1
|
Manuela D, Du L, Zhang Q, Liao Y, Hu T, Fouracre JP, Xu M. Redundant functions of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors in promoting cauline leaf identity. THE NEW PHYTOLOGIST 2025; 247:719-737. [PMID: 40356221 PMCID: PMC12177290 DOI: 10.1111/nph.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Cauline leaf development represents an intermediate phase between vegetative and reproductive stages. While extensive research has been conducted on the genetic and environmental factors that determine cauline leaf number, less attention has been given to the regulation of their morphology and the establishment of cauline leaf identity. In this study, we report that miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, including SPL2, SPL9, SPL10, SPL11, SPL13, and SPL15, redundantly regulate cauline leaf identity, affecting both cauline leaf shape and the number of leaves on secondary inflorescences. This function is distinct from that of floral meristem identity genes, which affect the number of cauline leaves by promoting floral fate. We further show that the inducers of reproductive development SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and FRUITFUL (FUL) directly bind to and activate SPL9 and SPL15, linking floral induction pathways to the regulation of cauline leaf identity. Additionally, we demonstrate that the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) is co-expressed with miR156-targeted SPLs in cauline leaves and is a direct target of SPL9. Together, this study uncovers a SOC1/FUL-SPL-BRI1 module that governs cauline leaf identity, providing new insights into the regulatory networks that control plant inflorescence architecture.
Collapse
Affiliation(s)
- Darren Manuela
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Liren Du
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Qi Zhang
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Yifei Liao
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Tieqiang Hu
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Jim P. Fouracre
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| | - Mingli Xu
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| |
Collapse
|
2
|
Li D, Wang X, Liu T, Song Y, Song Y, Yu S, Liu X, Wang H, Wang Y, Cui J, Wang L, Zhang D, Zhang H. AtDIVARICATA1 promotes flowering through regulating flowering integrators and GA biosynthesis in Arabidopsis. Int J Biol Macromol 2025; 318:145316. [PMID: 40541872 DOI: 10.1016/j.ijbiomac.2025.145316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/17/2025] [Accepted: 06/15/2025] [Indexed: 06/22/2025]
Abstract
Arabidopsis R-R-type MYB-like transcription factors AtDIV1 and AtDIV2 (DIVARICATAs) act as critical participants in response to salinity stress. However, their functions in flowering transition are unknown. Here, we reported the function of AtDIV1 in flowering regulation. Protein sequence and 3D structure comparison showed that AtDIV1 was highly conserved, and contained two MYB-like DNA binding domains and one typical 'SHAQKYF/Y' motif. Expression pattern analyses exhibited that AtDIV1 was highly expressed at the bolting stage in Arabidopsis. Overexpression of AtDIV1 in Arabidopsis promoted the flowering of transgenic plants, whereas mutation of AtDIV1 postponed the flowering of div1-1 and div1-2 mutants. Transcriptome analyses revealed that a number of plant hormone and flowering associated genes were up- or down-regulated in transgenic plants. ChIP and EMSA analyses demonstrated that AtDIV1 directly bound to the promoter regions of TEM1, SOC1 and GA3ox1. Further growth experiments in AtDIV1 transgenic plants and div1-1 mutant demonstrated that the content of GA in them was respectively increased and decreased, and the promoted and postponed flowering of them could be respectively rescued with the exogenous application of GA3 and GA biosynthesis inhibitor paclobutrazol. Our results provide insights into the regulatory mechanism of AtDIV1 mediated flowering via GA signalling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Dong Li
- The Engineering Research Institute of Agriculture and Forestry, College of Horticulture, Yantai Technology Center of Characteristic Plant Gene Editing & Germplasm Innovation, Ludong University, Yantai 264025, Shandong Province, China.
| | - Xumin Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China
| | - Tiantian Liu
- Xianyang Academy of Agriculture Sciences, Xianyang 712034, Shannxi Province, China
| | - Yaping Song
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China
| | - Yujiao Song
- The Engineering Research Institute of Agriculture and Forestry, College of Horticulture, Yantai Technology Center of Characteristic Plant Gene Editing & Germplasm Innovation, Ludong University, Yantai 264025, Shandong Province, China
| | - Shuhan Yu
- The Engineering Research Institute of Agriculture and Forestry, College of Horticulture, Yantai Technology Center of Characteristic Plant Gene Editing & Germplasm Innovation, Ludong University, Yantai 264025, Shandong Province, China
| | - Xin Liu
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China
| | - Han Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China
| | - Yingjie Wang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China
| | - Jianchao Cui
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, College of Horticulture, Yantai Technology Center of Characteristic Plant Gene Editing & Germplasm Innovation, Ludong University, Yantai 264025, Shandong Province, China.
| | - Da Zhang
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Qinhuangdao 066600, Hebei Province, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, College of Horticulture, Yantai Technology Center of Characteristic Plant Gene Editing & Germplasm Innovation, Ludong University, Yantai 264025, Shandong Province, China; College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi 276000, Shandong Province, China; School of Biological Science and Technology, University of Jinan, 336 Nanxinzhuangxi Road, Jinan 250024, China.
| |
Collapse
|
3
|
Yang D, Chen Y, He Y, Song J, Jiang Y, Yang M, Zheng X, Wang L, Hu H. Transcriptome Analysis Reveals Association of E-Class AmMADS-Box Genes with Petal Malformation in Antirrhinum majus L. Int J Mol Sci 2025; 26:4450. [PMID: 40362686 PMCID: PMC12072684 DOI: 10.3390/ijms26094450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Snapdragon (Antirrhinum majus) serves as a model system for dissecting floral morphogenesis mechanisms. Petal malformation in A. majus impacts ornamental value, but its genetic basis remains poorly understood. We compared transcriptomes of the wild-type (Am11) and a petal-malformed mutant (AmDP2) to identify 2303 differentially expressed genes (DEGs), including E-class MIKC-type MADS-box genes SEP3 (AmMADS25/61/20/26) and SEP2 (AmMADS85). Weighted gene co-expression network (WGCNA), protein-protein interaction (PPI), qRT-PCR and virus-induced gene silencing (VIGS) analyses revealed interactions between SEP2/SEP3 and C/A/B-class MADS-box genes (AG, AP1, AP3), co-regulated MADS transcription factors (MTFs) AGL15 (AmMADS16), and auxin signaling genes (SAUR1, IAA13). qRT-PCR validated upregulation of SEP3 and downregulation of SEP2 in AmDP2. Our results suggest that E-class MADS-box genes are associated with petal malformation through coordinated interactions with hormonal pathways. These findings provide candidate targets for further functional studies in snapdragon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (D.Y.); (Y.C.); (Y.H.); (J.S.); (Y.J.); (M.Y.); (X.Z.); (L.W.)
| |
Collapse
|
4
|
Gao F, Segbo S, Huang X, Zhou P, Ma C, Ma Y, Lin X, Bai Y, Tan W, Coulibaly D, Ouma KO, Iqbal S, Ni Z, Shi T, Gao Z. PmRGL2/PmFRL3-PmSVP Module Regulates Flowering Time in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT, CELL & ENVIRONMENT 2025; 48:3415-3430. [PMID: 39757689 DOI: 10.1111/pce.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Temperate fruit trees rely on environmental and endogenous signals to trigger dormancy release and flowering. However, the knowledge of DELLA protein PmRGL2, a Prunus mume homolog of REPRESSOR OF GA-Like 2 (RGL2), which serves as an important inhibitory factor in gibberellin (gibberellin acid [GA]) signalling, is limited related to on its regulatory effects on dormancy release and flowering. In our study, the protein-protein interaction assays showed an interaction between PmRGL2 and PmFRL3, a Prunus mume homolog of FRIGIDA-LIKE (FRL). The FRL protein regulates flowering induction by binding to chaperone proteins. To understand the transcriptional regulation of PmRGL2 in Prunus mume, in detail's we constructed a ChIP-Seq library at four key stages of flower bud development. Genome-wide analysis screened a MCM1-AGAMOUSDEFICIENS Serum Response Factor box (MADS box) protein for two SHORT VEGETATIVE PHASEs (SVPs). Genetic analysis showed that overexpressing PmSVP in Arabidopsis thaliana reduced the GA content and delayed flowering, whereas PmSVP-like overexpression increased the GA content and promoted flowering. Protein-DNA binding assays revealed that the PmRGL2/PmFRL3 protein complex promoted PmSVP transcription while repressing PmSVP-like transcription, which inhibited the flowering process. As chilling requirements increased, the PmFRL3 protein was degraded. ThePmRGL2/PmFRL3 protein complex is disrupted. With the increase in the GA content within the flower buds, the PmRGL2 protein was degraded in response to GA signalling, and the function of PmSVP-like was released. It dominated flowering, leading to this process in Prunus mume. Therefore, we propose a mechanism by which the PmRGL2/PmFRL3 protein complex responds to GA and low-temperature signalling to regulate PmSVP and PmSVP-like synergistically and thus Prunus mume flowering time.
