1
|
Zhang H, Li F. Structural determinants in the miRNA/miRNA* duplex and the DCL1 PAZ domain for precise and efficient plant miRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:109-122. [PMID: 39139021 DOI: 10.1111/tpj.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The accessory proteins Hyponastic-like 1 (HYL1) and Serrated (SE) enhance the precise and efficient processing of miRNAs by Dicer-like 1 (DCL1), which is important for proper miRNA function. However, other factors determining the precision and efficiency of miRNA biogenesis are not well-known. Here, we found that an asymmetric bulge (AB) at the 3' end of miR-5p (produced from the 5' arm of the pre-miRNA) reduced the precision of the second cleavage, whereas an AB at other sites of miR-5p mainly affected the accumulation level of miR-5p in transient expression in Nicotiana benthamiana. In contrast, many ABs in miR-3p (produced from the 3' arm of the pre-miRNA) impose strong negative impact on the processing precision and the accumulation level of miR-5p in N. benthamiana. Arabidopsis DCL1/SE/HYL1 complex-mediated miRNA processing was reconstituted in Saccharomyces cerevisiae to further investigate AB-mediated interference with DCL1 processing. With this system, the positional effect of AB on miRNA processing was tested. The results showed that ABs on the middle of miR-5p have less of an impact on DCL1 cleavage efficiency and precision, whereas those on miR-3p or near the ends of miR-5p strongly reduce DCL1 cleavage activity, precision or both. Studies using the yeast miRNA processing system and transgenic Arabidopsis also revealed the importance of the interaction between the 2-nt 3' overhang of pre-miRNA and the 3' overhang binding pocket (3'BP) on the precision of the second cleavage reaction for many endogenous miRNAs. These findings provide new insights into the mechanism of miRNA biogenesis.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- College of Horticulture, Fujian Agricultural & Forestry University, Fuzhou, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Kumar D, Venkadesan S, Prabha R, Begam S, Dutta B, Mishra DC, Chaturvedi KK, Jha GK, Solanke AU, Sevanthi AM. RiceMetaSys: Drought-miR, a one-stop solution for drought responsive miRNAs-mRNA module in rice. Database (Oxford) 2024; 2024:baae076. [PMID: 39167719 PMCID: PMC11338179 DOI: 10.1093/database/baae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
MicroRNAs are key players involved in stress responses in plants and reports are available on the role of miRNAs in drought stress response in rice. This work reports the development of a database, RiceMetaSys: Drought-miR, based on the meta-analysis of publicly available sRNA datasets. From 28 drought stress-specific sRNA datasets, we identified 216 drought-responsive miRNAs (DRMs). The major features of the database include genotype-, tissue- and miRNA ID-specific search options and comparison of genotypes to identify common miRNAs. Co-localization of the DRMs with the known quantitative trait loci (QTLs), i.e., meta-QTL regions governing drought tolerance in rice pertaining to different drought adaptive traits, narrowed down this to 37 promising DRMs. To identify the high confidence target genes of DRMs under drought stress, degradome datasets and web resource on drought-responsive genes (RiceMetaSys: DRG) were used. Out of the 216 unique DRMs, only 193 had targets with high stringent parameters. Out of the 1081 target genes identified by Degradome datasets, 730 showed differential expression under drought stress in at least one accession. To retrieve complete information on the target genes, the database has been linked with RiceMetaSys: DRG. Further, we updated the RiceMetaSys: DRGv1 developed earlier with the addition of DRGs identified from RNA-seq datasets from five rice genotypes. We also identified 759 putative novel miRNAs and their target genes employing stringent criteria. Novel miRNA search has all the search options of known miRNAs and additionally, it gives information on their in silico validation features. Simple sequence repeat markers for both the miRNAs and their target genes have also been designed and made available in the database. Network analysis of the target genes identified 60 hub genes which primarily act through abscisic acid pathway and jasmonic acid pathway. Co-localization of the hub genes with the meta-QTL regions governing drought tolerance narrowed down this to 16 most promising DRGs. Database URL: http://14.139.229.201/RiceMetaSys_miRNA Updated database of RiceMetaSys URL: http://14.139.229.201/RiceMetaSysA/Drought/.
Collapse
Affiliation(s)
- Deepesh Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | | | - Ratna Prabha
- AKMU, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shbana Begam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Bipratip Dutta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | |
Collapse
|
3
|
Wang H, Yu R, Zhu Q, Tian Z, Li F. A highly sensitive biotin-based probe for small RNA northern blot and its application in dissecting miRNA function in pepper. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:263-276. [PMID: 38078656 DOI: 10.1111/tpj.16585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 04/02/2024]
Abstract
Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.
Collapse
Affiliation(s)
- Hongzheng Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruimin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
4
|
Xu P, Zhang W, Wang X, Zhu Y, Liang W, He Y, Yu X. Multiomics analysis reveals a link between Brassica-specific miR1885 and rapeseed tolerance to low temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3405-3419. [PMID: 37564020 DOI: 10.1111/pce.14690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Brassica crops include various edible vegetable and plant oil crops, and their production is limited by low temperature beyond their tolerant capability. The key regulators of low-temperature resistance in Brassica remain largely unexplored. To identify posttranscriptional regulators of plant response to low temperature, we performed small RNA profiling, and found that 16 known miRNAs responded to cold treatment in Brassica rapa. The cold response of seven of those miRNAs were further confirmed by qRT-PCR and/or northern blot analyses. In parallel, a genome-wide association study of 220 accessions of Brassica napus identified four candidate MIRNA genes, all of which were cold-responsive, at the loci associated with low-temperature resistance. Specifically, these large-scale data analyses revealed a link between miR1885 and the plant response to low temperature in both B. rapa and B. napus. Using 5' rapid amplification of cDNA ends approach, we validated that miR1885 can cleave its putative target gene transcripts, Bn.TIR.A09 and Bn.TNL.A03, in B. napus. Furthermore, overexpression of miR1885 in Semiwinter type B. napus decreased the mRNA abundance of Bn.TIR.A09 and Bn.TNL.A03 and resulted in increased sensitivity to low temperature. Knocking down of miR1885 in Spring type B. napus led to increased mRNA abundance of its targets and improved rapeseed tolerance to low temperature. Together, our results suggested that the loci of miR1885 and its targets could be potential candidates for the molecular breeding of low temperature-tolerant Spring type Brassica crops.
Collapse
Affiliation(s)
- Pengfei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
6
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
7
|
Zhang Q, Wang J, Zhang X, Deng Y, Li F. A Conserved, Serine-Rich Protein Plays Opposite Roles in N-Mediated Immunity against TMV and N-Triggered Cell Death. Viruses 2022; 15:26. [PMID: 36680066 PMCID: PMC9865399 DOI: 10.3390/v15010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Plant nucleotide-binding, leucine-rich, repeat-containing proteins (NLRs) play important roles in plant immunity. NLR expression and function are tightly regulated by multiple mechanisms. In this study, a conserved serine/arginine-rich protein (SR protein) was identified through the yeast one-hybrid screening of a tobacco cDNA library using DNA fragments from the N gene, an NLR that confers immunity to tobacco mosaic virus (TMV). This SR protein showed an interaction with a 3' genomic regulatory sequence (GRS) and has a potential role in regulating the alternative splicing of N. Thus, it was named SR regulator for N, abbreviated SR4N. Further study showed that SR4N plays a positive role in N-mediated cell death but a negative role in N protein accumulation. SR4N also promotes multiple virus replications in co-expression experiments, and this enhancement may not function through RNA silencing suppression, as it did not enhance 35S-GFP expression in co-infiltration experiments. Bioinformatic and molecular studies revealed that SR4N belongs to the SR2Z subtype of the SR protein family, which was conserved in both dicots and monocots, and its roles in repressing viral immunity and triggering cell death were also conserved. Our study revealed new roles for SR2Z family proteins in plant immunity against viruses.
