1
|
Yang J, Lu X, Hu S, Yang X, Cao X. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY 2024; 197:kiae607. [PMID: 39520698 DOI: 10.1093/plphys/kiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding endogenous single-stranded RNAs that regulate target gene expression by reducing their transcription and translation. Several miRNAs in plants function in secondary metabolism. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine that contains flavonoids (baicalin, wogonoside, and baicalein) as its main active ingredients. Although the S. baicalensis genome sequence has been published, information regarding its miRNAs is lacking. In this study, 12 small RNA libraries of different S. baicalensis tissues were compiled, including roots, stems, leaves, and flowers. A total of 129 miRNAs were identified, including 99 miRNAs from 27 miRNA families and 30 predicted miRNAs. Furthermore, 46 reliable target genes of 15 miRNA families were revealed using psRNATarget and confirmed by degradome sequencing. It was speculated that the microRNA858 (miR858)-SbMYB47 module might be involved in flavonoid biosynthesis. Transient assays in Nicotiana benthamiana leaves indicated that miR858 targets SbMYB47 and suppresses its expression. Artificial miRNA-mediated knockdown of miR858 and overexpression of SbMYB47 significantly increased the flavonoid content in S. baicalensis hairy roots, while SbMYB47 knockdown inhibited flavonoid accumulation. Yeast one-hybrid and dual-luciferase assays indicated that SbMYB47 directly binds to and activates the S. baicalensis phenylalanine ammonia-lyase 3 (SbPAL-3) and flavone synthase II (SbFNSⅡ-2) promoters. Our findings reveal the link between the miR858-SbMYB47 module and flavonoid biosynthesis, providing a potential strategy for the production of flavonoids with important pharmacological activities through metabolic engineering.
Collapse
Affiliation(s)
- Jiaxin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
- Department of Pharmacy, Medicine School, Xi'an International University, Xi'an 710077, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| | - Suying Hu
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Xiaozeng Yang
- Institute of Botany, Chinese of Academy Sciences, Beijing 100093, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
3
|
Saroha M, Arya A, Singh G, Sharma P. Genome-wide expression analysis of novel heat-responsive microRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1328114. [PMID: 38660446 PMCID: PMC11039868 DOI: 10.3389/fpls.2024.1328114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Introduction Heat stress at terminal stage of wheat is critical and leads to huge yield losses worldwide. microRNAs (miRNAs) play significant regulatory roles in gene expression associated with abiotic and biotic stress at the post-transcriptional level. Methods In the present study, we carried out a comparative analysis of miRNAs and their targets in flag leaves as well as developing seeds of heat tolerant (RAJ3765) and heat susceptible (HUW510) wheat genotypes under heat stress and normal conditions using small RNA and degradome sequencing. Results and discussion A total of 84 conserved miRNAs belonging to 35 miRNA families and 93 novel miRNAs were identified in the 8 libraries. Tae-miR9672a-3p, tae-miR9774, tae-miR9669-5p, and tae-miR5048-5p showed the highest expression under heat stress. Tae-miR9775, tae-miR9662b-3p, tae-miR1120a, tae-miR5084, tae-miR1122a, tae-miR5085, tae-miR1118, tae-miR1130a, tae-miR9678-3p, tae-miR7757-5p, tae-miR9668-5p, tae-miR5050, tae-miR9652-5p, and tae-miR9679-5p were expressed only in the tolerant genotype, indicating their role in heat tolerance. Comparison between heat-treated and control groups revealed that 146 known and 57 novel miRNAs were differentially expressed in the various tissues. Eight degradome libraries sequence identified 457 targets of the differentially expressed miRNAs. Functional analysis of the targets indicated their involvement in photosynthesis, spliceosome, biosynthesis of nucleotide sugars and protein processing in the endoplasmic reticulum, arginine and proline metabolism and endocytosis. Conclusion This study increases the number of identified and novel miRNAs along with their roles involved in heat stress response in contrasting genotypes at two developing stages of wheat.
Collapse
Affiliation(s)
- Monika Saroha
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Gyanendra Singh
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
4
|
Albaqami M. The Splicing Factor SR45 Negatively Regulates Anthocyanin Accumulation under High-Light Stress in Arabidopsis thaliana. Life (Basel) 2023; 13:1386. [PMID: 37374167 DOI: 10.3390/life13061386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
High-intensity light (HL) greatly induces the accumulation of anthocyanin, a fundamental compound in photoprotection and antioxidation. Many mechanisms regulating anthocyanin biosynthesis are well-characterized across developmental and environmental conditions; however, post-transcriptional regulation of its biosynthesis remains unclear. RNA splicing is one mechanism of post-transcriptional control and reprogramming in response to different developmental cues and stress conditions. The Arabidopsis splicing modulator SR45 regulates a number of developmental and environmental stress responses. Here, we investigated the role of SR45 and its isoforms in HL-induced anthocyanin accumulation. We found that the SR45 promoter contains light-responsive cis-elements, and that light stress significantly increases SR45 expression. Furthermore, we found that mutant plants lacking SR45 function (sr45) accumulate significantly more anthocyanin under HL. SR45 is alternatively spliced to produce two proteins, SR45.1 and SR45.2, which differ by seven amino acids. Intriguingly, these isoforms exhibited distinct functions, with only SR45.1 reversing anthocyanin accumulation in the sr45 plants. We also identified possible SR45 target genes that are involved in anthocyanin synthesis. Consistent with the antioxidant role of anthocyanin, we found that sr45 mutants and SR45.2 overexpression lines accumulate anthocyanin and better tolerate paraquat which induces oxidative stress. Collectively, our results reveal that the Arabidopsis splicing regulator SR45 inhibits anthocyanin accumulation under HL, which may negatively affect oxidative stress tolerance. This study illuminates splicing-level regulation of anthocyanin production in response to light stress and offers a possible target for genetic modification to increase plant stress tolerance.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Lemus T, Mason GA, Bubb KL, Alexandre CM, Queitsch C, Cuperus JT. AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana. Genetics 2023; 223:iyac163. [PMID: 36303325 PMCID: PMC9910400 DOI: 10.1093/genetics/iyac163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022] Open
Abstract
Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.
Collapse
Affiliation(s)
- Tzitziki Lemus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Grace Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Gao Z, Li J, Li L, Yang Y, Li J, Fu C, Zhu D, He H, Cai H, Li L. Structural and Functional Analyses of Hub MicroRNAs in An Integrated Gene Regulatory Network of Arabidopsis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:747-764. [PMID: 33662619 PMCID: PMC9880815 DOI: 10.1016/j.gpb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/04/2019] [Accepted: 06/14/2020] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) are trans-acting small regulatory RNAs that work coordinately with transcription factors (TFs) to shape the repertoire of cellular mRNAs available for translation. Despite our growing knowledge of individual plant miRNAs, their global roles in gene regulatory networks remain mostly unassessed. Based on interactions obtained from public databases and curated from the literature, we reconstructed an integrated miRNA network in Arabidopsis that includes 66 core TFs, 318 miRNAs, and 1712 downstream genes. We found that miRNAs occupy distinct niches and enrich miRNA-containing feed-forward loops (FFLs), particularly those with miRNAs as intermediate nodes. Further analyses revealed that miRNA-containing FFLs coordinate TFs located in different hierarchical layers and that intertwined miRNA-containing FFLs are associated with party and date miRNA hubs. Using the date hub MIR858A as an example, we performed detailed molecular and genetic analyses of three interconnected miRNA-containing FFLs. These analyses revealed individual functions of the selected miRNA-containing FFLs and elucidated how the date hub miRNA fulfills multiple regulatory roles. Collectively, our findings highlight the prevalence and importance of miRNA-containing FFLs, and provide new insights into the design principles and control logics of miRNA regulatory networks governing gene expression programs in plants.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jun Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Corresponding author.