Collapse
Affiliation(s)
- Feng Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Silas Segbo
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiao Huang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Pengyu Zhou
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chengdong Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yufan Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ximeng Lin
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Laboratory of Forestry Research, Xing'an League Institute of Forestry, Ulanhot, China
| | - Wei Tan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Daouda Coulibaly
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Agricultural Sciences and Techniques-Horticulture, Rural Polytechnic Institute for Training and Applied Research (IPR/IFRA) of Katibougou, Koulikoro, Mali
| | - Kenneth Omondi Ouma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, Egerton, Kenya
| | - Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Horticultural Science, North Florida Research and Education Center, University of Florida/IFAS, Quincy, Florida, USA
| | - Zhaojun Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Meng Q, Gao YN, Cheng H, Liu Y, Yuan LN, Song MR, Li YR, Zhao ZX, Hou XF, Tan XM, Zhang SY, Huang X, Ma YY, Xu ZQ. Molecular mechanism of interaction between SHORT VEGETATIVE PHASE and APETALA1 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109512. [PMID: 39879831 DOI: 10.1016/j.plaphy.2025.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Point mutations were introduced into specific leucine (L) amino acids within the K domain of SHORT VEGETATIVE PHASE (SVP), and their effects on the SVP-AP1 interaction were assessed. Yeast two-hybrid experiments and β-galactosidase activity assays demonstrated that SVP maintained its capacity to interact with APETALA1 (AP1) despite point mutations at the 108th, 116th, 119th, and 127th leucine residues, where leucine was substituted with alanine (A). However, the mutation of the leucine residue at position 124 to alanine abolished the interaction between SVP and AP1 regardless of whether the mutation was singular or combined with others. Pull-down experiments confirmed that the leucine residue at position 124 is particularly critical for the SVP-AP1 interaction. Arabidopsis plants overexpressing 35S::AtSVP-L124A exhibited a delayed flowering phenotype compared to wild-type Col-0 Arabidopsis plants, but showed early-flowering phenotype compared to SVP overexpressing plants. SVP binds to the promoters of AP1, APETALA3 (AP3), PISTILLATA (PI), and SEPALLATA3 (SEP3), as well as to the intron of AGAMOUS (AG). Through the formation of heterodimers with AP1, SVP regulates the expression of B-class and C-class floral homeotic genes, thereby modulating floral organ development. The leucine residue at position 124 of SVP is essential for its interaction with AP1, and 35S::AtSVP-L124A transgenic plants exhibited an extended period of vegetative growth.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ya-Nan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ye Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ling-Na Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Man-Ru Song
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ya-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Zi-Xin Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Shu-Yuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Yu H, Xia L, Zhu J, Xie X, Wei Y, Li X, He X, Luo C. Genome-wide analysis of the MADS-box gene family in mango and ectopic expression of MiMADS77 in Arabidopsis results in early flowering. Gene 2025; 935:149054. [PMID: 39490648 DOI: 10.1016/j.gene.2024.149054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Mango (Mangifera indica L.) is an important tropical fruit, and timely flowering and fruit setting are very important for mango production. The MADS-box gene family is involved in the regulation of flower induction, floral organ specification, and fruit development in plants. The identification and analysis of the MADS-box gene family can lay a foundation for the study of the molecular mechanism of flowering and fruit development in mango. In this study, 119 MiMADS-box genes were identified on the basis of genome and transcriptome data. Phylogenetic analysis revealed that these genes can be divided into two classes. Forty-one type I proteins were further divided into three subfamilies, and seventy-eight type II proteins were further classified into eleven subfamilies. Several pairs of alternative splicing genes were found, especially in the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) subfamily. The MiMADS-box genes were distributed on 18 out of the 20 mango chromosomes. Cis-element analysis revealed many light-, stress-, and hormone-responsive elements in the promoter regions of the mango MiMADS-box genes. Expression pattern analysis revealed that these genes were differentially expressed in multiple tissues in mango. The highly expressed MiMADS77 was subsequently transformed into Arabidopsis, resulting in significant early flowering and abnormal floral organs. Yeast two-hybrid (Y2H) assays revealed that MiMADS77 interacts with several MiMADS-box proteins. In addition, we constructed a preliminary flowering regulatory network of MADS-box genes in mango on the basis of related studies. These results suggest that MiMADS77 genes may be involved in flowering regulation of mango.
Collapse
Affiliation(s)
- Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Liming Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaojie Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Ying Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Xi Li
- Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, Guangxi, China.
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, Guangxi, China.
| |
Collapse
|
7
|
Shankar N, Nath U. Advantage looping: Gene regulatory circuits between microRNAs and their target transcription factors in plants. PLANT PHYSIOLOGY 2024; 196:2304-2319. [PMID: 39230893 DOI: 10.1093/plphys/kiae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The 20 to 24 nucleotide microRNAs (miRNAs) and their target transcription factors (TF) have emerged as key regulators of diverse processes in plants, including organ development and environmental resilience. In several instances, the mature miRNAs degrade the TF-encoding transcripts, while their protein products in turn bind to the promoters of the respective miRNA-encoding genes and regulate their expression, thus forming feedback loops (FBLs) or feedforward loops (FFLs). Computational analysis suggested that such miRNA-TF loops are recurrent motifs in gene regulatory networks (GRNs) in plants as well as animals. In recent years, modeling and experimental studies have suggested that plant miRNA-TF loops in GRNs play critical roles in driving organ development and abiotic stress responses. Here, we discuss the miRNA-TF FBLs and FFLs that have been identified and studied in plants over the past decade. We then provide some insights into the possible roles of such motifs within GRNs. Lastly, we provide perspectives on future directions for dissecting the functions of miRNA-centric GRNs in plants.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
8
|
Dong T, Zhang M, Wu J, Li J, Liu C, Zhang L. Gene and Its Promoter Cloning, and Functional Validation of JmSOC1 Revealed Its Role in Promoting Early Flowering and the Interaction with the JmSVP Protein. Int J Mol Sci 2024; 25:12932. [PMID: 39684642 DOI: 10.3390/ijms252312932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Juglans mandshurica, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a crucial regulator of flower bud development in Arabidopsis thaliana. In this study, we cloned the coding DNA sequence (CDS) of the JmSOC1 gene, revealing a 705 base pair (bp) sequence that encodes a protein of 234 amino acids. The JmSOC1 protein contains a highly conserved MADS-box domain, indicating its role as a transcription factor, and is predominantly localized in the nucleus. The JmSOC1 gene expressed the highest in flower buds. The peak expression level of JmSOC1 during the physiological differentiation phase occurred earlier in male flower buds of protandry (MPD) on April 10th compared to female flower buds of protandry (FPD) on April 14th; similarly, the peak expression in female flower buds of protogyny (FPG) on April 2nd preceded that in male flower buds of protogyny (MPG) on April 14th. This may be the primary reason for the earlier differentiation of the male flowers in protandry individuals and the female flowers in protogyny individuals. Overexpression of JmSOC1 in wild-type A. thaliana resulted in earlier flowering, accompanied by an upregulation of key flowering-related genes such as LEAFY (LFY), APETALA1 (AP1), and FLOWERING LOCUS T (FT). To further explore the function of JmSOC1, a 782 bp promoter sequence of JmSOC1 gene was cloned, which has been verified to have promoter activity by GUS staining. Furthermore, the interaction between the JmSOC1 gene promoter and its upstream regulatory protein JmSVP was verified using a yeast one-hybrid. These results offer valuable insights into the molecular mechanisms underpinning the promotion of early flowering in J. mandshurica and hold promise for laying a theoretical foundation for the flowering regulation network of this species.
Collapse
Affiliation(s)
- Tianyi Dong
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Mengmeng Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Jingwen Wu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Jingze Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Chunping Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
- Key Laboratory of Silviculture of Liaoning Province, Shenyang 110866, China
| | - Lijie Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| |
Collapse
|
9
|
Cao J, Gong Y, Zou M, Li H, Chen S, Ma C. Genome-Wide Identification and Salt Stress Response Analysis of the MADS-box Transcription Factors in Sugar Beet. PHYSIOLOGIA PLANTARUM 2024; 176:e70001. [PMID: 39663814 DOI: 10.1111/ppl.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
The abiotic stress response and plant development are significantly influenced by MADS-box transcription factors. Nonetheless, the functions of the MADS-box genes in sugar beet stress response are very limited. Here, the sugar beet MADS-box transcription factor gene family was analyzed in sugar beet. The entire genome survey yielded 48 MADS-box genes, which were categorized as type I (Mα, Mβ, and Mγ) and type II (MIKC*, Bs, B, AGL15/AGL18, SVP, FLC, ANR1, SOC1, C/D, Bs, AGL13, E, and A). Five pairs of BvMADS-box genes were fragment duplicated, according to a collinear analysis. A total of fifteen conserved motifs were found, with 1-6 motifs found in each BvMADS-box. Most BvMADS-box genes were expressed more when exposed to salt stress. Among them, the salt-responsive gene BvMADS-box38 is located in the nucleus, as indicated by subcellular localization analysis. Protein interaction network analysis indicated that BvMADS-box proteins were mainly involved in the regulation of the plant flowering process, ABA signal transduction, and stress response. The results of BvMADS-box genes will springboard further studies of their detailed biological functions and inform molecular breeding efforts toward improving sugar beet quality, yield and stress tolerance.
