1
|
Ge H, Wei J, Guan D, Wang Z, Li H, Zhang H, Qian K, Wang J. The Elongator complex regulates larval-pupal metamorphosis by modulating ecdysteroid biosynthesis in the red flour beetle, Tribolium castaneum. Int J Biol Macromol 2025; 303:140676. [PMID: 39914527 DOI: 10.1016/j.ijbiomac.2025.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The highly conserved Elongator complex plays important roles in histone acetylation and tRNA modification. Currently, Elongator complex has been shown to be essential for a range of biological processes, but its function in insect hormone signaling is poorly understood. In this study, the cDNA encoding TcElp3, the catalytic subunit of the Elongator complex in Tribolium castaneum, was cloned and functionally characterized. Analysis of temporal and spatial expression patterns revealed that TcElp3 is expressed at the highest level in the 20-day-old larvae and Malpighian tube of 7-day-old females, respectively. RNA interference of TcElp3 delayed the pupation of T. castaneum larvae by two days and led to significantly decreased pupation rate. Notably, knockdown of TcElp3 caused downregulation of ecdysteroid biosynthesis and ecdysone response genes as well as a decrease in ecdysone content in T. castaneum larvae. Further functional characterization of TcElp1, TcElp2, TcElp4, TcElp5 and TcElp6 revealed that knockdown of any of these five subunits of Elongator complex led to similar phenotypes observed in dsTcElp3-injected beetles. These results suggest a possible role of Elongator complex in the epigenetic regulation of T. castaneum ecdysteroid signaling, and provide further evidence in insects that the complete integrity of the Elongator complex is important for its function.
Collapse
Affiliation(s)
- Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhichao Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hai Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
3
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Yang Z, Du J, Tan X, Zhang H, Li L, Li Y, Wei Z, Xu Z, Lu Y, Chen J, Sun Z. Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Rep 2024; 43:113838. [PMID: 38386554 DOI: 10.1016/j.celrep.2024.113838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine acetylation is a dynamic post-translational modification of proteins. Extensive studies have revealed that the acetylation modulated by histone acetyltransferases and histone deacetylases (HDACs) plays a crucial role in regulating protein function. However, there has been limited focus on how HDACs regulate jasmonic acid (JA) biosynthesis in plants. Here, we uncover that the protein stability of OsLOX14, a critical enzyme involved in JA biosynthesis, is regulated by a histone deacetylase, OsHDA706, and is hindered by a viral protein. Our results show that OsHDA706 deacetylates OsLOX14 and enhances the stability of OsLOX14, leading to JA accumulation and an improved broad-spectrum rice antiviral defense. Furthermore, we found that the viral protein P2, encoded by the destructive rice stripe virus, disrupts the association of OsHDA706-OsLOX14, promoting viral infection. Overall, our findings reveal how HDAC manipulates the interplay of deacetylation and protein stability of a JA biosynthetic enzyme to enhance plant antiviral responses.
Collapse
Affiliation(s)
- Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Juan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Qiu M, Sun Y, Tu S, Li H, Yang X, Zhao H, Yin M, Li Y, Ye W, Wang M, Wang Y. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes. MOLECULAR PLANT PATHOLOGY 2024; 25:e13425. [PMID: 38462784 PMCID: PMC10925823 DOI: 10.1111/mpp.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaru Sun
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Siqun Tu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Huaibo Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xin Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Haiyang Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Maozhu Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaning Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Ming Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
7
|
Saharan K, Baral S, Shaikh NH, Vasudevan D. Structure-function analyses reveal Arabidopsis thaliana HDA7 to be an inactive histone deacetylase. Curr Res Struct Biol 2024; 7:100136. [PMID: 38463934 PMCID: PMC10920125 DOI: 10.1016/j.crstbi.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/β arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Regional Centre for Biotechnology (RCB), Faridabad, 121001, India
| | - Somanath Baral
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Nausad Hossain Shaikh
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Structural Biology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
8
|
Cui X, Dard A, Reichheld JP, Zhou DX. Multifaceted functions of histone deacetylases in stress response. TRENDS IN PLANT SCIENCE 2023; 28:1245-1256. [PMID: 37394308 DOI: 10.1016/j.tplants.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Histone deacetylases (HDACs) are important chromatin regulators essential for plant tolerance to adverse environments. In addition to histone deacetylation and epigenetic regulation, HDACs deacetylate non-histone proteins and thereby regulate multiple pathways. Like other post-translational modifications (PTMs), acetylation/deacetylation is a reversible switch regulating different cellular processes in plants. Here, by focusing on results obtained in arabidopsis (Arabidopsis thaliana) and rice plants, we analyze the different aspects of HDAC functions and the underlying regulatory mechanisms in modulating plant responses to stress. We hypothesize that, in addition to epigenetic regulation of gene expression, HDACs can also control plant tolerance to stress by regulating transcription, translation, and metabolic activities and possibly assembly-disassembly of stress granules (SGs) through lysine deacetylation of non-histone proteins.