| |
Collapse
|
8
|
Moderate Soil Drying-Induced Alternative Splicing Provides a Potential Novel Approach for the Regulation of Grain Filling in Rice Inferior Spikelets. Int J Mol Sci 2022; 23:ijms23147770. [PMID: 35887118 PMCID: PMC9318316 DOI: 10.3390/ijms23147770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Poor grain filling of inferior spikelets, especially in some large-panicle rice varieties, is becoming a major limitation in breaking the ceiling of rice production. In our previous studies, we proved that post-anthesis moderate soil drying (MD) was an effective way to promote starch synthesis and inferior grain filling. As one of the most important regulatory processes in response to environmental cues and at different developmental stages, the function of alternative splicing (AS) has not yet been revealed in regulating grain filling under MD conditions. In this study, AS events at the most active grain-filling stage were identified in inferior spikelets under well-watered control (CK) and MD treatments. Of 16,089 AS events, 1840 AS events involving 1392 genes occurred differentially between the CK and MD treatments, many of which function on spliceosome, ncRNA metabolic process, starch, and sucrose metabolism, and other functions. Some of the splicing factors and starch synthesis-related genes, such as SR protein, hnRNP protein, OsAGPL2, OsAPS2, OsSSIVa, OsSSIVb, OsGBSSII, and OsISA1 showed differential AS changes under MD treatment. The expression of miR439f and miR444b was reduced due to an AS event which occurred in the intron where miRNAs were located in the MD-treated inferior spikelets. On the contrary, OsAGPL2, an AGPase encoding gene, was alternatively spliced, resulting in different transcripts with or without the miR393b binding site, suggesting a potential mechanism for miRNA-mediated gene regulation on grain filling of inferior spikelets in response to MD treatment. This study provides some new insights into the function of AS on the MD-promoted grain filling of inferior spikelets, and potential application in agriculture to increase rice yields by genetic approaches.
Collapse
|
9
|
44 Current Challenges in miRNomics. Methods Mol Biol 2022; 2257:423-438. [PMID: 34432289 DOI: 10.1007/978-1-0716-1170-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mature microRNAs (miRNAs) are short RNA sequences about 18-24 nucleotide long, which provide the recognition key within RISC for the posttranscriptional regulation of target RNAs. Considering the canonical pathway, mature miRNAs are produced via a multistep process. Their transcription (pri-miRNAs) and first processing step via the microprocessor complex (pre-miRNAs) occur in the nucleus. Then they are exported into the cytosol, processed again by Dicer (dsRNA) and finally a single strand (mature miRNA) is incorporated into RISC (miRISC). The sequence of the incorporated miRNA provides the function of RNA target recognition via hybridization. Following binding of the target, the mRNA is either degraded or translation is inhibited, which ultimately leads to less protein production. Conversely, it has been shown that binding within the 5' UTR of the mRNA can lead to an increase in protein product. Regulation of homeostasis is very important for a cell; therefore, all steps in the miRNA-based regulation pathway, from transcription to the incorporation of the mature miRNA into RISC, are under tight control. While much research effort has been exerted in this area, the knowledgebase is not sufficient for accurately modelling miRNA regulation computationally. The computational prediction of miRNAs is, however, necessary because it is not feasible to investigate all possible pairs of a miRNA and its target, let alone miRNAs and their targets. We here point out open challenges important for computational modelling or for our general understanding of miRNA-based regulation and show how their investigation is beneficial. It is our hope that this collection of challenges will lead to their resolution in the near future.
Collapse
|
10
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Yanni Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Jishuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Zhenzhen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
- Correspondence:
| |
Collapse
|
11
|
Maillot P, Velt A, Rustenholz C, Butterlin G, Merdinoglu D, Duchêne E. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment. BMC PLANT BIOLOGY 2021; 21:487. [PMID: 34696712 PMCID: PMC8543832 DOI: 10.1186/s12870-021-03266-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.
Collapse
Affiliation(s)
- Pascale Maillot
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France.
- University of Haute Alsace, 68000, Mulhouse, France.
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| | | | | | | | - Eric Duchêne
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| |
Collapse
|
12
|
Zhang H, Guo Z, Zhuang Y, Suo Y, Du J, Gao Z, Pan J, Li L, Wang T, Xiao L, Qin G, Jiao Y, Cai H, Li L. MicroRNA775 regulates intrinsic leaf size and reduces cell wall pectin levels by targeting a galactosyltransferase gene in Arabidopsis. THE PLANT CELL 2021; 33:581-602. [PMID: 33955485 PMCID: PMC8136896 DOI: 10.1093/plcell/koaa049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
Plants possess unique primary cell walls made of complex polysaccharides that play critical roles in determining intrinsic cell and organ size. How genes responsible for synthesizing and modifying the polysaccharides in the cell wall are regulated by microRNAs (miRNAs) to control plant size remains largely unexplored. Here we identified 23 putative cell wall-related miRNAs, termed as CW-miRNAs, in Arabidopsis thaliana and characterized miR775 as an example. We showed that miR775 post-transcriptionally silences GALT9, which encodes an endomembrane-located galactosyltransferase belonging to the glycosyltransferase 31 family. Over-expression of miR775 and deletion of GALT9 led to significantly enlarged leaf-related organs, primarily due to increased cell size. Monosaccharide quantification, confocal Raman imaging, and immunolabeling combined with atomic force microscopy revealed that the MIR775A-GALT9 circuit modulates pectin levels and the elastic modulus of the cell wall. We also showed that MIR775A is directly repressed by the transcription factor ELONGATED HYPOCOTYL5 (HY5). Genetic analysis confirmed that HY5 is a negative regulator of leaf size that acts through the HY5-MIR775A-GALT9 repression cascade to control pectin levels. These findings demonstrate that miR775-regulated cell wall remodeling is an integral determinant of intrinsic leaf size in A. thaliana. Studying other CW-miRNAs would provide more insights into cell wall biology.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Tianxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Liang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101 Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
13
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
14
|
Fuchs A, Riegler S, Ayatollahi Z, Cavallari N, Giono LE, Nimeth BA, Mutanwad KV, Schweighofer A, Lucyshyn D, Barta A, Petrillo E, Kalyna M. Targeting alternative splicing by RNAi: from the differential impact on splice variants to triggering artificial pre-mRNA splicing. Nucleic Acids Res 2021; 49:1133-1151. [PMID: 33406240 PMCID: PMC7826280 DOI: 10.1093/nar/gkaa1260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Alternative splicing generates multiple transcript and protein isoforms from a single gene and controls transcript intracellular localization and stability by coupling to mRNA export and nonsense-mediated mRNA decay (NMD). RNA interference (RNAi) is a potent mechanism to modulate gene expression. However, its interactions with alternative splicing are poorly understood. We used artificial microRNAs (amiRNAs, also termed shRNAmiR) to knockdown all splice variants of selected target genes in Arabidopsis thaliana. We found that splice variants, which vary by their protein-coding capacity, subcellular localization and sensitivity to NMD, are affected differentially by an amiRNA, although all of them contain the target site. Particular transcript isoforms escape amiRNA-mediated degradation due to their nuclear localization. The nuclear and NMD-sensitive isoforms mask RNAi action in alternatively spliced genes. Interestingly, Arabidopsis SPL genes, which undergo alternative splicing and are targets of miR156, are regulated in the same manner. Moreover, similar results were obtained in mammalian cells using siRNAs, indicating cross-kingdom conservation of these interactions among RNAi and splicing isoforms. Furthermore, we report that amiRNA can trigger artificial alternative splicing, thus expanding the RNAi functional repertoire. Our findings unveil novel interactions between different post-transcriptional processes in defining transcript fates and regulating gene expression.
Collapse
Affiliation(s)
- Armin Fuchs
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Stefan Riegler
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria.,Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | - Zahra Ayatollahi
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Nicola Cavallari
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Barbara A Nimeth
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | - Krishna V Mutanwad
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | | | - Doris Lucyshyn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| | - Andrea Barta
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria
| | - Ezequiel Petrillo
- Max Perutz Labs, Medical University of Vienna, Vienna 1030, Austria.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna 1190, Austria
| |
Collapse
|
15
|
Riolo G, Cantara S, Marzocchi C, Ricci C. miRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc 2020; 4:1. [PMID: 33374478 PMCID: PMC7839038 DOI: 10.3390/mps4010001] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.