Collapse
Affiliation(s)
- Jiahui Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Mingyang Zou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
10
|
Zhou C, Liu H, Wang H, Niu S, El-Kassaby YA, Li W. Deciphering the Role of SVP-Like Genes and Their Key Regulation Networks During Reproductive Cone Development in Pinus tabuliformis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257299 DOI: 10.1111/pce.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Reproductive development plays an essential role in the perpetuation of genetic material and environmental adaptation. In angiosperms, the Short Vegetative Phase (SVP) serves as a flowering repressor, influencing the development of floral organs. In this study, heterologous transformation of Arabidopsis thaliana with SVP-like genes (PtSVL1 and PtSVL2) derived from Pinus tabuliformis significantly impacted stamen formation and pollen fertility, without altering flowering time. Gene co-expression networks revealed that SVP-like and SOC1-like genes function as key coregulatory transcription factors during the initial stages of cone development in P. tabuliformis. Interestingly, the regulatory module of SOC1 regulated by SVP in angiosperms is absent in conifers and conifer SVP-like exercises its function in a form that is physically bound to SOC1-like. Furthermore, combining the yeast one-hybrid scanning with co-expression network analysis, revealed that SPLs and TPSs were the principal downstream target genes of PtSVL1. Notably, the PtSPL16 promoter is positively regulated by PtSVL1, and overexpression of PtSPL16 results in delayed flowering in Arabidopsis, suggesting that the PtSVL1-PtSPL16 module plays a crucial role in regulating reproductive development in conifers. Collectively, these findings enhance our understanding of the roles of SVP-like genes in conifers and the key regulatory networks centred on PtSVL1 during reproductive cone development.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongmei Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Huili Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Bertran Garcia de Olalla E, Cerise M, Rodríguez-Maroto G, Casanova-Ferrer P, Vayssières A, Severing E, López Sampere Y, Wang K, Schäfer S, Formosa-Jordan P, Coupland G. Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis. Nat Commun 2024; 15:6930. [PMID: 39138172 PMCID: PMC11322546 DOI: 10.1038/s41467-024-51341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.
Collapse
Affiliation(s)
- Enric Bertran Garcia de Olalla
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, Lyon, France
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gabriel Rodríguez-Maroto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Casanova-Ferrer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 4, PB, Wageningen, The Netherlands
| | - Yaiza López Sampere
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kang Wang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sabine Schäfer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
12
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
13
|
Huang X, Liu H, Wu F, Wei W, Zeng Z, Xu J, Chen C, Hao Y, Xia R, Liu Y. Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species. MOLECULAR HORTICULTURE 2024; 4:28. [PMID: 39010247 PMCID: PMC11251392 DOI: 10.1186/s43897-024-00104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Many species of Sapindaceae, such as lychee, longan, and rambutan, provide nutritious and delicious fruit. Understanding the molecular genetic mechanisms that underlie the regulation of flowering is essential for securing flower and fruit productivity. Most endogenous and exogenous flowering cues are integrated into the florigen encoded by FLOWERING LOCUS T. However, the regulatory mechanisms of flowering remain poorly understood in Sapindaceae. Here, we identified 60 phosphatidylethanolamine-binding protein-coding genes from six Sapindaceae plants. Gene duplication events led to the emergence of two or more paralogs of the FT gene that have evolved antagonistic functions in Sapindaceae. Among them, the FT1-like genes are functionally conserved and promote flowering, while the FT2-like genes likely serve as repressors that delay flowering. Importantly, we show here that the natural variation at nucleotide position - 1437 of the lychee FT1 promoter determined the binding affinity of the SVP protein (LcSVP9), which was a negative regulator of flowering, resulting in the differential expression of LcFT1, which in turn affected flowering time in lychee. This finding provides a potential molecular marker for breeding lychee. Taken together, our results reveal some crucial aspects of FT gene family genetics that underlie the regulation of flowering in Sapindaceae.
Collapse
Affiliation(s)
- Xing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Hongsen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Fengqi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Wanchun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Jing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Yanwei Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China.
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Hubei Wuhan, 430070, China.
| |
Collapse
|
14
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
15
|
Yu Z, Chen X, Li Y, Shah SHA, Xiao D, Wang J, Hou X, Liu T, Li Y. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. PLANT PHYSIOLOGY 2024; 195:986-1004. [PMID: 38269601 DOI: 10.1093/plphys/kiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
APETALA2/ethylene responsive factors respond to ethylene and participate in many biological and physiological processes, such as plant morphogenesis, stress resistance, and hormone signal transduction. Ethylene responsive factor 070 (BcERF070) is important in flowering. However, the underlying molecular mechanisms of BcERF070 in floral transition in response to ethylene signaling have not been fully characterized. Herein, we explored the function of BcERF070 in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Ethylene treatment induced BcERF070 expression and delayed flowering in Pak-choi. Silencing of BcERF070 induced flowering in Pak-choi. BcERF070 interacted with major latex protein-like 328 (BcMLP328), which forms a complex with helix-loop-helix protein 30 (BcbHLH30) to enhance the transcriptional activity of BcbHLH30 on LEAFY (BcLFY), ultimately promoting flowering. However, BcERF070 impaired the BcMLP328-BcbHLH30 complex activation of LEAFY (BcLFY), ultimately inhibiting flowering in Pak-choi. BcERF070 directly promoted the expression of the flowering inhibitor gene B-box 29 (BcBBX29) and delayed flowering by reducing FLOWERING LOCUS T (BcFT) expression. These results suggest that BcERF070 mediates ethylene-reduced flowering by impairing the BcMLP328-BcbHLH30 complex activation of BcLFY and by directly promoting the gene expression of the flowering inhibition factor BcBBX29 to repress BcFT expression. The findings contribute to understanding the molecular mechanisms underlying floral transition in response to ethylene in plants.
Collapse
Affiliation(s)
- Zhanghong Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Poulet A, Zhao M, Peng Y, Tham F, Jaudal M, Zhang L, van Wolfswinkel JC, Putterill J. Gene-edited Mtsoc1 triple mutant Medicago plants do not flower. FRONTIERS IN PLANT SCIENCE 2024; 15:1357924. [PMID: 38469328 PMCID: PMC10926907 DOI: 10.3389/fpls.2024.1357924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Optimized flowering time is an important trait that ensures successful plant adaptation and crop productivity. SOC1-like genes encode MADS transcription factors, which are known to play important roles in flowering control in many plants. This includes the best-characterized eudicot model Arabidopsis thaliana (Arabidopsis), where SOC1 promotes flowering and functions as a floral integrator gene integrating signals from different flowering-time regulatory pathways. Medicago truncatula (Medicago) is a temperate reference legume with strong genomic and genetic resources used to study flowering pathways in legumes. Interestingly, despite responding to similar floral-inductive cues of extended cold (vernalization) followed by warm long days (VLD), such as in winter annual Arabidopsis, Medicago lacks FLC and CO which are key regulators of flowering in Arabidopsis. Unlike Arabidopsis with one SOC1 gene, multiple gene duplication events have given rise to three MtSOC1 paralogs within the Medicago genus in legumes: one Fabaceae group A SOC1 gene, MtSOC1a, and two tandemly repeated Fabaceae group B SOC1 genes, MtSOC1b and MtSOC1c. Previously, we showed that MtSOC1a has unique functions in floral promotion in Medicago. The Mtsoc1a Tnt1 retroelement insertion single mutant showed moderately delayed flowering in long- and short-day photoperiods, with and without prior vernalization, compared to the wild-type. In contrast, Mtsoc1b Tnt1 single mutants did not have altered flowering time or flower development, indicating that it was redundant in an otherwise wild-type background. Here, we describe the generation of Mtsoc1a Mtsoc1b Mtsoc1c triple mutant lines using CRISPR-Cas9 gene editing. We studied two independent triple mutant lines that segregated plants that did not flower and were bushy under floral inductive VLD. Genotyping indicated that these non-flowering plants were homozygous for the predicted strong mutant alleles of the three MtSOC1 genes. Gene expression analyses using RNA-seq and RT-qPCR indicated that these plants remained vegetative. Overall, the non-flowering triple mutants were dramatically different from the single Mtsoc1a mutant and the Arabidopsis soc1 mutant; implicating multiple MtSOC1 genes in critical overlapping roles in the transition to flowering in Medicago.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, United States
| | - Min Zhao
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yongyan Peng
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - FangFei Tham
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mauren Jaudal
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Lulu Zhang
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Josien C. van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, United States
| | - Joanna Putterill
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Zhang Z, Hu Q, Gao Z, Zhu Y, Yin M, Shang E, Liu G, Liu W, Hu R, Cheng H, Chong X, Guan Z, Fang W, Chen S, Sun B, He Y, Chen F, Jiang J. Flowering repressor CmSVP recruits the TOPLESS corepressor to control flowering in chrysanthemum. PLANT PHYSIOLOGY 2023; 193:2413-2429. [PMID: 37647542 DOI: 10.1093/plphys/kiad476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 09/01/2023]
Abstract
Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.