Collapse
Affiliation(s)
| | | | | | | | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Tomato MicroRNAs and Their Functions. Int J Mol Sci 2022; 23:ijms231911979. [PMID: 36233279 PMCID: PMC9569937 DOI: 10.3390/ijms231911979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) define an essential class of non-coding small RNAs that function as posttranscriptional modulators of gene expression. They are coded by MIR genes, several hundreds of which exist in the genomes of Arabidopsis and rice model plants. The functional analysis of Arabidopsis and rice miRNAs indicate that their miRNAs regulate a wide range of processes including development, reproduction, metabolism, and stress. Tomato serves as a major model crop for the study of fleshy fruit development and ripening but until recently, information on the identity of its MIR genes and their coded miRNAs was limited and occasionally contradictory. As a result, the majority of tomato miRNAs remained uncharacterized. Recently, a comprehensive annotation of tomato MIR genes has been carried out by several labs and us. In this review, we curate and organize the resulting partially overlapping MIR annotations into an exhaustive and non-redundant atlas of tomato MIR genes. There are 538 candidate and validated MIR genes in the atlas, of which, 169, 18, and 351 code for highly conserved, Solanaceae-specific, and tomato-specific miRNAs, respectively. Furthermore, a critical review of functional studies on tomato miRNAs is presented, highlighting validated and possible functions, creating a useful resource for future tomato miRNA research.
Collapse
|
9
|
Jyothsna S, Alagu M. Role of phasiRNAs in plant-pathogen interactions: molecular perspectives and bioinformatics tools. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:947-961. [PMID: 35722509 PMCID: PMC9203634 DOI: 10.1007/s12298-022-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/01/2022] [Accepted: 05/18/2022] [Indexed: 05/03/2023]
Abstract
The genome of an organism is regulated in concert with the organized action of various genetic regulators at different hierarchical levels. Small non-coding RNAs are one of these regulators, among which microRNAs (miRNAs), a distinguished sRNA group with decisive functions in the development, growth and stress-responsive activities of both plants as well as animals, are keenly explored over a good number of years. Recent studies in plants revealed that apart from the silencing activity exhibited by miRNAs on their targets, miRNAs of specific size and structural features can direct the phasing pattern of their target loci to form phased secondary small interfering RNAs (phasiRNAs). These trigger-miRNAs were identified to target both coding and long non-coding RNAs that act as potent phasiRNA precursors or PHAS loci. The phasiRNAs produced thereby exhibit a role in enhancing further downstream regulation either on their own precursors or on those transcripts that are distinct from their genetic source of origin. Hence, these tiny regulators can stimulate an elaborative cascade of interacting RNA networks via cis and trans-regulatory mechanisms. Our review focuses on the comprehensive understanding of phasiRNAs and their trigger miRNAs, by giving much emphasis on their role in the regulation of plant defense responses, together with a summary of the computational tools available for the prediction of the same.
Collapse
Affiliation(s)
- S. Jyothsna
- Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| |
Collapse
|
10
|
Abstract
With the increasing understanding of fundamentals of gene silencing pathways in plants, various tools and techniques for downregulating the expression of a target gene have been developed across multiple plant species. This chapter provides an insight into the molecular mechanisms of gene silencing and highlights the advancements in various gene silencing approaches. The prominent aspects of different gene silencing methods, their advantages and disadvantages have been discussed. A succinct discussion on the newly emerged microRNA-based technologies like microRNA-induced gene silencing (MIGS) and microRNA-mediated virus-induced gene silencing (MIR-VIGS) are also presented. We have also discussed the gene-editing system like CRISPR-Cas. The prominent bottlenecks in gene silencing methods are the off-target effects and lack of universal applicability. However, the tremendous growth in understanding of this field reflects the potentials for improvements in the currently available approaches and the development of new widely applicable methods for easy, fast, and efficient functional characterization of plant genes.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, USA
| | | |
Collapse
|
11
|
Abstract
In this era of big data, sets of methodologies and strategies are designed to extract knowledge from huge volumes of data. However, the cost of where and how to get this information accurately and quickly is extremely important, given the diversity of genomes and the different ways of representing that information. Among the huge set of information and relationships that the genome carries, there are sequences called miRNAs (microRNAs). These sequences were described in the 1990s and are mainly involved in mechanisms of regulation and gene expression. Having this in mind, this chapter focuses on exploring the available literature and providing useful and practical guidance on the miRNA database and tools topic. For that, we organized and present this text in two ways: (a) the update reviews and articles, which best summarize and discuss the theme; and (b) our update investigation on miRNA literature and portals about databases and tools. Finally, we present the main challenge and a possible solution to improve resources and tools.
Collapse
Affiliation(s)
- Tharcísio Soares de Amorim
- Department of Computer Science and Bioinformatics and Pattern Recognition Group, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Daniel Longhi Fernandes Pedro
- Department of Computer Science and Bioinformatics and Pattern Recognition Group, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science and Bioinformatics and Pattern Recognition Group, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil.
| |
Collapse
|
12
|
Computational Methods and Online Resources for Identification of piRNA-Related Molecules. Interdiscip Sci 2021; 13:176-191. [PMID: 33886096 DOI: 10.1007/s12539-021-00428-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
piRNAs are a class of small non-coding RNA molecules, which interact with the PIWI family and have many important and diverse biological functions. The present review is aimed to provide guidelines and contribute to piRNA research. We focused on the four types of identification models on piRNA-related molecules, including piRNA, piRNA cluster, piRNA target, and disease-related piRNA. We evaluated the types of tools for the identification of piRNAs based on five aspects: datasets, features, classifiers, performance, and usability. We found the precision of 2lpiRNApred was the highest in datasets of model organisms, piRNN had a better performance of datasets of non-model organisms, and 2L-piRNA had the fastest recognition speed of all tools. In addition, we presented an overview of piRNA databases. The databases were divided into six categories: basic annotation, comprehensive annotation, isoform, cluster, target, and disease. We found that piRNA data of non-model organisms, piRNA target data, and piRNA-disease-associated data should be strengthened. Our review might assist researchers in selecting appropriate tools or datasets for their studies, reveal potential problems and shed light on future bioinformatics studies.
Collapse
|
13
|
Vivek AT, Kumar S. Computational methods for annotation of plant regulatory non-coding RNAs using RNA-seq. Brief Bioinform 2020; 22:6041165. [PMID: 33333550 DOI: 10.1093/bib/bbaa322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.
