chapter, we will systematically review recent advances in peroxisomal compartmentalization for microbial production of valuable biomolecules. Additionally, detailed experimental designs and protocols are also described. We hope a comprehensive understanding of peroxisomes will promote their application in metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
36
|
Ishikawa Y, Kawai-Yamada M. Physiological Significance of NAD Kinases in Cyanobacteria. FRONTIERS IN PLANT SCIENCE 2019; 10:847. [PMID: 31316540 PMCID: PMC6610520 DOI: 10.3389/fpls.2019.00847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/13/2019] [Indexed: 05/04/2023]
Abstract
Unicellular cyanobacteria are thought to be the evolutionary ancestors of plant chloroplasts and are widely used both for chemical production and as model organisms in studies of photosynthesis. Although most research focused on increasing reducing power (that is, NADPH) as target of metabolic engineering, the physiological roles of NAD(P)(H) in cyanobacteria poorly understood. In cyanobacteria such as the model species Synechocystis sp. PCC 6803, most metabolic pathways share a single compartment. This complex metabolism raises the question of how cyanobacteria control the amounts of the redox pairs NADH/NAD+ and NADPH/NADP+ in the cyanobacterial metabolic pathways. For example, photosynthetic and respiratory electron transport chains share several redox components in the thylakoid lumen, including plastoquinone, cytochrome b6f (cyt b6f), and the redox carriers plastocyanin and cytochrome c6. In the case of photosynthesis, NADP+ acts as an important electron mediator on the acceptor-side of photosystem I (PSI) in the linear electron chain as well as in the plant chloroplast. Meanwhile, in respiration, most electrons derived from NADPH and NADH are transferred by NAD(P)H dehydrogenases. Therefore, it is expected that Synechocystis employs unique NAD(P)(H) -pool control mechanisms to regulate the mixed metabolic systems involved in photosynthesis and respiration. This review article summarizes the current state of knowledge of NAD(P)(H) metabolism in Synechocystis. In particular, we focus on the physiological function in Synechocystis of NAD kinase, the enzyme that phosphorylates NAD+ to NADP+.
Collapse
|
37
|
Panara F, Lopez L, Daddiego L, Fantini E, Facella P, Perrotta G. Comparative transcriptomics between high and low rubber producing Taraxacum kok-saghyz R. plants. BMC Genomics 2018; 19:875. [PMID: 30514210 PMCID: PMC6280347 DOI: 10.1186/s12864-018-5287-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/20/2018] [Indexed: 01/23/2023] Open
Abstract
Background Taraxacum kok-saghyz R. (Tks) is a promising alternative species to Hevea brasiliensis for production of high quality natural rubber (NR). A comparative transcriptome analysis of plants with differential production of NR will contribute to elucidate which genes are involved in the synthesis, regulation and accumulation of this natural polymer and could help to develop Tks into a rubber crop. Results We measured rubber content in the latex of 90 individual Tks plants from 9 accessions, observing a high degree of variability. We carried out de novo root transcriptome sequencing, assembly, annotation and comparison of gene expression of plants with the lower (LR plants) and the higher rubber content (HR plants). The transcriptome analysis also included one plant that did not expel latex, in principle depleted of latex transcripts. Moreover, the transcription of some genes well known to play a major role in rubber biosynthesis, was probed by qRT-PCR. Our analysis showed a high modulation of genes involved in the synthesis of NR between LR and HR plants, and evidenced that genes involved in sesquiterpenoids, monoterpenoids and phenylpropanoid biosynthesis are upregulated in LR plants. Conclusions Our results show that a higher amount of rubber in the latex in HR plants is positively correlated with high expression levels of a number of genes directly involved in rubber synthesis showing that NR production is highly controlled at transcriptional level. On the other hand, lower amounts of rubber in LR plants is related with higher expression of genes involved in the synthesis of other secondary metabolites that, we hypothesize, may compete towards NR biosynthesis. This dataset represents a fundamental genomic resource for the study of Tks and the comprehension of the synthesis of NR and other biochemically and pharmacologically relevant compounds in the Taraxacum genus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Panara
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Loredana Lopez
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Loretta Daddiego
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Elio Fantini
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Paolo Facella
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy.