Collapse
Affiliation(s)
- Zixin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Gao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Yuqing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengru Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Erlei Shang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Gaofeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - RongQian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinran Chong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
18
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
19
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
20
|
Yang C, Liu C, Li S, Zhang Y, Zhang Y, Wang X, Xiang W. The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24098424. [PMID: 37176133 PMCID: PMC10178944 DOI: 10.3390/ijms24098424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Flowering is a crucial stage for plant reproductive success; therefore, the regulation of plant flowering has been widely researched. Although multiple well-defined endogenous and exogenous flowering regulators have been reported, new ones are constantly being discovered. Here, we confirm that a novel plant growth regulator guvermectin (GV) induces early flowering in Arabidopsis. Interestingly, our genetic experiments newly demonstrated that WRKY41 and its homolog WRKY53 were involved in GV-accelerated flowering as positive flowering regulators. Overexpression of WRKY41 or WRKY53 resulted in an early flowering phenotype compared to the wild type (WT). In contrast, the w41/w53 double mutants showed a delay in GV-accelerated flowering. Gene expression analysis showed that flowering regulatory genes SOC1 and LFY were upregulated in GV-treated WT, 35S:WRKY41, and 35S:WRKY53 plants, but both declined in w41/w53 mutants with or without GV treatment. Meanwhile, biochemical assays confirmed that SOC1 and LFY were both direct targets of WRKY41 and WRKY53. Furthermore, the early flowering phenotype of 35S:WRKY41 lines was abolished in the soc1 or lfy background. Together, our results suggest that GV plays a function in promoting flowering, which was co-mediated by WRKY41 and WRKY53 acting as new flowering regulators by directly activating the transcription of SOC1 and LFY in Arabidopsis.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Wensheng Xiang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| |
Collapse
|
21
|
Dong X, Zhang LP, Tang YH, Yu D, Cheng F, Dong YX, Jiang XD, Qian FM, Guo ZH, Hu JY. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. PLANT PHYSIOLOGY 2023; 192:154-169. [PMID: 36721922 PMCID: PMC10152661 DOI: 10.1093/plphys/kiad058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 05/03/2023]
Abstract
Flowering transition is tightly coordinated by complex gene regulatory networks, in which AGAMOUS-LIKE 16 (AGL16) plays important roles. Here, we identified the molecular function and binding properties of AGL16 and demonstrated its partial dependency on the SUPPRESSOR OF CONSTANS 1 (SOC1) function in regulating flowering. AGL16 bound to promoters of more than 2,000 genes via CArG-box motifs with high similarity to that of SOC1 in Arabidopsis (Arabidopsis thaliana). Approximately 70 flowering genes involved in multiple pathways were potential targets of AGL16. AGL16 formed a protein complex with SOC1 and shared a common set of targets. Intriguingly, only a limited number of genes were differentially expressed in the agl16-1 loss-of-function mutant. However, in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter bound by AGL16. Corroborating these findings, AGL16 repressed the flowering time more strongly in soc1-2 than in the Col-0 background. These data identify a partial inter-dependency between AGL16 and SOC1 in regulating genome-wide gene expression and flowering time, while AGL16 provides a feedback regulation on SOC1 expression. Our study sheds light on the complex background dependency of AGL16 in flowering regulation, thus providing additional insights into the molecular coordination of development and environmental adaptation.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Hua Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fang Cheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Xin Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fu-Ming Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| |
Collapse
|
22
|
Meng Q, Hou XF, Cheng H, Tan XM, Pu ZQ, Xu ZQ. IiSVP of Isatis indigotica can reduce the size and repress the development of floral organs. PLANT CELL REPORTS 2023; 42:561-574. [PMID: 36609767 DOI: 10.1007/s00299-023-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
IiSVP of Isatis indigotica was cloned and its expression pattern was analyzed. Ectopic expression of IiSVP in Arabidopsis could delay the flowering time and reduce the size of the floral organs. SVP (SHORT VEGETATIVE PHASE) can negatively regulate the flowering time of Arabidopsis. In the present work, the cDNA of IiSVP, an orthologous gene of AtSVP in I. indigotica, was cloned. IiSVP was highly expressed in rosette leaves, inflorescences and petals, but weakly expressed in sepals, pistils and young silicles. The results of subcellular localization showed that IiSVP was localized in nucleus. Bioinformatics analysis indicated that this protein was a MADS-box transcription factor. Constitutive expression of IiSVP in Arabidopsis thaliana resulted in decrease of the number of petals and stamens, and curly sepals were formed. In IiSVP transgenic Arabidopsis plants, obvious phenotypic variations in flowers could be observed, especially the size of the floral organs. In comparison with the wild-type plants, the size of petals, stamens and pistil in IiSVP transgenic Arabidopsis plants was decreased significantly. In some transgenic plants, the petals were wrapped by the sepals. Yeast two-hybrid experiments showed that IiSVP could form higher-order complexes with other MADS proteins, including IiSEP1, IiSEP3, IiAP1 and IiSEP4, but could not interact with IiSEP2. In this work, it was proved that the flowering process and the floral development in Arabidopsis could be affected by IiSVP from I. indigotica Fortune.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
23
|
Zhao J, Doody E, Poethig RS. Reproductive competence is regulated independently of vegetative phase change in Arabidopsis thaliana. Curr Biol 2023; 33:487-497.e2. [PMID: 36634678 PMCID: PMC9905307 DOI: 10.1016/j.cub.2022.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
A long-standing question in plant biology is how the acquisition of reproductive competence is related to the juvenile-to-adult vegetative transition. We addressed this question by examining the expression pattern and mutant phenotypes of two families of miRNAs-miR156/miR157 and miR172-that operate in the same pathway and play important roles in these processes. The phenotype of mutants deficient for miR156/miR157, miR172, and all three miRNAs demonstrated that miR156/miR157 regulate the timing of vegetative phase change but have only a minor effect on reproductive competence, whereas miR172 has a minor role in vegetative phase change but has a major effect on reproductive competence. MIR172B is directly downstream of the miR156/SPL module, but temporal variation in the level of miR156 in the shoot apex and leaf-to-leaf variation in miR156 expression in young primordia was not associated with a change in the level of miR172 in these tissues. Additionally, although miR172 levels increase from leaf to leaf later in leaf development, this variation is largely insensitive to changes in the abundance of miR156. Our results indicate that the acquisition of reproductive competence in Arabidopsis is regulated by miR172 through a mechanism that is independent of the vegetative phase change pathway.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Ye LX, Luo MM, Wang Z, Bai FX, Luo X, Gao L, Peng J, Chen QH, Zhang L. Genome-wide analysis of MADS-box gene family in kiwifruit (Actinidia chinensis var. chinensis) and their potential role in floral sex differentiation. Front Genet 2022; 13:1043178. [PMID: 36468015 PMCID: PMC9714460 DOI: 10.3389/fgene.2022.1043178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kiwifruit (Actinidia chinensis Planch.) is a functionally dioecious plant, which displays diverse morphology in male and female flowers. MADS-box is an ancient and huge gene family that plays a key role in plant floral organ differentiation. In this study, we have identified 89 MADS-box genes from A. chinensis Red 5 genome. These genes are distributed on 26 chromosomes and are classified into type I (21 genes) and type II (68 genes). Overall, type II AcMADS-box genes have more complex structures than type I with more exons, protein domains, and motifs, indicating that type II genes may have more diverse functions. Gene duplication analysis showed that most collinearity occurred in type II AcMADS-box genes, which was consistent with a large number of type II genes. Analysis of cis-acting elements in promoters showed that AcMADS-box genes are mainly associated with light and phytohormone responsiveness. The expression profile of AcMADS-box genes in different tissues showed that most genes were highly expressed in flowers. Further, the qRT-PCR analysis of the floral organ ABCDE model-related genes in male and female flowers revealed that AcMADS4, AcMADS56, and AcMADS70 were significantly expressed in female flowers. It indicated that those genes may play an important role in the sex differentiation of kiwifruit. This work provided a comprehensive analysis of the AcMADS-box genes and may help facilitate our understanding of the sex differentiation regulatory mechanism in kiwifruit.
Collapse
Affiliation(s)
- Li-Xia Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min-Min Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Zhi Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fu-Xi Bai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuan Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Gao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jue Peng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qing-Hong Chen
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| | - Lei Zhang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| |
Collapse
|
25
|
Li X, Liao J, Bai H, Bei J, Li K, Luo M, Shen W, Yang C, Gao C. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6589-6599. [PMID: 35852462 DOI: 10.1093/jxb/erac298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a highly conserved, self-digestion process that is essential for plant adaptations to various environmental stresses. Although the core components of autophagy in plants have been well established, the molecular basis for its transcriptional regulation remains to be fully characterized. In this study, we demonstrate that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS-box family transcription factor that determines flowering transition in Arabidopsis, functions as a transcriptional repressor of autophagy. EMSAs, ChIP-qPCR assays, and dual-luciferase receptor assays showed that SOC1 can bind to the promoters of ATG4b, ATG7, and ATG18c via the conserved CArG box. qRT-PCR analysis showed that the three ATG genes ATG4b, ATG7, and ATG18c were up-regulated in the soc1-2 mutant. In line with this, the mutant also displayed enhanced autophagy activity, as revealed by increased autophagosome formation and elevated autophagic flux compared with the wild type. More importantly, SOC1 negatively affected the tolerance of plants to long-term carbon starvation, and this process requires a functional autophagy pathway. Finally, we found that SOC1 was repressed upon carbon starvation at both the transcriptional and protein levels. Overall, our study not only uncovers an important transcriptional mechanism that contributes to the regulation of plant autophagy in response to nutrient starvation, but also highlights novel cellular functions of the flowering integrator SOC1.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jieying Bei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
26
|
Liang Q, Chen L, Yang X, Yang H, Liu S, Kou K, Fan L, Zhang Z, Duan Z, Yuan Y, Liang S, Liu Y, Lu X, Zhou G, Zhang M, Kong F, Tian Z. Natural variation of Dt2 determines branching in soybean. Nat Commun 2022; 13:6429. [PMID: 36307423 PMCID: PMC9616897 DOI: 10.1038/s41467-022-34153-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/16/2022] [Indexed: 12/25/2022] Open
Abstract
Shoot branching is fundamentally important in determining soybean yield. Here, through genome-wide association study, we identify one predominant association locus on chromosome 18 that confers soybean branch number in the natural population. Further analyses determine that Dt2 is the corresponding gene and the natural variations in Dt2 result in significant differential transcriptional levels between the two major haplotypes. Functional characterization reveals that Dt2 interacts with GmAgl22 and GmSoc1a to physically bind to the promoters of GmAp1a and GmAp1d and to activate their transcription. Population genetic investigation show that the genetic differentiation of Dt2 display significant geographic structure. Our study provides a predominant gene for soybean branch number and may facilitate the breeding of high-yield soybean varieties.