Collapse
Affiliation(s)
| | | | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (S.C.); (C.M.)
| |
Collapse
|
16
|
Pyo Y, Kim GM, Choi SW, Song CY, Yang SW, Jung IL. Strontium stress disrupts miRNA biogenesis by reducing HYL1 protein levels in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111056. [PMID: 32763566 DOI: 10.1016/j.ecoenv.2020.111056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 05/20/2023]
Abstract
Strontium (Sr) is an emerging environmental pollutant that has become a major global concern after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011. Although many studies have demonstrated the harmful effects of Sr on plant growth and development at the physiological level, knowledge regarding how plants sense and respond to Sr stress at the molecular level is limited. Recent studies have suggested that microRNAs (miRNAs) function as key regulators of plant growth and development as well as in the responses of plants to environmental stresses, including salinity, drought, cold, nutrient starvation, and heavy metals. In this study, we examined the global expression profile of miRNAs under Sr stress using small RNA sequencing analysis in Arabidopsis to better understand the molecular basis of plant responses to Sr stress. To identify specific Sr-responsive miRNAs, we performed comparative miRNA expression profiling analysis using control, CaCl2-, and SrCl2-treated seedlings. Compared to the control treatment, the expressions of most miRNAs were considerably decreased in the Sr-treated seedlings. However, under Sr stress, the expressions of primary miRNAs (pri-miRNAs) and their target genes were significantly increased; the protein levels of HYPONASTIC LEAVES 1 (HYL1), one of the core components of the microprocessor complex, were strongly reduced despite the increased HYL1 mRNA expression. In addition, hyl1-2 mutant plants were shown to be more sensitive to Sr stress than wild-type plants. Collectively, our results strongly suggested that Sr stress may be associated with the disruption of miRNA biogenesis by reducing the protein level of HYL1, which is required to maintain proper growth and development for plants. Our findings further indicated that some miRNAs may play important roles in plant responses to Sr stress.
Collapse
Affiliation(s)
- Youngjae Pyo
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Gu Min Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suk Won Choi
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chang Yeob Song
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 2000, Frederiksberg, Copenhagen, Denmark.
| | - Il Lae Jung
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
17
|
Niyikiza D, Piya S, Routray P, Miao L, Kim WS, Burch-Smith T, Gill T, Sams C, Arelli PR, Pantalone V, Krishnan HB, Hewezi T. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1744-1766. [PMID: 32491251 DOI: 10.1111/tpj.14861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Soybean nodulation is a highly controlled process that involves complex gene regulation at both transcriptional and post-transcriptional levels. In the present study, we profiled gene expression changes, alternative splicing events, and DNA methylation patterns during nodule formation, development, and senescence. The transcriptome data uncovered key transcription patterns of nodule development that included 9669 core genes and 7302 stage-specific genes. Alternative splicing analysis uncovered a total of 2323 genes that undergo alternative splicing events in at least one nodule developmental stage, with activation of exon skipping and repression of intron retention being the most common splicing events in nodules compared to roots. Approximately 40% of the differentially spliced genes were also differentially expressed at the same nodule developmental stage, implying a substantial association between gene expression and alternative splicing. Genome-wide-DNA methylation analysis revealed dynamic changes in nodule methylomes that were specific to each nodule stage, occurred in a sequence-specific manner, and impacted the expression of 1864 genes. An attractive hypothesis raised by our data is that increased DNA methylation may contribute to the efficiency of alternative splicing. Together, our results provide intriguing insights into the associations between gene expression, alternative splicing, and DNA methylation that may shape transcriptome complexity and proteome specificity in developing soybean nodules.
Collapse
Affiliation(s)
- Daniel Niyikiza
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Pratyush Routray
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Long Miao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MI, 65211, USA
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Tom Gill
- Smith Center for International Sustainable Agriculture, University of Tennessee, Knoxville, TN, 37996, USA
| | - Carl Sams
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MI, 65211, USA
- Plant Genetics Research, USDA-Agricultural Research Service, Columbia, MI, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
18
|
Feng G, Yoo M, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. Jasmonate induced alternative splicing responses in Arabidopsis. PLANT DIRECT 2020; 4:e00245. [PMID: 32875268 PMCID: PMC7450174 DOI: 10.1002/pld3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 05/14/2023]
Abstract
Jasmonate is an essential phytohormone regulating plant growth, development, and defense. Alternative splicing (AS) in jasmonate ZIM-domain (JAZ) repressors is well-characterized and plays an important role in jasmonate signaling regulation. However, it is unknown whether other genes in the jasmonate signaling pathway are regulated by AS. We explore the potential for AS regulation in three Arabidopsis genotypes (WT, jaz2, jaz7) in response to methyl jasmonate (MeJA) treatment with respect to: (a) differential AS, (b) differential miRNA targeted AS, and (c) AS isoforms with novel functions. AS events identified from transcriptomic data were validated with proteomic data. Protein interaction networks identified two genes, SKIP and ALY4 whose products have both DNA- and RNA-binding affinities, as potential key regulators mediating jasmonate signaling and AS regulation. We observed cases where AS alone, or AS and transcriptional regulation together, can influence gene expression in response to MeJA. Twenty-one genes contain predicted miRNA target sites subjected to AS, which implies that AS is coupled to miRNA regulation. We identified 30 cases where alternatively spliced isoforms may have novel functions. For example, AS of bHLH160 generates an isoform without a basic domain, which may convert it from an activator to a repressor. Our study identified potential key regulators in AS regulation of jasmonate signaling pathway. These findings highlight the importance of AS regulation in the jasmonate signaling pathway, both alone and in collaboration with other regulators. SIGNIFICANCE STATEMENT By exploring alternative splicing, we demonstrate its regulation in the jasmonate signaling pathway alone or in collaboration with other posttranscriptional regulations such as nonsense and microRNA-mediated decay. A signal transduction network model for alternative splicing in jasmonate signaling pathway was generated, contributing to our understanding for this important, prevalent, but relatively unexplored regulatory mechanism in plants.
Collapse
Affiliation(s)
- Guanqiao Feng
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Mi‐Jeong Yoo
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
| | - Sixue Chen
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - W. Brad Barbazuk
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
19
|
Cheng Y, Chen T, Song J, Teng Z, Wang C, Wang S, Lu G, Feng T, Qi Q, Xi Q, Liu S, Hao L, Zhang Y. Pituitary miRNAs target GHRHR splice variants to regulate GH synthesis by mediating different intracellular signalling pathways. RNA Biol 2020; 17:1754-1766. [PMID: 32508238 DOI: 10.1080/15476286.2020.1778295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Growth hormone (GH), whose synthesis and release are mainly regulated by intracellular signals mediated by growth hormone-releasing hormone receptor (GHRHR), is one of the major pituitary hormones and critical regulators of organism growth, metabolism, and immunoregulation. Pig GHRHR splice variants (SVs) may activate different signalling pathways via the variable C-terminal by alternative splicing, and SVs have the potential to change microRNA (miRNA) binding sites. In this study, we first confirmed the existence of pig GHRHR SVs (i.e., GHRHR, GHRHR SV1 and SV2) and demonstrated the inhibitory effects of critical pituitary miRNAs (i.e., let-7e and miR-328-5p) on GH synthesis and cell proliferation of primary pituitary cells. The SVs of GHRHR targeted by let-7e and miR-328-5p were predicted via bioinformatics analysis and verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. The differential responses of let-7e, and miR-328-5p to GH-releasing hormone and the changes in signalling pathways mediated by GHRHR suggested that let-7e and miR-328-5p were involved in GH synthesis mediated by GHRHR SVs, indicating that the two miRNAs played different roles by different ways. Finally, results showed that the protein coded by the GHRHR transcript regulated GH through the NO/NOS signalling pathway, whereas that coded by SV1 and SV2 regulated GH through the PKA/CREB signalling pathway, which was confirmed by the changes in signalling pathways after transfecting the expression vectors of GHRHR SVs to GH3 cells. To the best of our knowledge, this paper is the first to report pituitary miRNAs regulate GH synthesis by targeting the different SVs of GHRHR.