Collapse
Affiliation(s)
- A T Vivek
- National Institute of Plant Genome Research in New Delhi, India
| | - Shailesh Kumar
- National Institute of Plant Genome Research in New Delhi
| |
Collapse
|
14
|
Ma L, Mu J, Grierson D, Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Shi K, Wang Q, Zuo J. Noncoding RNAs: functional regulatory factors in tomato fruit ripening. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1753-1762. [PMID: 32211918 DOI: 10.1007/s00122-020-03582-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Tomato has emerged as the model system for investigations into the regulation of fleshy-fruit ripening and senescence, and the ripening process involving the coordinated regulation at the gene/chromatin/epigenetic, transcriptional, post-transcriptional and protein levels. Noncoding RNAs play important roles in fruit ripening as important transcriptional and post-transcriptional regulatory factors. In this review, we systematically summarize the recent advances in the regulation of tomato fruit ripening involved in ethylene biosynthesis and signal transduction, fruit pigment accumulation, fruit flavor and aroma, fruit texture by noncoding RNAs and their coordinate regulatory network model were set up and also suggest future directions for the functional regulations of noncoding RNAs on tomato fruit ripening.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
15
|
Morgado L, Johannes F. Computational tools for plant small RNA detection and categorization. Brief Bioinform 2020; 20:1181-1192. [PMID: 29059285 PMCID: PMC6781577 DOI: 10.1093/bib/bbx136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/09/2017] [Indexed: 01/06/2023] Open
Abstract
Small RNAs (sRNAs) are important short-length molecules with regulatory functions essential for plant development and plasticity. High-throughput sequencing of total sRNA populations has revealed that the largest share of sRNA remains uncategorized. To better understand the role of sRNA-mediated cellular regulation, it is necessary to create accurate and comprehensive catalogues of sRNA and their sequence features, a task that currently relies on nontrivial bioinformatic approaches. Although a large number of computational tools have been developed to predict features of sRNA sequences, these tools are mostly dedicated to microRNAs and none integrates the functionalities necessary to describe units from all sRNA pathways thus far discovered in plants. Here, we review the different classes of sRNA found in plants and describe available bioinformatics tools that can help in their detection and categorization.
Collapse
Affiliation(s)
- Lionel Morgado
- Corresponding author: Lionel Morgado, Groningen Bioinformatics Centre, University of Groningen, Nijenborgh 25 7, 9747 AG Groningen, The Netherlands. Tel.: +31 685 585 827; E-mail:
| | | |
Collapse
|
16
|
Zhang R, Huang S, Li S, Song G, Li Y, Li W, Li J, Gao J, Gu T, Li D, Zhang S, Li G. Evolution of PHAS loci in the young spike of Allohexaploid wheat. BMC Genomics 2020; 21:200. [PMID: 32131726 PMCID: PMC7057497 DOI: 10.1186/s12864-020-6582-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PhasiRNAs (phased secondary siRNAs) play important regulatory roles in the development processes and biotic or abiotic stresses in plants. Some of phasiRNAs involve in the reproductive development in grasses, which include two categories, 21-nt (nucleotide) and 24-nt phasiRNAs. They are triggered by miR2118 and miR2275 respectively, in premeiotic and meiotic anthers of rice, maize and other grass species. Wheat (Triticum aestivum) with three closely related subgenomes (subA, subB and subD), is a model of allopolyploid in plants. Knowledge about the role of phasiRNAs in the inflorescence development of wheat is absent until now, and the evolution of PHAS loci in polyploid plants is also unavailable. RESULTS Using 261 small RNA expression datasets from various tissues, a batch of PHAS (phasiRNA precursors) loci were identified in the young spike of wheat, most of which were regulated by miR2118 and miR2275 in their target site regions. Dissection of PHAS and their trigger miRNAs among the diploid (AA and DD), tetraploid (AABB) and hexaploid (AABBDD) genomes of Triticum indicated that distribution of PHAS loci were dominant randomly in local chromosomes, while miR2118 was dominant only in the subB genome. The diversity of PHAS loci in the three subgenomes of wheat and their progenitor genomes (AA, DD and AABB) suggested that they originated or diverged at least before the occurrence of the tetraploid AABB genome. The positive correlation between the PHAS loci or the trigger miRNAs and the ploidy of genome indicated the expansion of genome was the major drive force for the increase of PHAS loci and their trigger miRNAs in Triticum. In addition, the expression profiles of the PHAS transcripts suggested they responded to abiotic stresses such as cold stress in wheat. CONCLUSIONS Altogether, non-coding phasiRNAs are conserved transcriptional regulators that display quick plasticity in Triticum genome. They may be involved in reproductive development and abiotic stress in wheat. It could be referred to molecular research on male reproductive development in Triticum.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| | - Siyuan Huang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Guoqi Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Yulian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Jie Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Tiantian Gu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Dandan Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Shujuan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| |
Collapse
|
17
|
Abstract
Next-generation sequencing has opened up new avenues for the identification of microRNAs (miRNAs) and their corresponding roles in abiotic and biotic stress responses. Recently, a plethora of evidence suggests a canonical action of miRNA-mRNA interactions to regulate plant systems biology at the posttranscriptional level, thus leading to the gain or loss of genetic adaptation in plants. In this chapter, we present a detailed protocol for the identification of miRNA targets using six different prediction tools.
Collapse
|
18
|
Yu Y, Zhang Y, Chen X, Chen Y. Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annu Rev Cell Dev Biol 2019; 35:407-431. [PMID: 31403819 DOI: 10.1146/annurev-cellbio-100818-125218] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.
Collapse
Affiliation(s)
- Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xuemei Chen
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
19
|
de Felippes FF. Gene Regulation Mediated by microRNA-Triggered Secondary Small RNAs in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E112. [PMID: 31035467 PMCID: PMC6572396 DOI: 10.3390/plants8050112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/18/2023]
Abstract
In plants, proper development and response to abiotic and biotic stimuli requires an orchestrated regulation of gene expression. Small RNAs (sRNAs) are key molecules involved in this process, leading to downregulation of their target genes. Two main classes of sRNAs exist, the small interfering RNAs (siRNAs) and microRNAs (miRNAs). The role of the latter class in plant development and physiology is well known, with many examples of how miRNAs directly impact the expression of genes in cells where they are produced, with dramatic consequences to the life of the plant. However, there is an aspect of miRNA biology that is still poorly understood. In some cases, miRNA targeting can lead to the production of secondary siRNAs from its target. These siRNAs, which display a characteristic phased production pattern, can act in cis, reinforcing the initial silencing signal set by the triggering miRNA, or in trans, affecting genes that are unrelated to the initial target. In this review, the mechanisms and implications of this process in the gene regulation mediated by miRNAs will be discussed. This work will also explore techniques for gene silencing in plants that are based on this unique pathway.
Collapse
|
20
|
The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3-GENES GENOMES GENETICS 2019; 9:769-787. [PMID: 30647106 PMCID: PMC6404619 DOI: 10.1534/g3.118.200805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.
Collapse
|
21
|
Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci U S A 2019; 116:2755-2760. [PMID: 30679269 PMCID: PMC6377479 DOI: 10.1073/pnas.1814380116] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Plants, like animals, have complex disease resistance systems in which receptors interact directly or indirectly with effectors of disease produced by pests and pathogens. To minimize the fitness cost of these systems to the plant, there are miRNAs that target the mRNAs of a family of receptor proteins required for disease resistance. Target site mimics of these miRNAs confer enhanced quantitative resistance in tomato against an oomycete and a bacterium. These findings are consistent with a role of the receptor proteins in quantitative disease resistance and show how blocking these miRNAs could be a useful approach in crop protection. Nucleotide binding site leucine-rich repeat (NLR) proteins of the plant innate immune system are negatively regulated by the miR482/2118 family miRNAs that are in a distinct 22-nt class of miRNAs with a double mode of action. First, they cleave the target RNA, as with the canonical 21-nt miRNAs, and second, they trigger secondary siRNA production using the target RNA as a template. Here, we address the extent to which the miR482/2118 family affects expression of NLR mRNAs and disease resistance. We show that structural differences of miR482/2118 family members in tomato (Solanum lycopersicum) are functionally significant. The predicted target of the miR482 subfamily is a conserved motif in multiple NLR mRNAs, whereas for miR2118b, it is a noncoding RNA target formed by rearrangement of several different NLR genes. From RNA sequencing and degradome data in lines expressing short tandem target mimic (STTM) RNAs of miR482/2118, we confirm the different targets of these miRNAs. The effect on NLR mRNA accumulation is slight, but nevertheless, the tomato STTM lines display enhanced resistance to infection with the oomycete and bacterial pathogens. These data implicate an RNA cascade of miRNAs and secondary siRNAs in the regulation of NLR RNAs and show that the encoded NLR proteins have a role in quantitative disease resistance in addition to dominant gene resistance that has been well characterized elsewhere. We also illustrate the use of STTM RNA in a biotechnological approach for enhancing quantitative disease resistance in highly bred cultivars.