Collapse
Affiliation(s)
- Qianjin Liang
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Liyu Chen
- grid.411863.90000 0001 0067 3588Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xia Yang
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Hui Yang
- grid.411863.90000 0001 0067 3588Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shulin Liu
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kun Kou
- grid.411863.90000 0001 0067 3588Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lei Fan
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifang Zhang
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zongbiao Duan
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Shan Liang
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xingtong Lu
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Guoan Zhou
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Kong
- grid.411863.90000 0001 0067 3588Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhixi Tian
- grid.418558.50000 0004 0596 2989State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Ahmad S, Yang K, Chen G, Huang J, Hao Y, Tu S, Zhou Y, Zhao K, Chen J, Shi X, Lan S, Liu Z, Peng D. Transcriptome mining of hormonal and floral integrators in the leafless flowers of three cymbidium orchids. FRONTIERS IN PLANT SCIENCE 2022; 13:1043099. [PMID: 36311107 PMCID: PMC9608508 DOI: 10.3389/fpls.2022.1043099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Flowering is the most studied ornamental trait in orchids where long vegetative phase may span up to three years. Cymbidium orchids produce beautiful flowers with astonishing shapes and pleasant scent. However, an unusually long vegetative phase is a major drawback to their ornamental value. We observed that under certain culture conditions, three cymbidium species (Cymbidium ensifolium, C. goeringii and C. sinense) skipped vegetative growth phase and directly flowered within six months, that could be a breakthrough for future orchids with limited vegetative growth. Hormonal and floral regulators could be the key factors arresting vegetative phase. Therefore, transcriptomic analyses were performed for leafless flowers and normal vegetative leaves to ascertain differentially expressed genes (DEGs) related to hormones (auxin, cytokinin, gibberellin, abscisic acid and ethylene), floral integrators and MADS-box genes. A significant difference of cytokinin and floral regulators was observed among three species as compared to other hormones. The MADS-box genes were significantly expressed in the leafless flowers of C. sinense as compared to other species. Among the key floral regulators, CONSTANS and AGAMOUS-like genes showed the most differential expression in the leafless flowers as compared to leaves where the expression was negligible. However, CONSTANS also showed downregulation. Auxin efflux carriers were mainly downregulated in the leafless flowers of C. ensifolium and C. sinense, while they were upregulated in C. goeringii. Moreover, gibberellin and cytokinin genes were also downregulated in C. ensifolium and C. sinense flowers, while they were upregulated in C. goeringii, suggesting that species may vary in their responses. The data mining thus, outsources the valuable information to direct future research on orchids at industrial levels.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoling Shi
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Genomewide Identification and Characterization of the Genes Involved in the Flowering of Cotton. Int J Mol Sci 2022; 23:ijms23147940. [PMID: 35887288 PMCID: PMC9323069 DOI: 10.3390/ijms23147940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Flowering is a prerequisite for flowering plants to complete reproduction, and flowering time has an important effect on the high and stable yields of crops. However, there are limited reports on flowering-related genes at the genomic level in cotton. In this study, genomewide analysis of the evolutionary relationship of flowering-related genes in different cotton species shows that the numbers of flowering-related genes in the genomes of tetraploid cotton species Gossypium hirsutum and Gossypium barbadense were similar, and that these numbers were approximately twice as much as the number in diploid cotton species Gossypium arboretum. The classification of flowering-related genes shows that most of them belong to the photoperiod and circadian clock flowering pathway. The distribution of flowering-related genes on the chromosomes of the At and Dt subgenomes was similar, with no subgenomic preference detected. In addition, most of the flowering-related core genes in Arabidopsis thaliana had homologs in the cotton genome, but the copy numbers and expression patterns were disparate; moreover, flowering-related genes underwent purifying selection throughout the evolutionary and selection processes. Although the differentiation and reorganization of many key genes of the cotton flowering regulatory network occurred throughout the evolutionary and selection processes, most of them, especially those involved in the important flowering regulatory networks, have been relatively conserved and preferentially selected.
Collapse
|
29
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
30
|
Yang J, Xu Y, Wang J, Gao S, Huang Y, Hung FY, Li T, Li Q, Yue L, Wu K, Yang S. The chromatin remodelling ATPase BRAHMA interacts with GATA-family transcription factor GNC to regulate flowering time in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:835-847. [PMID: 34545936 DOI: 10.1093/jxb/erab430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 05/13/2023]
Abstract
BRAHMA (BRM) is the ATPase of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex, which is indispensable for transcriptional inhibition and activation, associated with vegetative and reproductive development in Arabidopsis thaliana. Here, we show that BRM directly binds to the chromatin of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which integrates multiple flowering signals to regulate floral transition, leading to flowering. In addition, genetic and molecular analysis showed that BRM interacts with GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM INVOLVED), a GATA transcription factor that represses flowering by directly repressing SOC1 expression. Furthermore, BRM is recruited by GNC to directly bind to the chromatin of SOC1. The transcript level of SOC1 is elevated in brm-3, gnc, and brm-3/gnc mutants, which is associated with increased histone H3 lysine 4 tri-methylation (H3K4Me3) but decreased DNA methylation. Taken together, our results indicate that BRM associates with GNC to regulate SOC1 expression and flowering time.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sujuan Gao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yisui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tao Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qing Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agrobiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
31
|
Ahmad S, Chen J, Chen G, Huang J, Hao Y, Shi X, Liu Y, Tu S, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Transcriptional Proposition for Uniquely Developed Protocorm Flowering in Three Orchid Species: Resources for Innovative Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:942591. [PMID: 35837448 PMCID: PMC9275812 DOI: 10.3389/fpls.2022.942591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 05/04/2023]
Abstract
During orchid seed culture, seeds germinate as protocorms, and protocorms normally develop into plant with leaves and roots. Orchids require many years of vegetative development for flowering. However, under a certain combination of growth cultures, we observed that protocorms can directly flower without leaves and roots. Therefore, we performed comparative transcriptome analysis to identify the different transcriptional regulators of two types of protocorms of Cymbidium ensifolium, Cymbidium sinense, and Cymbidium goeringii. Zinc finger, MYB, AP2, and bHLH were the most abundant transcription factor (TF) families in the transcriptome. Weighted gene coexpression network analysis (WGCNA) was performed to identify hub genes related to leaf and flower development. The key hubs included SPL6, SVP, SEP2, KNOX1, AP2, OFP1, COL12, MYB13, MYB36, MYB59, bHLH086, and ARF7. The hub genes were further validated through statistical tools to propose the roles of key TFs. Therefore, this study initiates to answer that why there is no leaf initiation and root development and how can protocorm bypass the vegetative phase to flower? The outcomes can direct future research on short-span flowering in orchids through protocorms.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoling Shi
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuying Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
32
|
Wang X, Liu Z, Sun S, Wu J, Li R, Wang H, Cui X. SISTER OF TM3 activates FRUITFULL1 to regulate inflorescence branching in tomato. HORTICULTURE RESEARCH 2021; 8:251. [PMID: 34848688 PMCID: PMC8633288 DOI: 10.1038/s41438-021-00677-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 05/19/2023]
Abstract
Selection for favorable inflorescence architecture to improve yield is one of the crucial targets in crop breeding. Different tomato varieties require distinct inflorescence-branching structures to enhance productivity. While a few important genes for tomato inflorescence-branching development have been identified, the regulatory mechanism underlying inflorescence branching is still unclear. Here, we confirmed that SISTER OF TM3 (STM3), a homolog of Arabidopsis SOC1, is a major positive regulatory factor of tomato inflorescence architecture by map-based cloning. High expression levels of STM3 underlie the highly inflorescence-branching phenotype in ST024. STM3 is expressed in both vegetative and reproductive meristematic tissues and in leaf primordia and leaves, indicative of its function in flowering time and inflorescence-branching development. Transcriptome analysis shows that several floral development-related genes are affected by STM3 mutation. Among them, FRUITFULL1 (FUL1) is downregulated in stm3cr mutants, and its promoter is bound by STM3 by ChIP-qPCR analysis. EMSA and dual-luciferase reporter assays further confirmed that STM3 could directly bind the promoter region to activate FUL1 expression. Mutation of FUL1 could partially restore inflorescence-branching phenotypes caused by high STM3 expression in ST024. Our findings provide insights into the molecular and genetic mechanisms underlying inflorescence development in tomato.