Collapse
Affiliation(s)
- Yunyun Cheng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Jie Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Zhaohui Teng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China.,Research and Development Centre, Dalian Mogue Biotech Co., Ltd , Dalian, China
| | - Chunli Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Siyao Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Guanhong Lu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Tianqi Feng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University , Foshan China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Songcai Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Linlin Hao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| |
Collapse
|
20
|
Wang H, Wang H, Zhang H, Liu S, Wang Y, Gao Y, Xi F, Zhao L, Liu B, Reddy ASN, Lin C, Gu L. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species. Bioinformatics 2020; 35:3119-3126. [PMID: 30689723 DOI: 10.1093/bioinformatics/btz038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION MicroRNA (miRNA) and alternative splicing (AS)-mediated post-transcriptional regulation has been extensively studied in most eukaryotes. However, the interplay between AS and miRNAs has not been explored in plants. To our knowledge, the overall profile of miRNA target sites in circular RNAs (circRNA) generated by alternative back splicing has never been reported previously. To address the challenge, we identified miRNA target sites located in alternatively spliced regions of the linear and circular splice isoforms using the up-to-date single-molecule real-time (SMRT) isoform sequencing (Iso-Seq) and Illumina sequencing data in eleven plant species. RESULTS In total, we identified 399 401 and 114 574 AS events from linear and circular RNAs, respectively. Among them, there were 64 781 and 41 146 miRNA target sites located in linear and circular AS region, respectively. In addition, we found 38 913 circRNAs to be overlapping with 45 648 AS events of its own parent isoforms, suggesting circRNA regulation of AS of linear RNAs by forming R-loop with the genomic locus. Here, we present a comprehensive database of miRNA targets in alternatively spliced linear and circRNAs (ASmiR) and a web server for deposition and identification of miRNA target sites located in the alternatively spliced region of linear and circular RNAs. This database is accompanied by an easy-to-use web query interface for meaningful downstream analysis. Plant research community can submit user-defined datasets to the web service to search AS regions harboring small RNA target sites. In conclusion, this study provides an unprecedented resource to understand regulatory relationships between miRNAs and AS in both gymnosperms and angiosperms. AVAILABILITY AND IMPLEMENTATION The readily accessible database and web-based tools are available at http://forestry.fafu.edu.cn/bioinfor/db/ASmiR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Sheng Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology.,Department of Molecular Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology
| |
Collapse
|
21
|
Ma X, Zuo Z, Shao W, Jin Y, Meng Y. The expanding roles of Argonautes: RNA interference, splicing and beyond. Brief Funct Genomics 2019; 17:191-197. [PMID: 29240875 DOI: 10.1093/bfgp/elx045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Argonaute (AGO) protein family is highly conserved in eukaryotes and prokaryotes, reflecting its evolutionarily indispensible role in maintaining normal life cycle of the organisms. Small RNA-guided, AGO-dependent RNA interference (RNAi) is a well-studied pathway for gene expression regulation, which can be performed at transcriptional, posttranscriptional or translational level. In addition to RNAi, growing pieces of evidence point to a novel role of AGOs in pre-mRNA (messenger RNA precursor) splicing in animals. Many noncoding RNAs (ncRNAs) share common structural features with protein-coding genes, indicating that these ncRNAs might be subject to AGO-mediated splicing. Finally, we provide a comprehensive view that RNAi, transcription and RNA splicing are highly interactive processes, all of which involve several key factors such as AGOs. In this regard, the AGO proteins contribute to orchestrate an exquisite gene regulatory network in vivo. However, more research efforts are needed to reach a thorough understanding of the AGO activities.
Collapse
|
22
|
Hernando CE, Garcia C, Mateos JL. Casting Away the Shadows: Elucidating the Role of Light-mediated Posttranscriptional Control in Plants. Photochem Photobiol 2018; 93:656-665. [PMID: 28500720 DOI: 10.1111/php.12762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
Light signals trigger precise changes in gene expression networks that activate distinctive developmental programs in plants. The transcriptome is shaped at different stages, both by the regulation of gene expression and also by posttranscriptional mechanisms that alter the sequence or abundance of the transcripts generated. Posttranscriptional mechanisms have attracted much interest in recent years with the advent of high-throughput technologies and bioinformatics tools. One such posttranscriptional process, alternative splicing, increases proteome diversity without increasing gene number by changing the function of individual proteins, while another, miRNA-mediated gene silencing, fine-tunes the amount of mRNA produced. The manner in which plants make use of these two crucial posttranscriptional mechanisms to respond to light and adapt to their environment is the focus of active research. In this review, we summarize the current knowledge of light-mediated posttranscriptional control in Arabidopsis thaliana and focus on the biological impact of the various posttranscriptional processes. We also discuss a potential cross talk between the alternative splicing and miRNA pathways, highlighting the complexity of light responsiveness.
Collapse
Affiliation(s)
| | - Carolina Garcia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Julieta L Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
23
|
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, Li J, Xia R. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. THE NEW PHYTOLOGIST 2018; 217:1535-1550. [PMID: 29218722 DOI: 10.1111/nph.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play vital regulatory roles in plant growth and development. Little is known about these small RNAs in litchi (Litchi chinensis), an economically important fruit crop widely cultivated in Southeast Asia. We profiled the litchi small RNA population with various deep-sequencing techniques and in-depth bioinformatic analyses. The genome-wide identification of miRNAs, their target genes, and phasiRNA-generating (PHAS) genes/loci showed that the function of miR482/2118 has expanded, relative to its canonical function. We also discovered that, for 29 PHAS loci, miRNA-mediated phasiRNA production was coupled with alternative splicing (AS) and alternative polyadenylation (APA). Most of these loci encoded long noncoding RNAs. An miR482/2118 targeted locus gave rise to four main transcript isoforms through AS/APA, and diverse phasiRNAs generated from these isoforms appeared to target long terminal repeat (LTR) retrotransposons and other unrelated genes. This coupling enables phasiRNA production from different exons of noncoding PHAS genes and yields diverse phasiRNA populations, both broadening and altering the range of downstream phasiRNA-regulated genes. Our results reveal the diversity of miRNA and phasiRNA in litchi, and demonstrate AS/APA as a new layer of regulation in small RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Wuqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zeng
- Modern Education and Technology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
24
|
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-Dependent Control of Gene Expression in Plants. TRENDS IN PLANT SCIENCE 2018; 23:248-259. [PMID: 29223924 PMCID: PMC5828884 DOI: 10.1016/j.tplants.2017.11.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Throughout their lives, plants sense many developmental and environmental stimuli, and activation of optimal responses against these stimuli requires extensive transcriptional reprogramming. To facilitate this activation, plant mRNA contains untranslated regions (UTRs) that significantly increase the coding capacity of the genome by producing multiple mRNA variants from the same gene. In this review we compare UTRs of arabidopsis (Arabidopsis thaliana) and rice (Oryza sativum) at the genome scale to highlight their complexity in crop plants. We discuss different modes of UTR-based regulation with emphasis on genes that regulate multiple plant processes, including flowering, stress responses, and nutrient homeostasis. We demonstrate functional specificity in genes with variable UTR length and propose future research directions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Permanent address: Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
25
|
Wang Y, Zou W, Xiao Y, Cheng L, Liu Y, Gao S, Shi Z, Jiang Y, Qi M, Xu T, Li T. MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1011-1025. [PMID: 29365162 DOI: 10.1093/jxb/erx469] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 05/18/2023]
Abstract
Ethylene perception is regulated by receptors, and the downstream protein CONSTITUTIVE TRIPLE RESPONSE1 is a key suppressor of ethylene signalling. The non-conserved tomato (Solanum lycopersicum) microRNA1917 (Sly-miR1917) mediates degradation of SlCTR4 splice variants (SlCTR4sv) but the molecular details of this pathway remain unknown. Sly-miR1917 and the targeted SlCTR4sv are ubiquitously expressed in all tomato organs. Overexpression of Sly-miR1917 enhances ethylene responses, including the triple response in etiolated seedlings, in the absence of ethylene, as well as epinastic petiole growth, accelerated pedicel abscission, and fruit ripening. Enhanced ethylene signalling in Sly-miR1917-overexpressing plants (1917-OE) is accompanied by up-regulation of ethylene biosynthesis and signalling genes, and increased ethylene emission. These phenotypes were recovered by repressing the positive ethylene regulator EIN2. Moreover, the Sly-miR1917-targeted SlCTR4 splice variant SlCTR4sv3, expressed specifically in the abscission zone, exhibited the opposite expression pattern to Sly-miR1917. Complementation of the Arabidopsis thaliana ctr-1 mutant and yeast two-hybrid and bimolecular fluorescence complementation assays suggested that SlCTR4sv3 functions in ethylene signalling. Co-expression of Sly-miR1917 and SlCTR4sv3 in Nicotiana benthamiana further suggested that Sly-miR1917 cleaves SlCTR4sv3 in vivo. Database homology searching revealed a Solanum tuberosum CTR-like splice variant containing a Sly-miR1917 binding sequence, and a homologue of mature Sly-miR1917 in potato, indicating a conserved function for miR1917 and the regulatory miRNA-mediated ethylene network in solanaceous species.