Collapse
|
22
|
Armenta-Medina A, Gillmor CS. An Introduction to Methods for Discovery and Functional Analysis of MicroRNAs in Plants. Methods Mol Biol 2019; 1932:1-14. [PMID: 30701488 DOI: 10.1007/978-1-4939-9042-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MicroRNAs play important roles in posttranscriptional regulation of plant development, metabolism, and abiotic stress responses. The recent generation of massive amounts of small RNA sequence data, along with development of bioinformatic tools to identify miRNAs and their mRNA targets, has led to an explosion of newly identified putative miRNAs in plants. Genome editing techniques like CRISPR-Cas9 will allow us to study the biological role of these potential novel miRNAs by efficiently targeting both the miRNA and its mRNA target. In this chapter, we review bioinformatic tools and experimental methods for the identification and functional characterization of miRNAs and their target mRNAs in plants.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico.
| |
Collapse
|
23
|
Lu Y, Feng Z, Liu X, Bian L, Xie H, Zhang C, Mysore KS, Liang J. MiR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC PLANT BIOLOGY 2018; 18:261. [PMID: 30373525 PMCID: PMC6206659 DOI: 10.1186/s12870-018-1488-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plants have evolved excellent ability of flexibly regulating the growth of organs to adapt to changing environment, for example, the modulation of lateral root development in response to environmental stresses. Despite of fundamental discovery that some microRNAs are involved in this process, the molecular mechanisms of how these microRNAs work together are still largely unknown. RESULTS Here we show that miR390 induced by auxin promotes lateral root growth in rice. However, this promotion can be suppressed by miR393, which is induced by various stresses and ABA (Abscisic Acid). Results that miR393 responded to ABA stronger and earlier than other stresses implied that ABA likely is authentic factor for inducing miR393. The transgenic lines respectively over-expressing miR393 and OsTAS3a (Oryza sativa Trans-Acting Short RNA precursor 3a) displayed opposite phenotypes in lateral root growth. MiR390 was found to be dominantly expressed at lateral root primordia and roots tips while miR393 mainly expressed in the base part of roots at very low level. When miR393 was up-regulated by various stresses, miR390 expression level fell down. However, the risen expression level of miR390 induced by auxin didn't affect the expression of miR393 and its target OsTIR1 (Transport Inhibitor Response 1). Together with analysis of the two transgenic lines, we provide a model of how the growth of lateral roots in rice is regulated distinctively by the 2 microRNAs. CONCLUSION We propose that miR390 induced by auxin triggers the lateral root growth under normal growth conditions, meanwhile miR393 just lurks as a potentially regulative role; Once plants suffer from stresses, miR393 will be induced to negatively regulate miR390-mediated growth of lateral roots in rice.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou, 225009 China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Xuanyu Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Hong Xie
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou, 225009 China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Changlun Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | | | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
24
|
Deng P, Muhammad S, Cao M, Wu L. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:965-975. [PMID: 29327403 PMCID: PMC5902766 DOI: 10.1111/pbi.12882] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 05/02/2023]
Abstract
Several varieties of small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are generated in plants to regulate development, genome stability and response to adverse environments. Phased siRNA (phasiRNA) is a type of secondary siRNA that is processed from a miRNA-mediated cleavage of RNA transcripts, increasing silencing efficiency or simultaneously suppressing multiple target genes. Trans-acting siRNAs (ta-siRNAs) are a particular class of phasiRNA produced from noncoding transcripts that silence targets in trans. It was originally thought that 'one-hit' and 'two-hit' models were essential for processing distinct TAS precursors; however, a single hit event was recently shown to be sufficient at triggering all types of ta-siRNAs. This review discusses the findings about biogenesis, targeting modes and regulatory networks of plant ta-siRNAs. We also summarize recent advances in the generation of other phasiRNAs and their possible biological benefits to plants.
Collapse
Affiliation(s)
- Pingchuan Deng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Sajid Muhammad
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Min Cao
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Liang Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
25
|
microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. SCIENCE CHINA-LIFE SCIENCES 2018; 61:138-147. [DOI: 10.1007/s11427-017-9237-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
26
|
Deng Y, Wang J, Tung J, Liu D, Zhou Y, He S, Du Y, Baker B, Li F. A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog 2018; 14:e1006756. [PMID: 29293695 PMCID: PMC5766230 DOI: 10.1371/journal.ppat.1006756] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/12/2018] [Accepted: 11/16/2017] [Indexed: 12/05/2022] Open
Abstract
Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth.
Collapse
MESH Headings
- Disease Resistance
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Reporter
- Genome, Plant
- Immunity, Innate
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/immunology
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/virology
- NLR Proteins/genetics
- NLR Proteins/metabolism
- Plant Diseases/immunology
- Plant Diseases/virology
- Plant Immunity
- Plant Leaves/growth & development
- Plant Leaves/immunology
- Plant Leaves/metabolism
- Plant Leaves/virology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/virology
- RNA Interference
- RNA, Plant
- RNA, Small Interfering/metabolism
- Seedlings/growth & development
- Seedlings/immunology
- Seedlings/metabolism
- Seedlings/virology
- Species Specificity
- Nicotiana/growth & development
- Nicotiana/immunology
- Nicotiana/metabolism
- Nicotiana/virology
- Tobacco Mosaic Virus/genetics
- Tobacco Mosaic Virus/growth & development
- Tobacco Mosaic Virus/physiology
Collapse
Affiliation(s)
- Yingtian Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jubin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jeffrey Tung
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Plant Gene expression Center, ARS-USDA, Albany, CA, United States of America
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yingjia Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shuang He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yunlian Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Plant Gene expression Center, ARS-USDA, Albany, CA, United States of America
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Wu F, Chen Y, Tian X, Zhu X, Jin W. Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum. Sci Rep 2017; 7:3019. [PMID: 28596514 PMCID: PMC5465084 DOI: 10.1038/s41598-017-02233-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
Phased small interfering RNAs (phasiRNAs) are encoded by a novel class of genes known as phasiRNA producing (PHAS) genes. These genes play important regulatory roles by targeting protein coding transcripts in plant species. In this study, 91 regions were identified as potential PHAS loci in tomato, with additional evidence that seven of them can be triggered by five miRNAs. Among the identified loci, 51 were located in genic regions, and the remaining 40 were located in intergenic regions. The transient overexpression of PHAS15 and PHAS26 demonstrated that phasiRNAs predicted by PhaseTank were indeed generated from their respective PHAS loci. Using sRNA-seq data from B. cinerea-infected tomato leaves, we identified 50 B. cinerea-responsive phasiRNAs with increased abundance and five with decreased abundance. Moreover, 164 targets of these differentially expressed phasiRNAs were predicted, and 94 of them were confirmed experimentally using degradome data. Gene ontology analysis of the targets revealed an enrichment of genes with functions related to defense responses and signaling regulation. These results suggest that a large number of endogenous siRNAs, such as phasiRNAs, have not yet been identified in tomato and underscore the urgent need to systematically identify and functionally analyze siRNAs in tomato.