Collapse
Affiliation(s)
- Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
33
|
Barrero-Gil J, Mouriz A, Piqueras R, Salinas J, Jarillo JA, Piñeiro M. A MRG-operated chromatin switch at SOC1 attenuates abiotic stress responses during the floral transition. PLANT PHYSIOLOGY 2021; 187:462-471. [PMID: 34618146 PMCID: PMC8418395 DOI: 10.1093/plphys/kiab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Plants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed. Here, we reveal a molecular mechanism of stress response attenuation during the onset of flowering in Arabidopsis (Arabidopsis thaliana). We show that Arabidopsis MORF-RELATED GENE (MRG) proteins, components of the NuA4 histone acetyltransferase complex that bind trimethylated-lysine 36 in histone H3 (H3K36me3), function as a chromatin switch on the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to coordinate flowering initiation with plant responsiveness to hostile environments. MRG proteins are required to activate SOC1 expression during flowering induction by promoting histone H4 acetylation. In turn, SOC1 represses a broad array of genes that mediate abiotic stress responses. We propose that during the transition from vegetative to reproductive growth, the MRG-SOC1 module constitutes a central hub in a mechanism that tunes down stress responses to enhance the reproductive success and plant fitness at the expense of costly efforts for adaptation to challenging environments.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Raquel Piqueras
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - José A. Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
34
|
Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, Gregis V, Gimenez C, Prunet N, Farcot E, Kater MM, Bradley D, Madueño F, Godin C, Parcy F. Cauliflower fractal forms arise from perturbations of floral gene networks. Science 2021; 373:192-197. [PMID: 34244409 DOI: 10.1126/science.abg5999] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/03/2021] [Indexed: 11/02/2022]
Abstract
Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Marie Le Masson
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Carlos Gimenez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nathanaël Prunet
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Desmond Bradley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France.
| | - Francois Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France.
| |
Collapse
|
35
|
Wang S, Guo T, Shen Y, Wang Z, Kang J, Zhang J, Yi F, Yang Q, Long R. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:154-165. [PMID: 33845331 DOI: 10.1016/j.plaphy.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
Related to ABI3/VP1 (RAV) transcription factors play important roles in regulating plant growth and stress tolerance, which have been studied in many plant species, but have remained largely unidentified in legumes. To functionally characterize RAV in legumes, MtRAV3 from legume model plant Medicago truncatula was isolated and its function was investigated by overexpressing MtRAV3 in M. truncatula. Expression analysis demonstrated that MtRAV3 was markedly induced by NaCl and polyethylene glycol (PEG). MtRAV3 overexpression enhanced tolerance of transgenic M. truncatula to mannitol, drought and salt stresses, and induced the expression of adversity-related genes, including MtWRKY76, MtMYB61, cold-acclimation specific protein 31 (MtCAS31), alternative oxidase 1 (MtAOX1) and ethylene response factor 1 (MtERF1). There were lower relative electrolyte leakage and higher chlorophyll content of leaves in the MtRAV3 overexpression plants than in wild type plants under both salt and drought stress. MtRAV3 overexpression M. truncatula were featured by some phenotypes of dwarfing, late flowering, more branches, smaller flower and leaf organs. Further investigations showed that the expression levels of DWARF14 (MtD14), CAROTENOID CLEAVAGE DIOXYGENASES 7 (MtCCD7) and GA3-oxidase1 (MtGA3ox1), which related to dwarf and branch phenotype, were obviously reduced, as well as MtGA3ox1' (MTR_1g011580), GA20-oxidase1 (MtGA20ox1), MtGA20ox1' (MTR_1g102070) and GA20-oxidase2 (MtGA20ox2) involved in gibberellins (GAs) pathway. Overall, our results revealed that MtRAV3 exerted an important role in adversity response and plant growth, was a multifunctional gene in M. truncatula, which provided reference for genetic improvement of alfalfa (Medicago sativa).
Collapse
Affiliation(s)
- Shumin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Shen
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaju Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
36
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
37
|
Transcriptional Cascade in the Regulation of Flowering in the Bamboo Orchid Arundina graminifolia. Biomolecules 2021; 11:biom11060771. [PMID: 34063940 PMCID: PMC8224086 DOI: 10.3390/biom11060771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Flowering in orchids is the most important horticultural trait regulated by multiple mechanisms. Arundina graminifolia flowers throughout the year unlike other orchids with a narrow flowering span. However, little is known of the genetic regulation of this peculiar flowering pattern. This study identifies a number of transcription factor (TF) families in five stages of flower development and four tissue types through RNA-seq transcriptome. About 700 DEGs were annotated to the transcription factor category and classified into 35 TF families, which were involved in multiple signaling pathways. The most abundant TF family was bHLH, followed by MYB and WRKY. Some important members of the bHLH, WRKY, MYB, TCP, and MADS-box families were found to regulate the flowering genes at transcriptional levels. Particularly, the TFs WRKY34 and ERF12 possibly respond to vernalization and photoperiod signaling, MYB108, RR9, VP1, and bHLH49 regulate hormonal balance, and CCA1 may control the circadian pathway. MADS-box TFs including MADS6, 14, 16, AGL5, and SEP may be important regulators of flowering in A. graminifolia. Therefore, this study provides a theoretical basis for understanding the molecular mechanism of flowering in A. graminifolia.
Collapse
|
38
|
Jung H, Lee A, Jo SH, Park HJ, Jung WY, Kim HS, Lee HJ, Jeong SG, Kim YS, Cho HS. Nitrogen Signaling Genes and SOC1 Determine the Flowering Time in a Reciprocal Negative Feedback Loop in Chinese Cabbage ( Brassica rapa L.) Based on CRISPR/Cas9-Mediated Mutagenesis of Multiple BrSOC1 Homologs. Int J Mol Sci 2021; 22:ijms22094631. [PMID: 33924895 PMCID: PMC8124421 DOI: 10.3390/ijms22094631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Precise flowering timing is critical for the plant life cycle. Here, we examined the molecular mechanisms and regulatory network associated with flowering in Chinese cabbage (Brassica rapa L.) by comparative transcriptome profiling of two Chinese cabbage inbred lines, “4004” (early bolting) and “50” (late bolting). RNA-Seq and quantitative reverse transcription PCR (qPCR) analyses showed that two positive nitric oxide (NO) signaling regulator genes, nitrite reductase (BrNIR) and nitrate reductase (BrNIA), were up-regulated in line “50” with or without vernalization. In agreement with the transcription analysis, the shoots in line “50” had substantially higher nitrogen levels than those in “4004”. Upon vernalization, the flowering repressor gene Circadian 1 (BrCIR1) was significantly up-regulated in line “50”, whereas the flowering enhancer genes named SUPPRESSOR OF OVEREXPRESSION OF CONSTANCE 1 homologs (BrSOC1s) were substantially up-regulated in line “4004”. CRISPR/Cas9-mediated mutagenesis in Chinese cabbage demonstrated that the BrSOC1-1/1-2/1-3 genes were involved in late flowering, and their expression was mutually exclusive with that of the nitrogen signaling genes. Thus, we identified two flowering mechanisms in Chinese cabbage: a reciprocal negative feedback loop between nitrogen signaling genes (BrNIA1 and BrNIR1) and BrSOC1s to control flowering time and positive feedback control of the expression of BrSOC1s.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
| | - Won Yong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
- Department of Functional Genomics, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seon-Geum Jeong
- Department of Biotechnology, NongWoo Bio, Anseong 17558, Korea;
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong 17558, Korea;
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-31-652-5526 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (A.L.); (S.H.J.); (H.J.P.); (W.Y.J.); (H.-S.K.); (H.-J.L.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-31-652-5526 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| |
Collapse
|
39
|
Chen WH, Jiang ZY, Hsu HF, Yang CH. Silencing of FOREVER YOUNG FLOWER-Like Genes from Phalaenopsis Orchids Promotes Flower Senescence and Abscission. PLANT & CELL PHYSIOLOGY 2021; 62:111-124. [PMID: 33237274 DOI: 10.1093/pcp/pcaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Ectopic expression of FOREVER YOUNG FLOWER (FYF) delays floral senescence and abscission in transgenic Arabidopsis. To analyze the FYF function in Phalaenopsis orchids, two FYF-like genes (PaFYF1/2) were identified. PaFYF1/2 were highly expressed in young Phalaenopsis flowers, and their expression decreased significantly afterward until flower senescence. This pattern was strongly correlated with the process of flower senescence and revealed that PaFYF1/2 function to suppress senescence/abscission during early flower development. Interestingly, in flowers, PaFYF1 was consistently expressed less in petals than in lips/sepals, whereas PaFYF2 was expressed relatively evenly in all flower organs. This difference suggests a regulatory modification of the functions of PaFYF1 and PaFYF2 during Phalaenopsis flower evolution. Delayed flower senescence and abscission, which were unaffected by ethylene treatment, were observed in 35S::PaFYF1/2 and 35S::PaFYF1/2 + SRDX transgenic Arabidopsis plants due to the downregulation of the ethylene signaling and abscission-associated genes EDF1-4, IDA and BOP1/2. These results suggest a possible repressor role for Phalaenopsis PaFYF1/2 in controlling floral senescence/abscission by suppressing ethylene signaling and abscission-associated genes. To further validate the function of PaFYF1/2, PaFYF1/2-VIGS (virus-induced gene silencing) Phalaenopsis were generated and analyzed. Promotion of senescence and abscission was observed in PaFYF1/2-VIGS Phalaenopsis flowers by the upregulation of PeEDF1/2, PeSAG39 and PeBOP1/2 expression, the early occurrence of greening according to their increased chlorophyll content and the reduction in water content in flower organs. Our results support that PaFYF1/2 function as transcriptional repressors to prohibit flower senescence and abscission in Phalaenopsis.