Collapse
Affiliation(s)
- Yanling Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Wenxiong Zou
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Yan Xiao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Yudong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Song Gao
- Liaoning Cash Crop Institute, Liaoyang, China
| | - Zihang Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Yun Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| |
Collapse
|
26
|
Park SY, Grabau E. Bypassing miRNA-mediated gene regulation under drought stress: alternative splicing affects CSD1 gene expression. PLANT MOLECULAR BIOLOGY 2017; 95:243-252. [PMID: 28776286 DOI: 10.1007/s11103-017-0642-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 05/24/2023]
Abstract
The binding site for miR398 in an isoform of Cu/Zn superoxide dismutase (CSD1) is eliminated by alternative splicing to bypass miR398-mediated gene down-regulation under drought stress. MicroRNA (miRNA) binding sites (MBSs) are frequently interrupted by introns and therefore require proper splicing to generate functional MBSs in target transcripts. MBSs can also be excluded during splicing of pre-messenger RNA, leading to different regulation among isoforms. Previous studies have shown that levels of Cu/Zn superoxide dismutase (CSD) are down-regulated by miR398. In this study, sequences and transcript levels of peanut CSD1 isoforms (AhCSD1-1, AhCSD1-2.1, and AhCSD1-2.2) were analyzed under the drought stress. Results demonstrated that a miR398 binding site is eliminated in AhCSD1-2.2 as a consequence of alternative splicing, which bypasses miRNA-mediated down-regulation under drought stress. This alternative isoform was not only identified in peanut but also in soybean and Arabidopsis. In addition, transgenic Arabidopsis plants expressing AhCSD1 were more tolerant to osmotic stress. We hypothesize that the level of AhCSD1 is increased to allow diverse plant responses to overcome environmental challenges even in the presence of increased miR398 levels. These findings suggest that studies on the role of alternatively spliced MBSs affecting transcript levels are important for understanding plant stress responses.
Collapse
Affiliation(s)
- So-Yon Park
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA, 24061, USA.
| | - Elizabeth Grabau
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
27
|
Iñiguez LP, Ramírez M, Barbazuk WB, Hernández G. Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genomics 2017; 18:650. [PMID: 28830361 PMCID: PMC5568362 DOI: 10.1186/s12864-017-4054-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The vast diversification of proteins in eukaryotic cells has been related with multiple transcript isoforms from a single gene that result in alternative splicing (AS) of primary transcripts. Analysis of RNA sequencing data from expressed sequence tags and next generation RNA sequencing has been crucial for AS identification and genome-wide AS studies. For the identification of AS events from the related legume species Phaseolus vulgaris and Glycine max, 157 and 88 publicly available RNA-seq libraries, respectively, were analyzed. RESULTS We identified 85,570 AS events from P. vulgaris in 72% of expressed genes and 134,316 AS events in 70% of expressed genes from G. max. These were categorized in seven AS event types with intron retention being the most abundant followed by alternative acceptor and alternative donor, representing ~75% of all AS events in both plants. Conservation of AS events in homologous genes between the two species was analyzed where an overrepresentation of AS affecting 5'UTR regions was observed for certain types of AS events. The conservation of AS events was experimentally validated for 8 selected genes, through RT-PCR analysis. The different types of AS events also varied by relative position in the genes. The results were consistent in both species. CONCLUSIONS The identification and analysis of AS events are first steps to understand their biological relevance. The results presented here from two related legume species reveal high conservation, over ~15-20 MY of divergence, and may point to the biological relevance of AS.
Collapse
Affiliation(s)
- Luis P. Iñiguez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| | | | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| |
Collapse
|
28
|
Zhang H, Lin C, Gu L. Light Regulation of Alternative Pre-mRNA Splicing in Plants. Photochem Photobiol 2017; 93:159-165. [PMID: 27925216 DOI: 10.1111/php.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/20/2016] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) is a major post-transcriptional mechanism to enhance the diversity of proteome in response to environmental signals. Among the numerous external signals perceived by plants, light is the most crucial one. Plants utilize complex photoreceptor signaling networks to sense different light conditions and adjust their growth and development accordingly. Although light-mediated gene expression has been widely investigated, little is known regarding the mechanism of light affecting AS to modulate mRNA at the post-transcriptional level. In this minireview, we summarize current progresses on how light affects AS, and how sensory photoreceptors and retrograde signaling pathways may coordinately regulate AS of pre-mRNAs. In addition, we also discuss the possibility that AS of the mRNAs encoding photoreceptors may be involved in feedback control of AS. We hypothesize that light regulation of the expression and activity of splicing factors would be a major mechanism of light-mediated AS. The combination of genetic study and high-throughput analyses of AS and splicing complexes in response to light is likely to further advance our understanding of the molecular mechanisms underlying light control of AS and plant development.
Collapse
Affiliation(s)
- Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Computational Prediction of MicroRNA Target Genes, Target Prediction Databases, and Web Resources. Methods Mol Biol 2017; 1617:109-122. [PMID: 28540680 DOI: 10.1007/978-1-4939-7046-9_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNA (miRNA) mediated silencing and repression of mRNA molecules requires complementary base pairing between the "seed" region of the miRNA and the "seed match" region of target mRNAs. While this mechanism is fairly well understood, accurate prediction of valid miRNA targets remains challenging due to factors such as imperfect sequence specificity, target site availability, and the thermodynamic stability of the mRNA structure itself. As knowledge of what genes are being targeted by each miRNA is arguably the most important facet of miRNA biology, many approaches have been developed to address the need for reliable prediction and ranking of putative targets, with most using a combination of various strategies such as evolutionary conservation, statistical inference, and distinct features of the target sequences themselves. This chapter reviews the pros and cons of a number of different prediction algorithms, showcases some databases that store experimentally validated miRNA targets, and also provides a case study that profiles some of the potential microRNA-mRNA interactions predicted by each methodology for various human genes.
Collapse
|
30
|
Niu J, Wang J, Hu H, Chen Y, An J, Cai J, Sun R, Sheng Z, Liu X, Lin S. Cross-talk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populus suaveolens. Sci Rep 2016; 6:20648. [PMID: 26853706 PMCID: PMC4745078 DOI: 10.1038/srep20648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play important roles in post-transcriptional regulation of their target genes, yet the transcriptional regulation of plant miRNAs by promoter is poorly understood. Here, we firstly clone pri-miR475b cDNA and its native promoter from P. suaveolens, and characterize Psu-MIR475b as class-II gene transcribed by RNA polymerase II. By 5′ deletion analysis of Psu-miR475b promoter in a series of promoter-GUS chimeric vectors, we functionally identify three positive regulatory regions and multiple cis-acting elements responsible for Psu-miR475b promoter activity in response to freezing stress and exogenous hormone treatment. Moreover, the Psu-miR475b promoter activity displays a tissue-specific manner, negatively regulated by freezing stress and positively by MeJA, SA or GA treatment. Importantly, we comparatively analyze the time-course transcriptional profiles of Psu-miR475b and its targets in Psu-miR475b over-expression transgenic plants controlled by Psu-miR475b-specific promoter or CaMV 35S constitutive promoter, and explore the regulatory mechanism of Psu-miR475b promoter controlling transcriptional expressions of Psu-MIR475b and its targets in response to freezing stress and exogenous hormone treatment. Our results reveal that Psu-miR475b promoter-mediated transcriptions of Psu-MIR475b and its targets in response to freezing stress may be involved in a cross-talk between freezing response and stress signaling process.