Collapse
Affiliation(s)
- Fangli Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yue Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xing Tian
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaole Zhu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Weibo Jin
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
28
|
Zuo J, Wang Q, Han C, Ju Z, Cao D, Zhu B, Luo Y, Gao L. SRNAome and degradome sequencing analysis reveals specific regulation of sRNA in response to chilling injury in tomato fruit. PHYSIOLOGIA PLANTARUM 2017; 160:142-154. [PMID: 27595790 DOI: 10.1111/ppl.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 05/15/2023]
Abstract
Plant genomes encode diverse small RNA classes that function in distinct gene-silencing pathways. To elucidate the intricate regulation of microRNAs (miRNAs) and endogenous small-interfering RNAs (siRNAs) in response to chilling injury in tomato fruit, the deep sequencing and bioinformatic methods were combined to decipher the small RNAs landscape in the control and chilling-injured groups. Except for the known miRNAs and ta-siRNAs, 85 novel miRNAs and 5 ta-siRNAs members belonging to 3 TAS families (TAS5, TAS9 and TAS10) were identified, 34 putative phased small RNAs and 740 cis/trans-natural antisense small-interfering RNAs (nat-siRNAs) were also found in our results which enriched the tomato small RNAs repository. A large number of genes targeted by those miRNAs and siRNAs were predicted to be involved in the chilling injury responsive process and five of them were verified via degradome sequencing. Based on the above results, a regulatory model that comprehensively reveals the relationships between the small RNAs and their targets was set up. This work provides a foundation for further study of the regulation of miRNAs and siRNAs in the plant in response to chilling injury.
Collapse
Affiliation(s)
- Jinhua Zuo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, 100097, China
| | - Qing Wang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, 100097, China
| | - Cong Han
- Laboratory of Postharvest Physiology and Technology of Fruits and Vegetables, Department of Food Science, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dongyan Cao
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lipu Gao
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, 100097, China
| |
Collapse
|
29
|
Wang Y, Wang Q, Gao L, Zhu B, Ju Z, Luo Y, Zuo J. Parsing the Regulatory Network between Small RNAs and Target Genes in Ethylene Pathway in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:527. [PMID: 28443119 PMCID: PMC5387102 DOI: 10.3389/fpls.2017.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/24/2017] [Indexed: 05/11/2023]
Abstract
Small RNAs are a class of short non-coding endogenous RNAs that play essential roles in many biological processes. Recent studies have reported that microRNAs (miRNAs) are also involved in ethylene signaling in plants. LeERF1 is one of the ethylene response factors (ERFs) in tomato that locates in the downstream of ethylene signal transduction pathway. To elucidate the intricate regulatory roles of small RNAs in ethylene signaling pathway in tomato, the deep sequencing and bioinformatics methods were combined to decipher the small RNAs landscape in wild and sense-/antisense-LeERF1 transgenic tomato fruits. Except for the known miRNAs, 36 putative novel miRNAs, 6 trans-acting short interfering RNAs (ta-siRNAs), and 958 natural antisense small interfering RNAs (nat-siRNAs) were also found in our results, which enriched the tomato small RNAs repository. Among these small RNAs, 9 miRNAs, and 12 nat-siRNAs were differentially expressed between the wild and transgenic tomato fruits significantly. A large amount of target genes of the small RNAs were identified and some of them were involved in ethylene pathway, including AP2 TFs, auxin response factors, F-box proteins, ERF TFs, APETALA2-like protein, and MADS-box TFs. Degradome sequencing further confirmed the targets of miRNAs and six novel targets were also discovered. Furthermore, a regulatory model which reveals the regulation relationships between the small RNAs and their targets involved in ethylene signaling was set up. This work provides basic information for further investigation of the function of small RNAs in ethylene pathway and fruit ripening.
Collapse
Affiliation(s)
- Yunxiang Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Lipu Gao
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- *Correspondence: Jinhua Zuo
| |
Collapse
|
30
|
|
31
|
Singh A, Saraf S, Dasgupta I, Mukherjee SK. Identification and validation of a virus-inducible ta-siRNA-generating TAS4 locus in tomato. J Biosci 2016; 41:109-18. [PMID: 26949093 DOI: 10.1007/s12038-016-9590-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trans-acting small interfering RNAs (ta-siRNAs) are a class of endogenous small RNA, associated with posttranscriptional gene silencing. Their biogenesis requires an initial microRNA (miRNA)-mediated cleavage of precursor RNA. Around 20 different ta-siRNA-producing loci (TASs), whose sequences are conserved, are reported in plants. In tomato, two TAS gene families have been identified, which are found to target auxin response factor gene and bacterial spot disease resistance protein Bs4 gene. Using high-throughput computational and experimental approach, we identified a new locus-producing ta-siRNA in tomato. We have also identified the putative miRNA regulating the production of ta-siRNA from this locus. The ta-siRNAs generated from TAS4 were up-regulated upon infection with a DNA virus. The potential targets of ta-siRNAs were predicted to be variety of proteins including MYB transcription factors and cell cycle regulators for some of the ta-siRNAs produced.
Collapse
Affiliation(s)
- Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | | | |
Collapse
|
32
|
Li W, Xu YP, Cai XZ. Transcriptional and posttranscriptional regulation of the tomato leaf mould disease resistance gene Cf-9. Biochem Biophys Res Commun 2016; 470:163-167. [PMID: 26768363 DOI: 10.1016/j.bbrc.2016.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Plant disease resistance (R) genes confer effector-triggered immunity (ETI) to pathogens carrying complementary effector/avirulence (Avr) genes. They are traditionally recognized to function at translational and/or posttranslational levels. In this study, however, transcriptional and posttranscriptional regulation of Cf-9, a tomato R gene conferring resistance to leaf mould fungal pathogen carrying Avr9, was demonstrated. Expression of the Cf-9 gene was 10.8-54.7 folds higher in the Cf-9/Avr9 tomato lines than in the Cf-9 lines depending on the seedling age, indicating that the Cf-9 gene expression was strongly induced by Avr9. Moreover, expression of the Cf-9 gene in the 5-day-old Cf-9/Avr9 seedlings at 33 °C was approximately 80 folds lower than that at 25 °C, and was enhanced by 23.4 folds at only 4 h post temperature shift from 33 °C to 25 °C, demonstrating that the Avr9-mediated induction of the Cf-9 gene expression is reversibly repressed by high temperature. Expression of the Cf-9 gene in the Cf-9 seedlings was similarly affected by temperature as in the Cf-9/Avr9 seedlings, implying that the genetic control of temperature sensitivity of the Cf-9 gene expression is epistasis to its Avr9-mediated induction. Additionally, a miRNA sly-miR6022, TGGAAGGGAGAATATCCAGGA, targeting the leucine-rich repeat (LRR) domain spanning LRR13-LRR14 of the Cf-9 gene transcript was predicted. Over-expression of this miRNA resulted in over 88% reduction of the Cf-9 gene transcripts in both Nicotiana benthamiana and tomato, and thus verifying the function of sly-miR6022 in degrading the Cf-9 gene transcripts. Collectively, our results reveal that the tomato R gene Cf-9 is strongly regulated at transcriptional level by pathogen Avr9 in a temperature-sensitive manner and is also regulated at posttranscriptional level by a miRNA sly-miR6022.