| | - Gaetano Perrotta
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| |
Collapse
|
38
|
Wu R, Zhang F, Liu L, Li W, Pichersky E, Wang G. MeNA, Controlled by Reversible Methylation of Nicotinate, Is an NAD Precursor that Undergoes Long-Distance Transport in Arabidopsis. MOLECULAR PLANT 2018; 11:1264-1277. [PMID: 30055263 DOI: 10.1016/j.molp.2018.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) biosynthesis, including synthesis from aspartate via the de novo pathway and from nicotinate (NA) via the Preiss-Handler pathway, is conserved in land plants. Diverse species of NA conjugates, which are mainly involved in NA detoxification, were also found in all tested land plants. Among these conjugates, MeNA (NA methyl ester) has been widely detected in angiosperm plants, although its physiological function and the underlying mechanism for its production in planta remain largely unknown. Here, we show that MeNA is an NAD precursor undergoing more efficient long-distance transport between organs than NA and nicotinamide in Arabidopsis. We found that Arabidopsis has one methyltransferase (designated AtNaMT1) capable of catalyzing carboxyl methylation of NA to yield MeNA and one methyl esterase (MES2) predominantly hydrolyzing MeNA back to NA. We further uncovered that the transfer of [14C]MeNA from the root to leaf was significantly increased in both MES2 knockdown and NaMT1-overexpressing lines, suggesting that both NaMT1 and MES2 fine-tune the long-distance transport of MeNA, which is ultimately utilized for NAD production. Abiotic stress (salt, abscisic acid, and mannitol) treatments, which are known to exacerbate NAD degradation, induce the expression of NaMT1 but suppress MES2 expression, suggesting that MeNA may play a role in stress adaption. Collectively, our study indicates that reversible methylation of NA controls the biosynthesis of MeNA in Arabidopsis, which presumably functions as a detoxification form of free NA for efficient long-distance transport and eventually NAD production especially under abiotic stress, providing new insights into the relationship between NAD biosynthesis and NA conjugation in plants.
Collapse
Affiliation(s)
- Ranran Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyun Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Gakière B, Fernie AR, Pétriacq P. More to NAD + than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radic Biol Med 2018; 122:86-95. [PMID: 29309893 DOI: 10.1016/j.freeradbiomed.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD+) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD+ metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity.
Collapse
Affiliation(s)
- Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France; Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. ParisSaclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam-Golm, Germany
| | - Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN Sheffield, United Kingdom; UMR 1332 Biologie du Fruit et Pathologie, INRA Bordeaux & Université de Bordeaux, F-33883 Villenave d'Ornon, France.
| |
Collapse
|
40
|
Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. THE NEW PHYTOLOGIST 2018; 218:1340-1348. [PMID: 29473650 DOI: 10.1111/nph.15047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Lipid degradation processes are important in microalgae because survival and growth of microalgal cells under fluctuating environmental conditions require permanent remodeling or turnover of membrane lipids as well as rapid mobilization of storage lipids. Lipid catabolism comprises two major spatially and temporarily separated steps, namely lipolysis, which releases fatty acids and head groups and is catalyzed by lipases at membranes or lipid droplets, and degradation of fatty acids to acetyl-CoA, which occurs in peroxisomes through the β-oxidation pathway in green microalgae, and can sometimes occur in mitochondria in some other algal species. Here we review the current knowledge on the enzymes and regulatory proteins involved in lipolysis and peroxisomal β-oxidation and highlight gaps in our understanding of lipid degradation pathways in microalgae. Metabolic use of acetyl-CoA products via glyoxylate cycle and gluconeogenesis is also reviewed. We then present the implication of various cellular processes such as vesicle trafficking, cell cycle and autophagy on lipid turnover. Finally, physiological roles and the manipulation of lipid catabolism for biotechnological applications in microalgae are discussed.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Ismael Torres Romero
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Jaruswan Warakanont
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
41
|
Corpas FJ, Barroso JB. Peroxisomal plant metabolism - an update on nitric oxide, Ca 2+ and the NADPH recycling network. J Cell Sci 2018; 131:jcs.202978. [PMID: 28775155 DOI: 10.1242/jcs.202978] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H2O2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO2-FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca2+, calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO2-FA.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| |
Collapse
|
42
|
Monné M, Daddabbo L, Gagneul D, Obata T, Hielscher B, Palmieri L, Miniero DV, Fernie AR, Weber APM, Palmieri F. Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. J Biol Chem 2018; 293:4213-4227. [PMID: 29371401 DOI: 10.1074/jbc.ra117.000771] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Indexed: 12/29/2022] Open
Abstract