Collapse
Affiliation(s)
- Jun Niu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Jia Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Huiwen Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Yinlei Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Jiyong An
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Jian Cai
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Runze Sun
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Zhongting Sheng
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Xieping Liu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 10083, China
| |
Collapse
|
31
|
Han L, Weng K, Ma H, Xiang G, Li Z, Wang Y, Liu G, Xu Y. Identification and Characterization of Erysiphe necator-Responsive MicroRNAs in Chinese Wild Vitis pseudoreticulata by High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:621. [PMID: 27303408 PMCID: PMC4885880 DOI: 10.3389/fpls.2016.00621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/22/2016] [Indexed: 05/21/2023]
Abstract
Grapevine powdery mildew is one of the most damaging fungal diseases. Therefore, a precise understanding of the grapevine disease resistance system becomes a subject of significant importance. Plant microRNAs(miRNAs) have been implicated to play regulatory roles in plant biotic stress responses. In this study, high-throughput sequencing and miRDeep-P were employed to identify miRNAs in Chinese wild Vitis pseudoreticulata leaves following inoculation with Erysiphe necator. Altogether, 126 previously identified microRNAs and 124 novel candidates of miRNA genes were detected. Among them, 43 conserved miRNAs belong to 20 families and 23 non-conserved but previously-known miRNAs belong to 15 families. Following E. necator inoculation, 119 miRNAs were down-regulated and 131 were up-regulated. Furthermore, the expression changes occurring in 32 miRNAs were significant. The expression patterns of some miRNAs were validated by semi-quantitative RT-PCR and qRT-PCR. A total of 485 target genes were predicted and categorized by Gene Ontology (GO). In addition, 14 vvi-miRNAs were screened with 36 targets which may be involved in powdery mildew resistance in grape. Highly accumulated vvi-NewmiR2118 was detected from accession "Baihe-35-1," whose targets were mostly NBS-LRR resistance genes. It was down-regulated rapidly and strongly in "Baihe-35-1" leaves after inoculated with E. necator, indicating its involvement in grape powdery mildew resistance. Finally, the study verified interaction between vvi-NewmiR2118 and RPP13 by histochemical staining and GUS fluorescence quantitative assay.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Kai Weng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Zhiqian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
- *Correspondence: Yan Xu
| |
Collapse
|
32
|
Min XJ, Powell B, Braessler J, Meinken J, Yu F, Sablok G. Genome-wide cataloging and analysis of alternatively spliced genes in cereal crops. BMC Genomics 2015; 16:721. [PMID: 26391769 PMCID: PMC4578763 DOI: 10.1186/s12864-015-1914-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Protein functional diversity at the post-transcriptional level is regulated through spliceosome mediated pre-mRNA alternative splicing (AS) events and that has been widely demonstrated to be a key player in regulating the functional diversity in plants. Identification and analysis of AS genes in cereal crop plants are critical for crop improvement and understanding regulatory mechanisms. Results We carried out the comparative analyses of the functional landscapes of the AS using the consensus assembly of expressed sequence tags and available mRNA sequences in four cereal plants. We identified a total of 8,734 in Oryza sativa subspecies (ssp) japonica, 2,657 in O. sativa ssp indica, 3,971 in Sorghum bicolor, and 10,687 in Zea mays AS genes. Among the identified AS events, intron retention remains to be the dominant type accounting for 23.5 % in S. bicolor, and up to 55.8 % in O. sativa ssp indica. We identified a total of 887 AS genes that were conserved among Z. mays, S. bicolor, and O. sativa ssp japonica; and 248 AS genes were found to be conserved among all four studied species or ssp. Furthermore, we identified 53 AS genes conserved with Brachypodium distachyon. Gene Ontology classification of AS genes revealed functional assignment of these genes in many biological processes with diverse molecular functions. Conclusions AS is common in cereal plants. The AS genes identified in four cereal crops in this work provide the foundation for further studying the roles of AS in regulation of cereal plant growth and development. The data can be accessed at Plant Alternative Splicing Database (http://proteomics.ysu.edu/altsplice/). Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1914-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Jia Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, 44555, USA. .,Center for Applied Chemical Biology, Youngstown State University, Youngstown, OH, 44555, USA.
| | - Brian Powell
- Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, 44555, USA
| | - Jonathan Braessler
- Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, 44555, USA
| | - John Meinken
- Center for Applied Chemical Biology, Youngstown State University, Youngstown, OH, 44555, USA.,Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, 44555, USA.,Present address: Center for Health Informatics, University of Cincinnati, Cincinnati, OH, 45267-0840, USA
| | - Feng Yu
- Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, 44555, USA
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| |
Collapse
|
33
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|
34
|
Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, Tomason Y, Abburi L, Rahman MA, Vajja VG, Khachane A, Kumar B, Rajasimha HK, Levi A, Wehner T, Reddy UK. Differential gene expression and alternative splicing between diploid and tetraploid watermelon. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1369-85. [PMID: 25520388 PMCID: PMC4438448 DOI: 10.1093/jxb/eru486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.
Collapse
Affiliation(s)
- Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Sumanth Manohar
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Sridhar Malkaram
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Aldo Almeida
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Robert Cantrell
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Yan Tomason
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Lavanya Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Mohammad A Rahman
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Venkata G Vajja
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Amit Khachane
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Brajendra Kumar
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Harsha K Rajasimha
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Amnon Levi
- US Vegetable Laboratory, USDA-ARS, 2875 Savannah Highway, Charleston, SC 29414, USA
| | - Todd Wehner
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| |
Collapse
|
35
|
Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:57. [PMID: 25717333 PMCID: PMC4324062 DOI: 10.3389/fpls.2015.00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 05/14/2023]
Abstract
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Collapse
Affiliation(s)
- Davide Guerra
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Cristina Crosatti
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Hamid H. Khoshro
- Department of Agronomy and Plant Breeding, Ilam University, Ilam, Iran
| | - Anna M. Mastrangelo
- Cereal Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Foggia, Italy
| | - Erica Mica
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Mazzucotelli
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
36
|
Wang M, Zhang P, Shu Y, Yuan F, Zhang Y, Zhou Y, Jiang M, Zhu Y, Hu L, Kong X, Zhang Z. Alternative splicing at GYNNGY 5' splice sites: more noise, less regulation. Nucleic Acids Res 2014; 42:13969-80. [PMID: 25428370 PMCID: PMC4267661 DOI: 10.1093/nar/gku1253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022] Open
Abstract
Numerous eukaryotic genes are alternatively spliced. Recently, deep transcriptome sequencing has skyrocketed proportion of alternatively spliced genes; over 95% human multi-exon genes are alternatively spliced. One fundamental question is: are all these alternative splicing (AS) events functional? To look into this issue, we studied the most common form of alternative 5' splice sites-GYNNGYs (Y = C/T), where both GYs can function as splice sites. Global analyses suggest that splicing noise (due to stochasticity of splicing process) can cause AS at GYNNGYs, evidenced by higher AS frequency in non-coding than in coding regions, in non-conserved than in conserved genes and in lowly expressed than in highly expressed genes. However, ∼20% AS GYNNGYs in humans and ∼3% in mice exhibit tissue-dependent regulation. Consistent with being functional, regulated GYNNGYs are more conserved than unregulated ones. And regulated GYNNGYs have distinctive sequence features which may confer regulation. Particularly, each regulated GYNNGY comprises two splice sites more resembling each other than unregulated GYNNGYs, and has more conserved downstream flanking intron. Intriguingly, most regulated GYNNGYs may tune gene expression through coupling with nonsense-mediated mRNA decay, rather than encode different proteins. In summary, AS at GYNNGY 5' splice sites is primarily splicing noise, and secondarily a way of regulation.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peiwei Zhang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Shu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fei Yuan
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuchao Zhang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - You Zhou
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yufei Zhu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Landian Hu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiangyin Kong
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhenguo Zhang
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Xu P, Kong Y, Song D, Huang C, Li X, Li L. Conservation and functional influence of alternative splicing in wood formation of Populus and Eucalyptus. BMC Genomics 2014; 15:780. [PMID: 25209012 PMCID: PMC4287496 DOI: 10.1186/1471-2164-15-780] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wood formation in tree species is regulated by multiple factors at various layers. Alternative splicing (AS) occurs within a large number of genes in wood formation. However, the functional implications and conservation of the AS occurrence are not well understood. RESULTS In this study, we profiled AS events in wood-forming tissues of Populus and Eucalyptus, and analyzed their functional implications as well as inter-species conservation. 28.3% and 20.7% of highly expressed transcripts in the developing xylem of Populus and Eucalyptus respectively were affected by AS events. Around 42% of the AS events resulted in changes to the original reading frame. 25.0% (in Populus) and 26.8% (in Eucalyptus) of the AS events may cause protein domain modification. In the process of wood formation, about 28% of AS-occurring genes were putative orthologs and 71 conserved AS events were identified in the two species. CONCLUSION Through analysis of AS events in developing xylem of two tree species, this study reveals an array of new information regarding AS occurrence and function in tree development.