Collapse
Affiliation(s)
- Wen Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
33
|
Yang L, Mu X, Liu C, Cai J, Shi K, Zhu W, Yang Q. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1078-88. [PMID: 25735453 DOI: 10.1111/jipb.12348] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/28/2015] [Indexed: 05/21/2023]
Abstract
Verticillium wilt of potato is caused by the fungus pathogen Verticillium dahliae. Present sRNA sequencing data revealed that miR482 was in response to V. dahliae infection, but the function in potato is elusive. Here, we characterized potato miR482 family and its putative role resistance to Verticillium wilt. Members of the potato miR482 superfamily are variable in sequence, but all variants target a class of disease-resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. When potato plantlets were infected with V. dahliae, the expression level of miR482e was downregulated, and that of several NBS-LRR targets of miR482e were upregulated. Transgenic potato plantlets overexpressing miR482e showed hypersensitivity to V. dahliae infection. Using sRNA and degradome datasets, we validated that miR482e targets mRNAs of NBS-LRR disease-resistance proteins and triggers the production of trans-acting (ta)-siRNAs, most of which target mRNAs of defense-related proteins. Thus, the hypersensitivity of transgenic potato could be explained by enhanced miR482e and miR482e-derived ta-siRNA-mediated silencing on NBS-LRR-disease-resistance proteins. It is speculated that a miR482-mediated silencing cascade mechanism is involved in regulating potato resistance against V. dahliae infection and could be a counter defense action of plant in response to pathogen infection.
Collapse
Affiliation(s)
- Liu Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, China
| | - Xiaoying Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinghui Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjiao Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
34
|
Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 2015; 16:878. [PMID: 26511108 PMCID: PMC4625851 DOI: 10.1186/s12864-015-2077-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7B-1 tomato line (Solanum lycopersicum cv. Rutgers) is a photoperiod-sensitive male-sterile mutant, with potential application in hybrid seed production. Small RNAs (sRNAs) in tomato have been mainly characterized in fruit development and ripening, but none have been studied with respect to flower development and regulation of male-sterility. Using sRNA sequencing, we identified miRNAs that are potentially involved in anther development and regulation of male-sterility in 7B-1 mutant. RESULTS Two sRNA libraries from 7B-1 and wild type (WT) anthers were sequenced and thirty two families of known miRNAs and 23 new miRNAs were identified in both libraries. MiR390, miR166, miR159 were up-regulated and miR530, miR167, miR164, miR396, miR168, miR393, miR8006 and two new miRNAs, miR#W and miR#M were down-regulated in 7B-1 anthers. Ta-siRNAs were not differentially expressed and likely not associated with 7B-1 male-sterility. miRNA targets with potential roles in anther development were validated using 5'-RACE. QPCR analysis showed differential expression of miRNA/target pairs of interest in anthers and stem of 7B-1, suggesting that they may regulate different biological processes in these tissues. Expression level of most miRNA/target pairs showed negative correlation, except for few. In situ hybridization showed predominant expression of miR159, GAMYBL1, PMEI and cystatin in tapetum, tetrads and microspores. CONCLUSION Overall, we identified miRNAs with potential roles in anther development and regulation of male-sterility in 7B-1. A number of new miRNAs were also identified from tomato for the first time. Our data could be used as a benchmark for future studies of the molecular mechanisms of male-sterility in other crops.
Collapse
Affiliation(s)
- Vahid Omidvar
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. .,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Martin Fellner
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
35
|
Ku YS, Wong JWH, Mui Z, Liu X, Hui JHL, Chan TF, Lam HM. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods. Int J Mol Sci 2015; 16:24532-54. [PMID: 26501263 PMCID: PMC4632763 DOI: 10.3390/ijms161024532] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Center for Soybean Research of State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Johanna Wing-Hang Wong
- Center for Soybean Research of State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Zeta Mui
- Center for Soybean Research of State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xuan Liu
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Jerome Ho-Lam Hui
- Center for Soybean Research of State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ting-Fung Chan
- Center for Soybean Research of State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Hon-Ming Lam
- Center for Soybean Research of State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
36
|
Xie F, Jones DC, Wang Q, Sun R, Zhang B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:355-69. [PMID: 25572837 DOI: 10.1111/pbi.12296] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been found to be differentially expressed during cotton fibre development. However, which specific miRNAs and how they are involved in fibre development is unclear. Here, using deep sequencing, 65 conserved miRNA families were identified and 32 families were differentially expressed between leaf and ovule. At least 40 miRNAs were either leaf or ovule specific, whereas 62 miRNAs were shared in both leaf and ovule. qRT-PCR confirmed these miRNAs were differentially expressed during fibre early development. A total of 820 genes were potentially targeted by the identified miRNAs, whose functions are involved in a series of biological processes including fibre development, metabolism and signal transduction. Many predicted miRNA-target pairs were subsequently validated by degradome sequencing analysis. GO and KEGG analyses showed that the identified miRNAs and their targets were classified to 1027 GO terms including 568 biological processes, 324 molecular functions and 135 cellular components and were enriched to 78 KEGG pathways. At least seven unique miRNAs participate in trichome regulatory interaction network. Eleven trans-acting siRNA (tasiRNA) candidate genes were also identified in cotton. One has never been found in other plant species and two of them were derived from MYB and ARF, both of which play important roles in cotton fibre development. Sixteen genes were predicted to be tasiRNA targets, including sucrose synthase and MYB2. Together, this study discovered new miRNAs in cotton and offered evidences that miRNAs play important roles in cotton ovule/fibre development. The identification of tasiRNA genes and their targets broadens our understanding of the complicated regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Understanding molecular mechanisms of transcriptional and posttranscriptional gene silencing pathways in plants over the past decades has led to development of tools and methods for silencing a target gene in various plant species. In this review chapter, both the recent understanding of molecular basis of gene silencing pathways and advances in various widely used gene silencing methods are compiled. We also discuss the salient features of the different methods like RNA interference (RNAi) and virus-induced gene silencing (VIGS) and highlight their advantages and disadvantages. Gene silencing technology is constantly progressing as reflected by rapidly emerging new methods. A succinct discussion on the recently developed methods like microRNA-mediated virus-induced gene silencing (MIR-VIGS) and microRNA-induced gene silencing (MIGS) is also provided. One major bottleneck in gene silencing approaches has been the associated off-target silencing. The other hurdle has been the lack of a universal approach that can be applied to all plants. For example, we face hurdles like incompatibility of VIGS vectors with the host and inability to use MIGS for plant species which are not easily transformable. However, the overwhelming research in this direction reflects the scope for overcoming the short comings of gene silencing technology.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, #10531, New Delhi, 110067, India
| | | | | |
Collapse
|
38
|
Dotto MC, Petsch KA, Aukerman MJ, Beatty M, Hammell M, Timmermans MCP. Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genet 2014; 10:e1004826. [PMID: 25503246 PMCID: PMC4263373 DOI: 10.1371/journal.pgen.1004826] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 01/05/2023] Open
Abstract
Maize leafbladeless1 (lbl1) encodes a key component in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway. Correlated with a great diversity in ta-siRNAs and the targets they regulate, the phenotypes conditioned by mutants perturbing this small RNA pathway vary extensively across species. Mutations in lbl1 result in severe developmental defects, giving rise to plants with radial, abaxialized leaves. To investigate the basis for this phenotype, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects the accumulation of small RNAs in all major classes, and reveal unexpected crosstalk between ta-siRNA biogenesis and other small RNA pathways regulating transposons. Interestingly, in contrast to data from other plant species, we found no evidence for the existence of phased siRNAs generated via the one-hit model. Our analysis identified nine TAS loci, all belonging to the conserved TAS3 family. Information from RNA deep sequencing and PARE analyses identified the tasiR-ARFs as the major functional ta-siRNAs in the maize vegetative apex where they regulate expression of AUXIN RESPONSE FACTOR3 (ARF3) homologs. Plants expressing a tasiR-ARF insensitive arf3a transgene recapitulate the phenotype of lbl1, providing direct evidence that deregulation of ARF3 transcription factors underlies the developmental defects of maize ta-siRNA biogenesis mutants. The phenotypes of Arabidopsis and Medicago ta-siRNA mutants, while strikingly different, likewise result from misexpression of the tasiR-ARF target ARF3. Our data indicate that diversity in TAS pathways and their targets cannot fully account for the phenotypic differences conditioned by ta-siRNA biogenesis mutants across plant species. Instead, we propose that divergence in the gene networks downstream of the ARF3 transcription factors or the spatiotemporal pattern during leaf development in which these proteins act constitute key factors underlying the distinct contributions of the ta-siRNA pathway to development in maize, Arabidopsis, and possibly other plant species as well. Mutations in maize leafbladeless1 (lbl1) that disrupt ta-siRNA biogenesis give rise to plants with thread-like leaves that have lost top/bottom polarity. We used genomic approaches to identify lbl1-dependent small RNAs and their targets to determine the basis for these polarity defects. This revealed substantial diversity in small RNA pathways across plant species and identified unexpected roles for LBL1 in the regulation of repetitive elements within the maize genome. We further show that only ta-siRNA loci belonging to the TAS3 family function in the maize vegetative apex. The TAS3-derived tasiR-ARFs are the main ta-siRNA active in the apex, and misregulation of their ARF3 targets emerges as the basis for the lbl1 leaf polarity defects. Supporting this, we show that plants expressing arf3a transcripts insensitive to tasiR-ARF-directed cleavage recapitulate the phenotypes observed in lbl1. The TAS3 ta-siRNA pathway, including the regulation of ARF3 genes, is conserved throughout land plant evolution, yet the phenotypes of plants defective for ta-siRNA biogenesis are strikingly different. Our data leads us to propose that divergence in the processes regulated by the ARF3 transcription factors or the spatiotemporal pattern during development in which these proteins act, underlies the diverse developmental contributions of this small RNA pathway across plants.