The Arabidopsis thaliana genome contains 58 members of the solute carrier family SLC25, also called the mitochondrial carrier family, many of which have been shown to transport specific metabolites, nucleotides, and cofactors across the mitochondrial membrane. Here, two Arabidopsis members of this family, AtUCP1 and AtUCP2, which were previously thought to be uncoupling proteins and hence named UCP1/PUMP1 and UCP2/PUMP2, respectively, are assigned with a novel function. They were expressed in bacteria, purified, and reconstituted in phospholipid vesicles. Their transport properties demonstrate that they transport amino acids (aspartate, glutamate, cysteine sulfinate, and cysteate), dicarboxylates (malate, oxaloacetate, and 2-oxoglutarate), phosphate, sulfate, and thiosulfate. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. AtUCP1 and AtUCP2 catalyzed a fast counterexchange transport as well as a low uniport of substrates, with transport rates of AtUCP1 being much higher than those of AtUCP2 in both cases. The aspartate/glutamate heteroexchange mediated by AtUCP1 and AtUCP2 is electroneutral, in contrast to that mediated by the mammalian mitochondrial aspartate glutamate carrier. Furthermore, both carriers were found to be targeted to mitochondria. Metabolite profiling of single and double knockouts shows changes in organic acid and amino acid levels. Notably, AtUCP1 and AtUCP2 are the first reported mitochondrial carriers in Arabidopsis to transport aspartate and glutamate. It is proposed that the primary function of AtUCP1 and AtUCP2 is to catalyze an aspartateout/glutamatein exchange across the mitochondrial membrane and thereby contribute to the export of reducing equivalents from the mitochondria in photorespiration.
Collapse
Affiliation(s)
- Magnus Monné
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.,the Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lucia Daddabbo
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - David Gagneul
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Toshihiro Obata
- the Department Willmitzer, Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany, and
| | - Björn Hielscher
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Luigi Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.,the Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Daniela Valeria Miniero
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Alisdair R Fernie
- the Department Willmitzer, Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany, and
| | - Andreas P M Weber
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ferdinando Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy, .,the Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
43
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Balico LDLDL, de Souza Santos E, Suzuki-Hatano S, Sousa LO, Azzolini AECS, Lucisano-Valim YM, Dinamarco TM, Kannen V, Uyemura SA. Heterologous expression of mitochondrial nicotinamide adenine dinucleotide transporter (Ndt1) from Aspergillus fumigatus rescues impaired growth in Δndt1Δndt2 Saccharomyces cerevisiae strain. J Bioenerg Biomembr 2017; 49:423-435. [PMID: 29128917 DOI: 10.1007/s10863-017-9732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
Abstract
Our understanding of nicotinamide adenine dinucleotide mitochondrial transporter 1 (Ndt1A) in Aspergillus fumigatus remains poor. Thus, we investigated whether Ndt1A could alter fungi survival. To this end, we engineered the expression of an Ndt1A-encoding region in a Δndt1Δndt2 yeast strain. The resulting cloned Ndt1A protein promoted the mitochondrial uptake of nicotinamide adenine dinucleotide (NAD+), generating a large mitochondrial membrane potential. The NAD+ carrier utilized the electrochemical proton gradient to drive NAD+ entrance into mitochondria when the mitochondrial membrane potential was sustained by succinate. Its uptake has no impact on oxidative stress, and Ndt1A expression improved growth and survival of the Δndt1Δndt2 Saccharomyces cerevisiae strain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vinicius Kannen
- Universidade de Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
45
|
Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep 2017; 7:11868. [PMID: 28928432 PMCID: PMC5605654 DOI: 10.1038/s41598-017-11942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/10/2017] [Indexed: 01/25/2023] Open
Abstract
In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid β-oxidation. During this process, NAD+ is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD+ by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytosol by the malate/oxaloacetate shuttle. The ultimate step in lysine biosynthesis, the NAD+-dependent dehydrogenation of saccharopine to lysine, is another NAD+-dependent reaction performed inside peroxisomes. We have found that in glucose grown cells, both the malate/oxaloacetate shuttle and a glycerol-3-phosphate dehydrogenase 1(Gpd1p)-dependent shuttle are able to maintain the intraperoxisomal redox balance. Single mutants in MDH3 or GPD1 grow on lysine-deficient medium, but an mdh3/gpd1Δ double mutant accumulates saccharopine and displays lysine bradytrophy. Lysine biosynthesis is restored when saccharopine dehydrogenase is mislocalised to the cytosol in mdh3/gpd1Δ cells. We conclude that the availability of intraperoxisomal NAD+ required for saccharopine dehydrogenase activity can be sustained by both shuttles. The extent to which each of these shuttles contributes to the intraperoxisomal redox balance may depend on the growth medium. We propose that the presence of multiple peroxisomal redox shuttles allows eukaryotic cells to maintain the peroxisomal redox status under different metabolic conditions.