Collapse
Affiliation(s)
- Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde 71, - 9052 Ghent, Belgium
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
9
|
Guo F, Islam MA, Lv C, Jin X, Sun L, Zhao K, Lu J, Yan R, Zhang W, Shi Y, Li N, Sun D. Insights into the Bioinformatics and Transcriptional Analysis of the Elongator Complexes ( ELPs) Gene Family of Wheat: TaELPs Contribute to Wheat Abiotic Stress Tolerance and Leaf Senescence. PLANTS (BASEL, SWITZERLAND) 2023; 12:952. [PMID: 36840300 PMCID: PMC9961319 DOI: 10.3390/plants12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Elongator complexes (ELPs) are the protein complexes that promote transcription through histone acetylation in eukaryotic cells and interact with elongating RNA polymerase II (RNAPII). ELPs' role in plant growth and development, signal transduction, and response to biotic and abiotic stresses have been confirmed in model plants. However, the functions of the wheat ELP genes are not well documented. The present study identified 18 members of the ELPs from the wheat genome with a homology search. Further, bioinformatics and transcription patterns in response to different stress conditions were analyzed to dissect their potential regulatory mechanisms in wheat. Gene duplication analysis showed that 18 pairs of ELP paralogous genes were derived from segmental duplication, which was divided into six clades by protein phylogenetic and cluster analysis. The orthologous analysis of wheat TaELP genes showed that TaELP genes may have evolved from orthologous genes of other plant species or closely related plants. Moreover, a variety of cis-acting regulatory elements (CAREs) related to growth and development, hormone response, and biotic and abiotic stresses were identified in the TaELPs' promoter regions. The qRT-PCR analysis showed that the transcription of TaELPs was induced under hormone, salt, and drought stress and during leaf senescence. The TaELP2 gene was silenced with BSMV-VIGS, and TaELP2 was preliminarily verified to be involved in the regulation of wheat leaf senescence. Overall, TaELP genes might be regulated by hormone signaling pathways and response to abiotic stress and leaf senescence, which could be investigated further as potential candidate genes for wheat abiotic stress tolerance and yield improvement.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Md Ashraful Islam
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Chenxu Lv
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiujuan Jin
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Lili Sun
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Zhao
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Juan Lu
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Rongyue Yan
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Wenjun Zhang
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Yugang Shi
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Ning Li
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Daizhen Sun
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
10
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
11
|
Gimenez-Ibanez S, Espinosa-Cores L, Solano R. Reversible acetylation fine-tunes plant hormone signaling and immunity. MOLECULAR PLANT 2022; 15:1415-1417. [PMID: 35927952 DOI: 10.1016/j.molp.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), 28049 Madrid, Spain.
| | - Loreto Espinosa-Cores
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
12
|
Morini E, Gao D, Logan EM, Salani M, Krauson AJ, Chekuri A, Chen YT, Ragavendran A, Chakravarty P, Erdin S, Stortchevoi A, Svejstrup JQ, Talkowski ME, Slaugenhaupt SA. Developmental regulation of neuronal gene expression by Elongator complex protein 1 dosage. J Genet Genomics 2022; 49:654-665. [PMID: 34896608 PMCID: PMC9254147 DOI: 10.1016/j.jgg.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 01/21/2023]
Abstract
Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by a mutation in the Elongator complex protein 1 (ELP1) gene that leads to a tissue-specific reduction of ELP1 protein. Our work to generate a phenotypic mouse model for FD headed to the discovery that homozygous deletion of the mouse Elp1 gene leads to embryonic lethality prior to mid-gestation. Given that FD is caused by a reduction, not loss, of ELP1, we generated two new mouse models by introducing different copy numbers of the human FD ELP1 transgene into the Elp1 knockout mouse (Elp1-/-) and observed that human ELP1 expression rescues embryonic development in a dose-dependent manner. We then conducted a comprehensive transcriptome analysis in mouse embryos to identify genes and pathways whose expression correlates with the amount of ELP1. We found that ELP1 is essential for the expression of genes responsible for nervous system development. Further, gene length analysis of the differentially expressed genes showed that the loss of Elp1 mainly impacts the expression of long genes and that by gradually restoring Elongator, their expression is progressively rescued. Finally, through evaluation of co-expression modules, we identified gene sets with unique expression patterns that depended on ELP1 expression.