Collapse
Affiliation(s)
| | | | | | | | | | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032, China.
| |
Collapse
|
38
|
Thatcher SR, Zhou W, Leonard A, Wang BB, Beatty M, Zastrow-Hayes G, Zhao X, Baumgarten A, Li B. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. THE PLANT CELL 2014; 26:3472-87. [PMID: 25248552 PMCID: PMC4213170 DOI: 10.1105/tpc.114.130773] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 05/18/2023]
Abstract
Alternative splicing enhances transcriptome diversity in all eukaryotes and plays a role in plant tissue identity and stress adaptation. To catalog new maize (Zea mays) transcripts and identify genomic loci that regulate alternative splicing, we analyzed over 90 RNA-seq libraries from maize inbred lines B73 and Mo17, as well as Syn10 doubled haploid lines (progenies from B73 × Mo17). Transcript discovery was augmented with publicly available data from 14 maize tissues, expanding the maize transcriptome by more than 30,000 and increasing the percentage of intron-containing genes that undergo alternative splicing to 40%. These newly identified transcripts greatly increase the diversity of the maize proteome, sometimes coding for entirely different proteins compared with their most similar annotated isoform. In addition to increasing proteome diversity, many genes encoding novel transcripts gained an additional layer of regulation by microRNAs, often in a tissue-specific manner. We also demonstrate that the majority of genotype-specific alternative splicing can be genetically mapped, with cis-acting quantitative trait loci (QTLs) predominating. A large number of trans-acting QTLs were also apparent, with nearly half located in regions not shown to contain genes associated with splicing. Taken together, these results highlight the currently underappreciated role that alternative splicing plays in tissue identity and genotypic variation in maize.
Collapse
Affiliation(s)
| | | | | | - Bing-Bing Wang
- DuPont Pioneer, Johnston, Iowa 50131 Huazhi Rice Biotech Company, Changsha, Hunan 410125, China
| | | | | | - Xiangyu Zhao
- DuPont Pioneer, Wilmington, Delaware 19880 Shandong Agricultural University, Shandong 271000, China
| | | | - Bailin Li
- DuPont Pioneer, Wilmington, Delaware 19880
| |
Collapse
|
39
|
Wu YJ, Wu YJ, Luo X, Shen XL, Zhao DG. Identification of differentially expressed genes that potentially confer pest resistance in transgenic ChIFN-γ tobacco. Gene 2014; 543:181-9. [PMID: 24747016 DOI: 10.1016/j.gene.2014.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Abstract
Chicken interferon-γ (ChIFN-γ) is both an inhibitor of viral replication and a regulator of numerous immunological functions. However, since little is known about the mechanisms underlying the insect-resistance of transgenic ChIFN-γ, a transgenic ChIFN-γ tobacco line was employed in the present study to explore this mechanism. A cDNA microarray (with 43,760 unigenes) was used to analyze the gene expression profiles of transgenic and wild-type (WT) tobacco leaves at two different growth stages. Compared with the WT, 1529 and 405 expressed sequence tags were significantly up- or downregulated on days 119 and 147, respectively. The differentially expressed genes (DEGs) are involved in metabolic regulation, cell division and differentiation, material synthesis and transport, signal transduction, and protein synthesis and degradation. Candidate genes that may increase cell density, thicken cell walls, promote secondary metabolite synthesis, and mediate plant hormone-induced resistance responses were used to identify the ChIFN-γ-mediated insect-resistance mechanisms. The insect-resistance of transgenic ChIFN-γ tobacco possibly involves unknown signaling pathways, which may directly or indirectly affect DEG expression-mediating genes. The degree of pest resistance increased as the plants grew. Three genes likely to be related to jasmonic acid- or salicylic acid-dependent plant defense responses, including CAF 1, Cop 8/CSN, and HD, are implicated in the insect-resistance of the transgenic plants. The mechanism of transgenic ChIFN-γ tobacco resistance also involves RPS20 and other genes that induce microRNA-based gene regulation. The ChIFN-γ-mediated DGEs contribute to insect-resistance in transgenic ChIFN-γ tobacco, which provides new insight into the role of ChIFN-γ.
Collapse
Affiliation(s)
- Yong-Jun Wu
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China.
| | - Yu-Jun Wu
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| | - Xi Luo
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| | - Xi-Long Shen
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| | - De-Gang Zhao
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences, South Campus of Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
40
|
Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, D'Angelo M, Zimbello R, Corso M, Vannozzi A, Bonghi C, Lucchin M, Valle G. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC PLANT BIOLOGY 2014; 14:99. [PMID: 24739459 PMCID: PMC4108029 DOI: 10.1186/1471-2229-14-99] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/07/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. RESULTS We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. CONCLUSIONS As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures.
Collapse
Affiliation(s)
- Nicola Vitulo
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | - Claudio Forcato
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | | | - Andrea Telatin
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
| | | | | | | | - Massimiliano Corso
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padua, Padua, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padua, Padua, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padua, Padua, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padua, Padua, Italy
- CIRVE, Centre for Research in Viticulture and Enology, University of Padua, Padua, Italy
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
41
|
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. THE PLANT CELL 2013; 25:3657-83. [PMID: 24179125 PMCID: PMC3877793 DOI: 10.1105/tpc.113.117523] [Citation(s) in RCA: 558] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.
Collapse
Affiliation(s)
- Anireddy S.N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
- Address correspondence to
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Maria Kalyna
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
42
|
Wu CT, Chiou CY, Chiu HC, Yang UC. Fine-tuning of microRNA-mediated repression of mRNA by splicing-regulated and highly repressive microRNA recognition element. BMC Genomics 2013; 14:438. [PMID: 23819653 PMCID: PMC3708814 DOI: 10.1186/1471-2164-14-438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/11/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs are very small non-coding RNAs that interact with microRNA recognition elements (MREs) on their target messenger RNAs. Varying the concentration of a given microRNA may influence the expression of many target proteins. Yet, the expression of a specific target protein can be fine-tuned by alternative cleavage and polyadenylation to the corresponding mRNA. RESULTS This study showed that alternative splicing of mRNA is a fine-tuning mechanism in the cellular regulatory network. The splicing-regulated MREs are often highly repressive MREs. This phenomenon was observed not only in the hsa-miR-148a-regulated DNMT3B gene, but also in many target genes regulated by hsa-miR-124, hsa-miR-1, and hsa-miR-181a. When a gene contains multiple MREs in transcripts, such as the VEGF gene, the splicing-regulated MREs are again the highly repressive MREs. Approximately one-third of the analysable human MREs in MiRTarBase and TarBase can potentially perform the splicing-regulated fine-tuning. Interestingly, the high (+30%) repression ratios observed in most of these splicing-regulated MREs indicate associations with functions. For example, the MRE-free transcripts of many oncogenes, such as N-RAS and others may escape microRNA-mediated suppression in cancer tissues. CONCLUSIONS This fine-tuning mechanism revealed associations with highly repressive MRE. Since high-repression MREs are involved in many important biological phenomena, the described association implies that splicing-regulated MREs are functional. A possible application of this observed association is in distinguishing functionally relevant MREs from predicted MREs.
Collapse
Affiliation(s)
- Cheng-Tao Wu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Biomedical Technology and Device Research Labs (BDL), Industrial Technology Research Institute (ITRI), No.195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC
| | - Chien-Ying Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Ho-Chen Chiu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Bioinformatics Consortium of Taiwan core facility, Taipei, Taiwan, ROC
| |
Collapse
|
43
|
Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D. Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:e24638. [PMID: 23656882 PMCID: PMC3907436 DOI: 10.4161/psb.24638] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) gives rise to multiple mRNA isoforms from the same gene, providing possibilities to regulate gene expression beyond the level of transcription. In a recent paper in Nucleic Acids Research we used a high resolution RT-PCR based panel to study changes in AS patterns in plants with altered levels of an hnRNP-like RNA-binding protein in Arabidopsis thaliana. Furthermore, we detected significant changes in AS patterns between different Arabidopsis ecotypes. Here we investigated how small changes in ambient temperature affect AS. We found significant changes in AS for 12 of 28 investigated events (43%) upon transfer of Arabidopsis plants from 20°C to 16°C and for 6 of the 28 investigated events (21%) upon transfer from 20°C to 24°C.