Collapse
Affiliation(s)
- Marcela C. Dotto
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Katherine A. Petsch
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Milo J. Aukerman
- DuPont Crop Genetics, Wilmington, Delaware, United States of America
| | - Mary Beatty
- Pioneer-DuPont, Johnston, Iowa, United States of America
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Marja C. P. Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li J, Reichel M, Li Y, Millar AA. The functional scope of plant microRNA-mediated silencing. TRENDS IN PLANT SCIENCE 2014; 19:750-6. [PMID: 25242049 DOI: 10.1016/j.tplants.2014.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/05/2014] [Accepted: 08/23/2014] [Indexed: 05/26/2023]
Abstract
Deep sequencing has identified a complex set of plant miRNAs that potentially regulates many target genes of high complementarity. Furthermore, the discovery that many plant miRNAs work through a translational repression mechanism, along with the identification of noncanonical targets, has encouraged bioinformatic searches with less stringent parameters, identifying an even wider range of potential targets. Together, these findings suggest that any given plant miRNA family may regulate a highly diverse set of mRNAs. Here we present evolutionary, genetic, and mechanistic evidence that opposes this idea but instead suggests that families of sequence-related miRNAs regulate very few functionally related targets. We propose that complexities beyond complementarity impact plant miRNA target recognition, possibly explaining the current disparity between bioinformatic prediction and functional evidence.
Collapse
Affiliation(s)
- Junyan Li
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia
| | - Marlene Reichel
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia
| | - Yanjiao Li
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia
| | - Anthony A Millar
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia.
| |
Collapse
|
40
|
Guo Q, Qu X, Jin W. PhaseTank: genome-wide computational identification of phasiRNAs and their regulatory cascades. Bioinformatics 2014; 31:284-6. [DOI: 10.1093/bioinformatics/btu628] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Wei C, Kuang H, Li F, Chen J. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics 2014; 15:743. [PMID: 25178990 PMCID: PMC4161772 DOI: 10.1186/1471-2164-15-743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Several resistance traits, including the I2 resistance against tomato fusarium wilt, were mapped to the long arm of chromosome 11 of Solanum. However, the structure and evolution of this locus remain poorly understood. Results Comparative analysis showed that the structure and evolutionary patterns of the I2 locus vary considerably between potato and tomato. The I2 homologues from different Solanaceae species usually do not have orthologous relationship, due to duplication, deletion and frequent sequence exchanges. At least 154 sequence exchanges were detected among 76 tomato I2 homologues, but sequence exchanges between I2 homologues in potato is less frequent. Previous study showed that I2 homologues in potato were targeted by miR482. However, our data showed that I2 homologues in tomato were targeted by miR6024 rather than miR482. Furthermore, miR6024 triggers phasiRNAs from I2 homologues in tomato. Sequence analysis showed that miR6024 was originated after the divergence of Solanaceae. We hypothesized that miR6024 and miR482 might have facilitated the expansion of the I2 family in Solanaceae species, since they can minimize their potential toxic effects by down-regulating their expression. Conclusions The I2 locus represents a most divergent resistance gene cluster in Solanum. Its high divergence was partly due to frequent sequence exchanges between homologues. We propose that the successful expansion of I2 homologues in Solanum was at least partially attributed to miRNA mediated regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-743) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jiongjiong Chen
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
42
|
Meng J, Shi L, Luan Y. Plant microRNA-target interaction identification model based on the integration of prediction tools and support vector machine. PLoS One 2014; 9:e103181. [PMID: 25051153 PMCID: PMC4106887 DOI: 10.1371/journal.pone.0103181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
Background Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided.
Collapse
Affiliation(s)
- Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Lin Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
43
|
Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, van der Knaap E. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2507-20. [PMID: 24723401 PMCID: PMC4036516 DOI: 10.1093/jxb/eru141] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin regulates the expression of diverse genes that affect plant growth and development. This regulation requires AUXIN RESPONSE FACTORS (ARFs) that bind to the promoter regions of these genes. ARF6 and ARF8 in Arabidopsis thaliana are required to promote inflorescence stem elongation and late stages of petal, stamen, and gynoecium development. All seed plants studied thus far have ARF6 and ARF8 orthologues as well as the microRNA miR167, which targets ARF6 and ARF8. Whether these genes have broadly conserved roles in flower development is not known. To address this question, the effects of down-regulation of ARF6 and ARF8 were investigated through transgenic expression of Arabidopsis MIR167a in tomato, which diverged from Arabidopsis before the radiation of dicotyledonous plants approximately 90-112 million years ago. The transgenic tomato plants overexpressing MIR167a exhibited reductions in leaf size and internode length as well as shortened petals, stamens, and styles. More significantly, the transgenic plants were female-sterile as a result of failure of wild-type pollen to germinate on the stigma surface and/or to grow through the style. RNA-Seq analysis identified many genes with significantly altered expression patterns, including those encoding products with functions in 'transcription regulation', 'cell wall' and 'lipid metabolism' categories. Putative orthologues of a subset of these genes were also differentially expressed in Arabidopsis arf6 arf8 mutant flowers. These results thus suggest that ARF6 and ARF8 have conserved roles in controlling growth and development of vegetative and flower organs in dicots.
Collapse
Affiliation(s)
- Ning Liu
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Shan Wu
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Jason Van Houten
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| | - Ying Wang
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Biao Ding
- The Ohio State University, Department of Molecular Genetics, Columbus, OH 43210, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Thomas H Clarke
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599-3280, USA
| | - Jason W Reed
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599-3280, USA
| | - Esther van der Knaap
- The Ohio State University, Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, Wooster, OH 44691, USA
| |
Collapse
|
44
|
Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics 2014; 15:348. [PMID: 24885295 PMCID: PMC4035075 DOI: 10.1186/1471-2164-15-348] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level. RESULTS We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% 'precision' (accuracy of prediction), 97% 'recall' (sensitivity)] in predicting 'true-positive' targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low 'recall' values. Score optimizations increased the 'recall' to only 70% (corresponding 'precision': 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly 'precise' predictions. The large number of 'false negative' predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches. CONCLUSION Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.