Collapse
|
46
|
Joshi V, Fernie AR. Citrulline metabolism in plants. Amino Acids 2017; 49:1543-1559. [PMID: 28741223 DOI: 10.1007/s00726-017-2468-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Citrulline was chemically isolated more than 100 years ago and is ubiquitous in animals, plants, bacteria, and fungi. Most of the research on plant citrulline metabolism and transport has been carried out in Arabidopsis thaliana and the Cucurbitaceae family, particularly in watermelon which accumulates this non-proteinogenic amino acid to very high levels. Industrially, citrulline is produced via specially optimized microbial strains; however, the amounts present in watermelon render it an economically viable source providing that other high-value compounds can be co-extracted. In this review, we provide an overview of our current understanding of citrulline biosynthesis, transport, and catabolism in plants additionally pointing out significant gaps in our knowledge which need to be closed by future experimentation. This includes the identification of further potential enzymes of citrulline metabolism as well as obtaining a far better spatial resolution of both sub-cellular and long-distance partitioning of citrulline. We further discuss what is known concerning the biological function of citrulline in plants paying particular attention to the proposed roles in scavenging of excess NH4+ and as a compatible solute.
Collapse
Affiliation(s)
- Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, 78801, USA.
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476, Potsdam-Golm, Germany
| |
Collapse
|
47
|
Analysis of Peroxisomal β-Oxidation During Storage Oil Mobilization in Arabidopsis thaliana Seedlings. Methods Mol Biol 2017; 1595:291-304. [PMID: 28409472 DOI: 10.1007/978-1-4939-6937-1_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Peroxisomal β-oxidation in plants is essential for mobilization of storage oil in seed-oil storing plants, such as Arabidopsis thaliana. In plants, degradation of fatty acids occurs exclusively in peroxisomes via β-oxidation, driving seedling growth and development upon germination. Thus, the determination of storage oil breakdown rates is a useful approach to investigate defects in peroxisomal β-oxidation. Here we describe an acid catalyzed derivatization process of fatty acids representing a fast and efficient procedure to generate high yields of fatty acid methyl esters (FAMEs). The subsequent analysis by gas chromatography coupled to mass spectrometry (GC-MS) allows the quantification of total fatty acid content. The results provide detailed information of the complete storage oil breakdown process via peroxisomal β-oxidation during seedling growth.
Collapse
|
48
|
Kong F, Liang Y, Légeret B, Beyly-Adriano A, Blangy S, Haslam RP, Napier JA, Beisson F, Peltier G, Li-Beisson Y. Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:358-371. [PMID: 28142200 DOI: 10.1111/tpj.13498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 05/03/2023]
Abstract
Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl-CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl-CoAs into trans-2-enoyl-CoA and produced H2 O2 . This result demonstrated that CrACX2 is a genuine acyl-CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) β-oxidation spiral. A fluorescent protein-tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA β-oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of β-oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant-type FA β-oxidation involving H2 O2 -producing acyl-CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yuanxue Liang
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Audrey Beyly-Adriano
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Stéphanie Blangy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Richard P Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Gilles Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
49
|
The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana. Genetics 2016; 204:1089-1115. [PMID: 27605050 DOI: 10.1534/genetics.116.193169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development.
Collapse
|
50
|
Lee CP, Millar AH. The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. TRENDS IN PLANT SCIENCE 2016; 21:662-676. [PMID: 27162080 DOI: 10.1016/j.tplants.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essential for mitochondrial function. The regulatory framework for mitochondrial metabolite transport is expected to be more complex in plants than in mammals owing to the close metabolic association between mitochondrial, plastids, and peroxisome metabolism, as well as to the major diurnal fluctuations in plant metabolic function. We propose here how recent advances can be integrated towards defining the mitochondrial transportome in plants. We also discuss what this reveals about sustaining cooperativity between bioenergetics, metabolism, and transport in typical and challenging environments.
Collapse
Affiliation(s)
- Chun Pong Lee
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - A Harvey Millar
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| |
Collapse
|