Collapse
Affiliation(s)
- Wei-Han Chen
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zhi-Yi Jiang
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsing-Fun Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
40
|
Madrid E, Chandler JW, Coupland G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4-14. [PMID: 32369593 PMCID: PMC7816851 DOI: 10.1093/jxb/eraa216] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
Responses to environmental cues synchronize reproduction of higher plants to the changing seasons. The genetic basis of these responses has been intensively studied in the Brassicaceae. The MADS-domain transcription factor FLOWERING LOCUS C (FLC) plays a central role in the regulatory network that controls flowering of Arabidopsis thaliana in response to seasonal cues. FLC blocks flowering until its transcription is stably repressed by extended exposure to low temperatures in autumn or winter and, therefore, FLC activity is assumed to limit flowering to spring. Recent reviews describe the complex epigenetic mechanisms responsible for FLC repression in cold. We focus on the gene regulatory networks controlled by FLC and how they influence floral transition. Genome-wide approaches determined the in vivo target genes of FLC and identified those whose transcription changes during vernalization or in flc mutants. We describe how studying FLC targets such as FLOWERING LOCUS T, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15, and TARGET OF FLC AND SVP 1 can explain different flowering behaviours in response to vernalization and other environmental cues, and help define mechanisms by which FLC represses gene transcription. Elucidating the gene regulatory networks controlled by FLC provides access to the developmental and physiological mechanisms that regulate floral transition.
Collapse
Affiliation(s)
- Eva Madrid
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - John W Chandler
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
- Correspondence:
| |
Collapse
|
41
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
42
|
Liu J, Ren M, Chen H, Wu S, Yan H, Jalal A, Wang C. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. THE PLANT GENOME 2020; 13:e20053. [PMID: 33217197 DOI: 10.1002/tpg2.20053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Shanghai Forestry Station, Shanghai, 200072, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huijun Yan
- Yunnan Academy of Agricultural Sciences, Flower Research Institute, Kunming, Yunnan, 650200, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
43
|
Sobral R, Silva HG, Laranjeira S, Magalhães J, Andrade L, Alhinho AT, Costa MMR. Unisexual flower initiation in the monoecious Quercus suber L.: a molecular approach. TREE PHYSIOLOGY 2020; 40:1260-1276. [PMID: 32365206 DOI: 10.1093/treephys/tpaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Several plant species display a temporal separation of the male and female flower organ development to enhance outbreeding; however, little is known regarding the genetic mechanisms controlling this temporal separation. Quercus suber is a monoecious oak tree with accentuated protandry: in late winter, unisexual male flowers emerge adjacent to the swollen buds, whereas unisexual female flowers emerge in the axils of newly formed leaves formed during spring (4-8 weeks after male flowering). Here, a phylogenetic profiling has led to the identification of cork oak homologs of key floral regulatory genes. The role of these cork oak homologs during flower development was identified with functional studies in Arabidopsis thaliana. The expression profile throughout the year of flower regulators (inducers and repressors), in leaves and buds, suggests that the development of male and female flowers may be preceded by separated induction events. Female flowers are most likely induced during the vegetative flush occurring in spring, whereas male flowers may be induced in early summer. Male flowers stay enclosed within the pre-dormant buds, but complete their development before the vegetative flush of the following year, displaying a long period of anthesis that spans the dormant period. Our results portray a genetic mechanism that may explain similar reproductive habits in other monoecious tree species.
Collapse
Affiliation(s)
- Rómulo Sobral
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena Gomes Silva
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sara Laranjeira
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Magalhães
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Andrade
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Teresa Alhinho
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Manuela Ribeiro Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Zhou FY, Yu Q, Zhang Y, Yao CC, Han YJ. StMADS11 Subfamily Gene PfMADS16 From Polypogon fugax Regulates Early Flowering and Seed Development. FRONTIERS IN PLANT SCIENCE 2020; 11:525. [PMID: 32457775 PMCID: PMC7225323 DOI: 10.3389/fpls.2020.00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The evolution of herbicide resistance in weedy plants leads to various adaptation traits including flowering time and seed germination. In our previous studies, we found an association of the early flowering phenotype with the ACCase inhibitor herbicide resistance genotype in a population of Polypogon fugax. MADS-box transcription factors are known to play pivotal roles in regulating plant flowering time. In this study, a SHORT VEGETATIVE PHASE (SVP)-like gene, belonging to the StMADS11 subfamily in the MADS-box family, was cloned from the early flowering P. fugax population (referred to as PfMADS16) and resistant to the herbicide clodinafop- propargyl. Overexpression of the SVP-like gene PfMADS16 in Arabidopsis thaliana resulted in early flowering and seed abortion. This is consistent with the phenotypic characters of resistant P. fugax plants, but contrary to the conventional role of SVP-like genes that usually suppress flowering. In addition, down regulation of the seed formation gene AtKTN1 in flowers of PfMADS16 transgenic Arabidopsis plants indicates that PfMADS16 may be indirectly associated with seed viability. Furthermore, one protein (PfMADS2) from the APETALA1 (AP1) subfamily interacting with PfMADS16 in P. fugax was identified with relevance to flowering time regulation. These results suggest that the PfMADS16 gene is an early flowering regulation gene associated with seed formation and viability in resistant P. fugax population. Our study provides potential application of PfMADS16 for integrated weed management (such as genetic-based weed control strategies) aiming to reduce the soil weed seedbank.
Collapse
Affiliation(s)
- Feng-Yan Zhou
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Yong Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chuan-Chun Yao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yun-Jing Han
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
45
|
Karami O, Rahimi A, Khan M, Bemer M, Hazarika RR, Mak P, Compier M, van Noort V, Offringa R. A suppressor of axillary meristem maturation promotes longevity in flowering plants. NATURE PLANTS 2020; 6:368-376. [PMID: 32284551 DOI: 10.1038/s41477-020-0637-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 03/11/2020] [Indexed: 05/27/2023]
Abstract
Post-embryonic development and longevity of flowering plants are, for a large part, determined by the activity and maturation state of stem cell niches formed in the axils of leaves, the so-called axillary meristems (AMs)1,2. The genes that are associated with AM maturation and underlie the differences between monocarpic (reproduce once and die) annual and the longer-lived polycarpic (reproduce more than once) perennial plants are still largely unknown. Here we identify a new role for the Arabidopsis AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) gene as a suppressor of AM maturation. Loss of AHL15 function accelerates AM maturation, whereas ectopic expression of AHL15 suppresses AM maturation and promotes longevity in monocarpic Arabidopsis and tobacco. Accordingly, in Arabidopsis grown under longevity-promoting short-day conditions, or in polycarpic Arabidopsis lyrata, expression of AHL15 is upregulated in AMs. Together, our results indicate that AHL15 and other AHL clade-A genes play an important role, directly downstream of flowering genes (SOC1, FUL) and upstream of the flowering-promoting hormone gibberellic acid, in suppressing AM maturation and extending the plant's lifespan.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Majid Khan
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Marian Bemer
- Laboratory of Molecular Biology and B.U. Bioscience, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Patrick Mak
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Sanquin Plasma Products BV, Department of Product Development, Amsterdam, the Netherlands
| | - Monique Compier
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Rijk Zwaan, De Lier, the Netherlands
| | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
- Bioinformatics and Genomics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
46
|
Sri T, Gupta B, Tyagi S, Singh A. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Mol Phylogenet Evol 2020; 147:106777. [PMID: 32126279 DOI: 10.1016/j.ympev.2020.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
Evolution of Brassica genome post-polyploidization reveals asymmetrical genome fractionation and copy number variation. Herein, we describe the impact of promoter divergence among SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) homeologs on expression and function in Brassica spp. SOC1, a regulated floral pathway integrator, is conserved as 3 redundant homeologs in diploid Brassicas. Even with high sequence identity within coding regions (92.8-100%), the spatio-temporal expression patterns of 9 SOC1 homologs in B. juncea and B. nigra indicates regulatory divergence. While LF and MF2 SOC1 homeologs are upregulated during floral transition, MF1 is barely expressed. Also, MF2 homeolog levels do not decline post-flowering, unlike LF. To investigate the underlying source of divergence, we analyzed the sequence and phylogeny of all reported (22) and isolated (21) upstream regions of Brassica SOC1. Full length upstream regions (4712-19189 bp) reveal 5 ubiquitously conserved ancestral Blocks, harboring binding sites of 18 TFs (TFBSs) characterized in Arabidopsis thaliana. The orthologs of these TFBSs are differentially conserved among Brassica SOC1 homeologs, imparting expression divergence. No crucial TFBSs are exclusively lost from LF_SOC1 promoter, while MF1_SOC1 has lost NF-Y binding site crucial for SOC1 activation by CONSTANS. MF2_SOC1 homeologs have lost important TFBSs (SEP3, AP1 and SMZ), responsible for SOC1 repression post-flowering. BjuAALF_SOC1 promoter (proximal 2 kb) shows ubiquitous reporter expression in B. juncea cv. Varuna transgenics, while BjuAAMF1_SOC1 promoter shows absence of reporter expression, validating the impact of TFBS divergence. Conservation of the original primary protein sequence is discovered in B. rapa homeologs (46) of 18 TFs. Co-regulation pattern of these TFs appeared similar for B. rapa LF and MF2 SOC1 homeologs; MF1 shows significant variation. Strong regulatory association is recorded for AP1, AP2, SEP3, FLC and CONSTANS/NF-Y, highlighting their importance in homeolog-specific SOC1 regulation. Correlation of B. juncea AP1, AP2 and FLC expression with SOC1 homeologs also complies with the TFBS differences. We thus conclude that redundant SOC1 loci contribute differentially to cumulative expression of SOC1 due to divergent selection of ancestral TFBSs.