Collapse
Affiliation(s)
- Prashant K Srivastava
- />Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur, 741252 West Bengal India
- />Integrative Genomics and Medicine, MRC clinical sciences, Imperial College, London, UK
| | - Taraka Ramji Moturu
- />Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur, 741252 West Bengal India
| | - Priyanka Pandey
- />National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal India
| | - Ian T Baldwin
- />Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Shree P Pandey
- />Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur, 741252 West Bengal India
| |
Collapse
|
45
|
Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 2014; 9:e89951. [PMID: 24587146 PMCID: PMC3938563 DOI: 10.1371/journal.pone.0089951] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/25/2014] [Indexed: 12/13/2022] Open
Abstract
Tomato yellow leaf curl Sardinia virus (TYLCSV), a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
| | - Chiara Napoli
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
| | - Luca Sardo
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
- Viral Recombination Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Gian Paolo Accotto
- Istituto di Virologia Vegetale, (National Research Council) CNR, Torino, Italy
- * E-mail:
| |
Collapse
|
46
|
Kravchik M, Sunkar R, Damodharan S, Stav R, Zohar M, Isaacson T, Arazi T. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:725-39. [PMID: 24376253 PMCID: PMC3904720 DOI: 10.1093/jxb/ert428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA interference. Global, as well as organ-specific tomato DCL1 (SlDCL1) silencing was induced by crossing the generated responder line (OP:SlDCL1IR) with the appropriate driver line. Constitutive trans-activation knocked down SlDCL1 levels by ~95%, resulting in severe abnormalities including post-germination growth arrest accompanied by decreased miRNA and 21-nucleotide small RNA levels, but prominently elevated levels of 22-nucleotide small RNAs. The increase in the 22-nucleotide small RNAs was correlated with specific up-regulation of SlDCL2b and SlDCL2d, which are probably involved in their biogenesis. Leaf- and flower-specific OP:SlDCL1IR trans-activation inhibited blade outgrowth, induced premature bud senescence and produced pale petals, respectively, emphasizing the importance of SlDCL1-dependent small RNAs in these processes. Together, these results establish OP:SlDCL1IR as an efficient tool for analysing processes regulated by SlDCL1-mediated gene regulation in tomato.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ramanjulu Sunkar
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Subha Damodharan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Matat Zohar
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Tal Isaacson
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Patra D, Fasold M, Langenberger D, Steger G, Grosse I, Stadler PF. plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:708. [PMID: 25566282 PMCID: PMC4274896 DOI: 10.3389/fpls.2014.00708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/26/2014] [Indexed: 05/11/2023]
Abstract
High-throughput sequencing techniques have made it possible to assay an organism's entire repertoire of small non-coding RNAs (ncRNAs) in an efficient and cost-effective manner. The moderate size of small RNA-seq datasets makes it feasible to provide free web services to the research community that provide many basic features of a small RNA-seq analysis, including quality control, read normalization, ncRNA quantification, and the prediction of putative novel ncRNAs. DARIO is one such system that so far has been focussed on animals. Here we introduce an extension of this system to plant short non-coding RNAs (sncRNAs). It includes major modifications to cope with plant-specific sncRNA processing. The current version of plantDARIO covers analyses of mapping files, small RNA-seq quality control, expression analyses of annotated sncRNAs, including the prediction of novel miRNAs and snoRNAs from unknown expressed loci and expression analyses of user-defined loci. At present Arabidopsis thaliana, Beta vulgaris, and Solanum lycopersicum are covered. The web tool links to a plant specific visualization browser to display the read distribution of the analyzed sample. The easy-to-use platform of plantDARIO quantifies RNA expression of annotated sncRNAs from different sncRNA databases together with new sncRNAs, annotated by our group. The plantDARIO website can be accessed at http://plantdario.bioinf.uni-leipzig.de/.
Collapse
Affiliation(s)
- Deblina Patra
- Institut für Informatik, Martin-Luther-Universität Halle-WittenbergHalle (Saale), Germany
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany
| | - Mario Fasold
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany
- ecSeq BioinformaticsLeipzig, Germany
| | - David Langenberger
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany
- ecSeq BioinformaticsLeipzig, Germany
| | - Gerhard Steger
- Institut für Pysikalische Biologie, Heinrich-Heine-UniversitätDüsseldorf, Germany
| | - Ivo Grosse
- Institut für Informatik, Martin-Luther-Universität Halle-WittenbergHalle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
- Max Planck Institute for Mathematics in the SciencesLeipzig, Germany
- Fraunhofer Institute for Cell Therapy and ImmunologyLeipzig, Germany
- Department of Theoretical Chemistry of the University of ViennaVienna, Austria
- Center for RNA in Technology and Health, University of CopenhagenFrederiksberg, Denmark
- Santa Fe InstituteSanta Fe, USA
- *Correspondence: Peter F. Stadler, Bioinformatics Group, Department of Computer Science, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany e-mail:
| |
Collapse
|
48
|
Zuo J, Fu D, Zhu Y, Qu G, Tian H, Zhai B, Ju Z, Gao C, Wang Y, Luo Y, Zhu B. SRNAome parsing yields insights into tomato fruit ripening control. PHYSIOLOGIA PLANTARUM 2013; 149:540-53. [PMID: 23550530 DOI: 10.1111/ppl.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 05/15/2023]
Abstract
Small RNAs have emerged as critical regulators in the expression and function of eukaryotic genomes at the post-transcriptional level. To elucidate the functions of microRNA (miRNAs) and endogenous small-interfering RNAs (siRNAs) in tomato fruit ripening process, the deep sequencing and bioinformatics methods were combined to parse the small RNAs landscape in three fruit-ripening stages (mature green, breaker and red-ripe) on a whole genome. Two species-specific miRNAs and two members of TAS3 family were identified, 590 putative phased small RNAs and 125 cis-natural antisense (nat-siRNAs) were also found in our results which enriched the tomato small RNAs repository and all of them showed differential expression patterns during fruit ripening. A large amount of the targets of the small RNAs were predicted to be involved in fruit ripening and ethylene pathway. Furthermore, the promoters of the conserved and novel miRNAs were found to contain the conserved motifs of TATA-box and CT microsatellites which were also found in Arabidopsis and rice, and several species-specific motifs were found in parallel.
Collapse
Affiliation(s)
- Jinhua Zuo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Laboratory of Postharvest Storage and Processing of Vegetables, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Laboratory of Postharvest Storage and Processing of Vegetables, Vegetable Research Centre, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Daqi Fu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiqin Tian
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Baiqiang Zhai
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Gao
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunxiang Wang
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
49
|
Rock CD. Trans-acting small interfering RNA4: key to nutraceutical synthesis in grape development? TRENDS IN PLANT SCIENCE 2013; 18:601-10. [PMID: 23993483 PMCID: PMC3818397 DOI: 10.1016/j.tplants.2013.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/12/2013] [Accepted: 07/31/2013] [Indexed: 05/19/2023]
Abstract
The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased small interfering RNAs (siRNAs) which probably function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient-signaling regulatory networks has applicability to molecular breeding and the development of strategies for engineering healthier foods.
Collapse
Affiliation(s)
- Christopher D Rock
- Department of Biological Sciences, Texas Tech University (TTU), Lubbock, TX 79409-3131, USA.
| |
Collapse
|
50
|
Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA. Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics 2013; 14:701. [PMID: 24119003 PMCID: PMC3906980 DOI: 10.1186/1471-2164-14-701] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022] Open
Abstract
Background Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out. Results In this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3. Conclusions Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| | | | | | | | | | | | | | | |
Collapse
|