Collapse
Affiliation(s)
| | - Craig G. Simpson
- Cell and Molecular Sciences; The James Hutton Institute; Invergowrie, Scotland, UK
| | - Paul Shaw
- Information and Computational Sciences; The James Hutton Institute; Invergowrie, Scotland UK
| | | | - John W.S. Brown
- Cell and Molecular Sciences; The James Hutton Institute; Invergowrie, Scotland, UK
- Division of Plant Sciences; University of Dundee at The James Hutton Institute; Invergowrie, Scotland UK
| | - Dorothee Staiger
- Molecular Cell Physiology; Bielefeld University; Bielefeld, Germany
- Institute for Genome Research and Systems Biology; CeBiTec; Bielefeld, Germany
| |
Collapse
|
44
|
Campo S, Peris-Peris C, Siré C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. THE NEW PHYTOLOGIST 2013; 199:212-227. [PMID: 23627500 DOI: 10.1111/nph.12292] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/26/2013] [Indexed: 05/18/2023]
Abstract
Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Cristina Peris-Peris
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| | - Christelle Siré
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| | - Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Matthias Zytnicki
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), UPF, 08003, Barcelona, Spain
| | - Cedric Notredame
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), UPF, 08003, Barcelona, Spain
| | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, 08193, Spain
| |
Collapse
|
45
|
Zhao X, Li L. Comparative analysis of microRNA promoters in Arabidopsis and rice. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:56-60. [PMID: 23453017 PMCID: PMC4357670 DOI: 10.1016/j.gpb.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022]
Abstract
Endogenously-encoded microRNAs (miRNAs) are a class of small regulatory RNAs that modulate gene expression at the post-transcriptional level. In plants, miRNAs have increasingly been identified by experiments based on next-generation sequencing (NGS). However, promoter organization is currently unknown for most plant miRNAs, which are transcribed by RNA polymerase II. This deficiency prevents a comprehensive understanding of miRNA-mediated gene networks. In this study, by analyzing full-length cDNA sequences related to miRNAs, we mapped transcription start sites (TSSs) for 62 and 55 miRNAs in Arabidopsis and rice, respectively. The average free energy (AFE) profiles in the vicinity of TSSs were studied for both species. By employing position weight matrices (PWM) for 99 plant cis-elements, we discovered that three cis-elements were over-represented in the miRNA promoters of both species, while four and ten cis-elements were over-represented in Arabidopsis only and in rice only. Thus, comparison of miRNA promoters between Arabidopsis and rice provides a new perspective for studying miRNA regulation in plants.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
46
|
Zhao X, Zhang H, Li L. Identification and analysis of the proximal promoters of microRNA genes in Arabidopsis. Genomics 2013; 101:187-94. [PMID: 23295247 DOI: 10.1016/j.ygeno.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/22/2012] [Accepted: 12/24/2012] [Indexed: 11/25/2022]
Abstract
Endogenous microRNAs (miRNAs) modulate gene expression at the post-transcription level. In plants, a vast majority of MIR genes are thought to be transcribed by RNA Polymerase II (Pol II). However, promoter organization is currently unknown for most plant MIR genes. This deficiency prevents a comprehensive understanding of miRNA-mediated gene networks. In this study, we performed Pol II chromatin immunoprecipitation (ChIP) analysis in Arabidopsis using a genome tiling microarray. Distinct Pol II binding was found at most MIR loci, which allowed prediction of the transcription start sites (TSSs) for 167 MIR genes in Arabidopsis that was validated by average free energy profiling. By employing 99 position weight matrices (PWM), we systematically scanned the regulatory regions upstream of the TSSs. We discovered eleven and ten cis-elements that are statistically over- and under-represented in MIR promoters, respectively. Thus, analysis of Pol II binding provides a new perspective for studying miRNAs in plants.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
47
|
Meng Y, Shao C, Wang H, Ma X, Chen M. Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa). THE NEW PHYTOLOGIST 2013; 197:441-453. [PMID: 23121287 DOI: 10.1111/nph.12018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/24/2012] [Indexed: 05/16/2023]
Abstract
Although huge amounts of high-throughput sequencing (HTS) data are available, limited systematic analyses have been performed by integrating these valuable resources. Based on small RNA (sRNA), RNA and degradome HTS data, the sRNAs specifically expressed at vegetative and reproductive stages were identified separately in rice. Two distinct groups of sRNA HTS data, which were prepared during the vegetative and the reproductive stages, were utilized to extract stage-specific sRNAs. Degradome sequencing data were employed for sRNA target validation. RNA sequencing data were used to construct expression-based, sRNA-mediated networks. As a result, 26 microRNAs and 413 sRNAs were specifically expressed at the vegetative stage, and 79 microRNAs and 539 sRNAs were specifically expressed at the reproductive stage. In addition to the microRNAs, numerous stage-specific sRNAs enriched in ARGONAUTE1 showed great potential to perform cleavage-based repression on the targets. Several stage-specific sRNAs were indicated to result from the wobble effect of Dicer-like 1-mediated processing of microRNA precursors. The expression patterns of the sRNA targets, and the stage-specific cleavage signals strongly indicated the reliability of the constructed networks. A set of rice stage-specific sRNAs along with the regulatory cascades, which have great potential in regulating specific developmental stages, were provided for further investigation.
Collapse
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chaogang Shao
- College of Life Sciences, Huzhou Teachers College, Huzhou, 313000, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
48
|
Marín-González E, Suárez-López P. "And yet it moves": cell-to-cell and long-distance signaling by plant microRNAs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 196:18-30. [PMID: 23017896 DOI: 10.1016/j.plantsci.2012.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/17/2012] [Accepted: 07/21/2012] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of numerous genes in many eukaryotes. Some plant miRNAs are involved in developmental and physiological processes that require intercellular or inter-organ signaling. Movement of other small RNAs within plants has been established. Recent findings also demonstrate intercellular signaling by miRNAs and strongly support that a subset of these regulatory molecules move from one cell to another or over long distances. Phloem exudates contain diverse miRNAs and at least two of them, involved in responses to nutrient availability, are transmitted through grafts, indicating long-distance movement. Two miRNAs that regulate developmental processes are present in cells outside their domains of expression. Several results strongly support that one of them moves from cell to cell. Research on a mutant affected in plasmodesmata trafficking indicates that these intercellular channels are required for transmission of miRNA activity to adjacent cells. Moreover, ARGONAUTE proteins might be involved in the regulation of miRNA trafficking. Hypothesis on the features and mechanisms that may determine miRNA mobility are presented. Future challenges include identifying other mobile miRNAs; demonstrating that miRNA movement is required for non-cell autonomous action; and characterizing the mechanisms of translocation and genetic pathways that regulate miRNA movement.
Collapse
Affiliation(s)
- Esther Marín-González
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra-Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | |
Collapse
|
49
|
Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 2012; 48:521-31. [PMID: 23063528 DOI: 10.1016/j.molcel.2012.08.032] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/19/2012] [Accepted: 08/27/2012] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a class of regulators of gene expression through posttranscriptional degradation or translational repression in living cells. Increasing evidence points to the important relationship between miRNAs and environmental stress responses, but the regulatory mechanisms in plants are poorly understood. Here, we found that Arabidopsis thaliana intronic miR400 was cotranscribed with its host gene (At1g32583) and downregulated by heat treatment. Intriguingly, an alternative splicing (AS) event that occurred in the intron (306 bp) where MIR400 was located was specifically induced by heat stress. A 100 bp fragment was excised, and the remaining 206 bp intron containing MIR400 transcripts was retained in the host gene. The stress-induced AS event thus resulted in greater accumulation of miR400 primary transcripts and a low level of mature miR400. Together, these results provide the direct evidence that AS acts as a regulatory mechanism linking miRNAs and environmental stress in plants.
Collapse
Affiliation(s)
- Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shao C, Chen M, Meng Y. A reversed framework for the identification of microRNA-target pairs in plants. Brief Bioinform 2012; 14:293-301. [PMID: 22811545 DOI: 10.1093/bib/bbs040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most plant microRNAs (miRNAs) perform their repressive regulation through target cleavages. The resulting slicing sites on the target transcripts could be mapped by sequencing of the 3'-cleavage remnants, called degradome sequencing. The high sequence complementarity between miRNAs and their targets has greatly facilitated the development of the target prediction tools for plant miRNAs. The prediction results were then subjected to degradome sequencing data-based validation, through which numerous miRNA-target interactions have been extracted. However, some drawbacks are unavoidable when using this forward approach. Essentially, a known list of plant miRNAs should be obtained in advance of target prediction and validation. This becomes an obstacle to discover novel miRNAs and their targets. Here, after reviewing the current available algorithms for reverse identification of miRNA-target pairs in plants, a case study was performed by using a newly established framework with adjustable parameters. In this workflow, integration of degradome and ARGONAUTE 1-enriched small RNA sequencing data was recommended to do a relatively comprehensive and reliable search. Besides, several computational algorithms such as BLAST, target plots and RNA secondary structure prediction were used. The results demonstrated the prevalent utility of the reversed approach for uncovering miRNA-target interactions in plants.
Collapse
|