Collapse
Affiliation(s)
- Tanu Sri
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Bharat Gupta
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| |
Collapse
|
47
|
Haghighi R, Sayed Tabatabaei BE, Maibody SAMM, Talebi M, Molina RV, Nebauer SG, Renau-Morata B. A flowering inhibitor of the temperature-dependent pathway in Crocus sativus L. Mol Biol Rep 2020; 47:2171-2179. [PMID: 32065325 DOI: 10.1007/s11033-020-05316-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Saffron is the world highest-priced spice because its production requires intensive hand labour. Reduce saffron production costs require containerised plant production under controlled conditions and expand the flowering period. Controlling the flowering process and identify the factors involved in saffron flowering is crucial to introduce technical improvements. The research carried out so far in saffron has allowed an extensive knowledge of the influence of temperature on the flower induction, but the molecular mechanisms controlling flowering induction processes are largely unknown. The present study is the first conducted to isolate and characterize a regulator gene of saffron floral induction the Short Vegetative Phase (SVP) gene, which represses the floral initiation genes in the temperature response pathway, which involved in saffron flower induction. The results obtained from both phylogenetic analysis and T-coffee alignment confirms that the isolated sequence belongs to the SVP gene clades of MADS-box gene family. Gene expression analysis in different developmental stages revealed the highest expression of SVP transcript (CsSVP) during the dormancy and the vegetative stages, but decrease when flower development initiated and it was the least in late September when flower primordia are developed. Furthermore, its expression increased in the apical bud when corms are storage at 9-10 ºC, thus inhibiting flower induction. Additionally, comparison of the CsSVP transcript in apical buds from big and small corms, differing in their flowering capacity, indicates that the CsSVP transcript is present only in vegetative buds. Taken together, these results suggested inhibitory role of the SVP gene.
Collapse
Affiliation(s)
- Roya Haghighi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | | | | | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - R V Molina
- Departamento de Producciόn Vegetal, Universitat Politècnica de València, Camino de vera s.n, 46022, Valencia, Spain
| | - Sergio G Nebauer
- Departamento de Producciόn Vegetal, Universitat Politècnica de València, Camino de vera s.n, 46022, Valencia, Spain
| | - Begoña Renau-Morata
- Departamento de Producciόn Vegetal, Universitat Politècnica de València, Camino de vera s.n, 46022, Valencia, Spain
| |
Collapse
|
48
|
Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, Jiang J. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol 2020; 21:24. [PMID: 32014062 PMCID: PMC6996174 DOI: 10.1186/s13059-020-1927-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Regulation of transcription depends on interactions between cis-regulatory elements (CREs) and regulatory proteins. Active CREs are imbedded in open chromatin that are accessible to nucleases. Several techniques, including DNase-seq, which is based on nuclease DNase I, and ATAC-seq, which is based on transposase Tn5, have been widely used to identify genomic regions associated with open chromatin. These techniques have played a key role in dissecting the regulatory networks in gene expression in both animal and plant species. RESULTS We develop a technique, named MNase hypersensitivity sequencing (MH-seq), to identify genomic regions associated with open chromatin in Arabidopsis thaliana. Genomic regions enriched with MH-seq reads are referred as MNase hypersensitive sites (MHSs). MHSs overlap with the majority (~ 90%) of the open chromatin identified previously by DNase-seq and ATAC-seq. Surprisingly, 22% MHSs are not covered by DNase-seq or ATAC-seq reads, which are referred to "specific MHSs" (sMHSs). sMHSs tend to be located away from promoters, and a substantial portion of sMHSs are derived from transposable elements. Most interestingly, genomic regions containing sMHSs are enriched with epigenetic marks, including H3K27me3 and DNA methylation. In addition, sMHSs show a number of distinct characteristics including association with transcriptional repressors. Thus, sMHSs span distinct classes of open chromatin that may not be accessible to DNase I or Tn5. We hypothesize that the small size of the MNase enzyme relative to DNase I or Tn5 allows its access to relatively more condensed chromatin domains. CONCLUSION MNase can be used to identify open chromatin regions that are not accessible to DNase I or Tn5. Thus, MH-seq provides an important tool to identify and catalog all classes of open chromatin in plants.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China.
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA.
| |
Collapse
|
49
|
Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS, Cruz TMD, Jang S, Chiba Y, Seo M, Mettler-Altmann T, Huettel B, Coupland G. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:53. [PMID: 32013867 PMCID: PMC6998834 DOI: 10.1186/s12870-020-2266-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Floral transition initiates reproductive development of plants and occurs in response to environmental and endogenous signals. In Arabidopsis thaliana, this process is accelerated by several environmental cues, including exposure to long days. The photoperiod-dependent promotion of flowering involves the transcriptional induction of FLOWERING LOCUS T (FT) in the phloem of the leaf. FT encodes a mobile protein that is transported from the leaves to the shoot apical meristem, where it forms part of a regulatory complex that induces flowering. Whether FT also has biological functions in leaves of wild-type plants remains unclear. RESULTS In order to address this issue, we first studied the leaf transcriptomic changes associated with FT overexpression in the companion cells of the phloem. We found that FT induces the transcription of SWEET10, which encodes a bidirectional sucrose transporter, specifically in the leaf veins. Moreover, SWEET10 is transcriptionally activated by long photoperiods, and this activation depends on FT and one of its earliest target genes SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1). The ectopic expression of SWEET10 causes early flowering and leads to higher levels of transcription of flowering-time related genes in the shoot apex. CONCLUSIONS Collectively, our results suggest that the FT-signaling pathway activates the transcription of a sucrose uptake/efflux carrier during floral transition, indicating that it alters the metabolism of flowering plants as well as reprogramming the transcription of floral regulators in the shoot meristem.
Collapse
Affiliation(s)
- Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: UMR AGAP, Univ. Montpellier, INRAE, CIRAD, INSAAE, Montpellier, France
| | - Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Naveen Kalluri
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Virginia Fernández
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Vítor S. Falavigna
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Tiago M. D. Cruz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: World Vegetable Center Korea Office (WKO), 100 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jellabuk-do 55365 Republic of Korea
| | - Yasutaka Chiba
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Tabea Mettler-Altmann
- Cluster of Excellence on Plant Sciences and Institute of Plant Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| |
Collapse
|
50
|
Paffendorf BAM, Qassrawi R, Meys AM, Trimborn L, Schrader A. TRANSPARENT TESTA GLABRA 1 participates in flowering time regulation in Arabidopsis thaliana. PeerJ 2020; 8:e8303. [PMID: 31998554 PMCID: PMC6977477 DOI: 10.7717/peerj.8303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Pleiotropic regulatory factors mediate concerted responses of the plant’s trait network to endogenous and exogenous cues. TRANSPARENT TESTA GLABRA 1 (TTG1) is such a factor that has been predominantly described as a regulator of early developmental traits. Although its closest homologs LIGHT-REGULATED WD1 (LWD1) and LWD2 affect photoperiodic flowering, a role of TTG1 in flowering time regulation has not been reported. Here we reveal that TTG1 is a regulator of flowering time in Arabidopsis thaliana and changes transcript levels of different targets within the flowering time regulatory pathway. TTG1 mutants flower early and TTG1 overexpression lines flower late at long-day conditions. Consistently, TTG1 can suppress the transcript levels of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO1 and can act as an activator of circadian clock components. Moreover, TTG1 might form feedback loops at the protein level. The TTG1 protein interacts with PSEUDO RESPONSE REGULATOR (PRR)s and basic HELIX-LOOP-HELIX 92 (bHLH92) in yeast. In planta, the respective pairs exhibit interesting patterns of localization including a recruitment of TTG1 by PRR5 to subnuclear foci. This mechanism proposes additional layers of regulation by TTG1 and might aid to specify the function of bHLH92. Within another branch of the pathway, TTG1 can elevate FLOWERING LOCUS C (FLC) transcript levels. FLC mediates signals from the vernalization, ambient temperature and autonomous pathway and the circadian clock is pivotal for the plant to synchronize with diurnal cycles of environmental stimuli like light and temperature. Our results suggest an unexpected positioning of TTG1 upstream of FLC and upstream of the circadian clock. In this light, this points to an adaptive value of the role of TTG1 in respect to flowering time regulation.
Collapse
Affiliation(s)
| | - Rawan Qassrawi
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany
| | - Andrea M Meys
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany
| | - Laura Trimborn
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany
| | - Andrea Schrader
- Botanical Institute, Department of Biology, University of Cologne, Cologne, Germany.,RWTH Aachen University, Institute for Biology I, Aachen, Germany
| |
Collapse
|