Collapse
Affiliation(s)
- Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Ashok Ragavendran
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alexei Stortchevoi
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Khan MM, Kalim UU, Khan MH, Lahesmaa R. PP2A and Its Inhibitors in Helper T-Cell Differentiation and Autoimmunity. Front Immunol 2022; 12:786857. [PMID: 35069561 PMCID: PMC8766794 DOI: 10.3389/fimmu.2021.786857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. However, emerging evidence suggests PP2A constrains inflammatory responses and is important in autoimmune and neuroinflammatory diseases. Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and autoimmunity. We have also discussed the modulation of PP2A activity by endogenous inhibitors and its small-molecule activators as potential therapeutic approaches against autoimmunity.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Meraj H. Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Rayevsky A, Ozheredov DS, Samofalova D, Ozheredov SP, Karpov PA, Blume YB. The Role of Posttranslational Acetylation in the Association of Autophagy Protein ATG8 with Microtubules in Plant Cells. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Rodriguez MC, Mehta D, Tan M, Uhrig RG. Quantitative Proteome and PTMome Analysis of Arabidopsis thaliana Root Responses to Persistent Osmotic and Salinity Stress. PLANT & CELL PHYSIOLOGY 2021; 62:1012-1029. [PMID: 34059891 DOI: 10.1093/pcp/pcab076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as drought result in large annual economic losses around the world. As sessile organisms, plants cannot escape the environmental stresses they encounter but instead must adapt to survive. Studies investigating plant responses to osmotic and/or salt stress have largely focused on short-term systemic responses, leaving our understanding of intermediate to longer-term adaptation (24 h to d) lacking. In addition to protein abundance and phosphorylation changes, evidence suggests reversible lysine acetylation may also be important for abiotic stress responses. Therefore, to characterize the protein-level effects of osmotic and salt stress, we undertook a label-free proteomic analysis of Arabidopsis thaliana roots exposed to 300 mM mannitol and 150 mM NaCl for 24 h. We assessed protein phosphorylation, lysine acetylation and changes in protein abundance, detecting significant changes in 245, 35 and 107 total proteins, respectively. Comparison with available transcriptome data indicates that transcriptome- and proteome-level changes occur in parallel, while post-translational modifications (PTMs) do not. Further, we find significant changes in PTMs, and protein abundance involve different proteins from the same networks, indicating a multifaceted regulatory approach to prolonged osmotic and salt stress. In particular, we find extensive protein-level changes involving sulfur metabolism under both osmotic and salt conditions as well as changes in protein kinases and transcription factors that may represent new targets for drought stress signaling. Collectively, we find that protein-level changes continue to occur in plant roots 24 h from the onset of osmotic and salt stress and that these changes differ across multiple proteome levels.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Richard G Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
16
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Alinsug MV, Radziejwoski A, Deocaris CC. AtHDA15 binds directly to COP1 positively regulating photomorphogenesis. Biochem Biophys Res Commun 2020; 533:806-812. [PMID: 32993965 DOI: 10.1016/j.bbrc.2020.09.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022]
Abstract
Reversible histone acetylation and deacetylation play crucial roles in modulating light-regulated gene expression during seedling development. However, it remains largely unknown how histone-modifying enzymes interpose within the molecular framework of light signaling network. In this study, we show that AtHDA15 positively regulates photomorphogenesis by directly binding to COP1, a master regulator in the repression of photomorphogenesis. hda15 T-DNA knock-out and RNAi lines exhibited light hyposensitivity with reduced HY5 and PIF3 protein levels leading to long hypocotyl phenotypes in the dark while its overexpression leads to increased HY5 concentrations and short hypocotyl phenotypes. In vivo and in vitro binding assays show that HDA15 directly interacts with COP1 inside the nucleus modulating COP1's repressive activities. As COP1 is established to act within the nucleus to regulate specific transcription factors associated with growth and development in skotomorphogenesis, the direct binding by HDA15 is predicted to abrogate activities of COP1 in the presence of light and modulate its repressive activities in the dark. Our results append the mounting evidence for the role of HDACs in post-translational regulation in addition to their well-known histone modifying functions.
Collapse
Affiliation(s)
- Malona V Alinsug
- Institute of Plant Biology, College of Life Sciences, National Taiwan University, Taipei, Taiwan; Center for Food & Bio Convergence, College of Agriculture & Life Sciences, Seoul National University, South Korea; Science Department, College of Natural Sciences & Mathematics, Mindanao State University-General Santos City, Philippines.
| | - Amandine Radziejwoski
- Institute of Plant Biology, College of Life Sciences, National Taiwan University, Taipei, Taiwan; Department of Life Sciences, College of Science, Pohang University of Science & Technology, Pohang, South Korea
| | - Custer C Deocaris
- Biomedical Research Section, Philippine Nuclear Research Institute, Department of Science and Technology, Commonwealth Avenue, Diliman, Quezon City, Philippines; Technological Institute of the Philippines, Cubao, Quezon City, Philippines
| |
Collapse
|
20
|
Plant Elongator-Protein Complex of Diverse Activities Regulates Growth, Development, and Immune Responses. Int J Mol Sci 2020; 21:ijms21186912. [PMID: 32971769 PMCID: PMC7555253 DOI: 10.3390/ijms21186912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Contrary to the conserved Elongator composition in yeast, animals, and plants, molecular functions and catalytic activities of the complex remain controversial. Elongator was identified as a component of elongating RNA polymerase II holoenzyme in yeast, animals, and plants. Furthermore, it was suggested that Elonagtor facilitates elongation of transcription via histone acetyl transferase activity. Accordingly, phenotypes of Arabidopsis elo mutants, which show development, growth, or immune response defects, correlate with transcriptional downregulation and the decreased histone acetylation in the coding regions of crucial genes. Plant Elongator was also implicated in other processes: transcription and processing of miRNA, regulation of DNA replication by histone acetylation, and acetylation of alpha-tubulin. Moreover, tRNA modification, discovered first in yeast and confirmed in plants, was claimed as the main activity of Elongator, leading to specificity in translation that might also result indirectly in a deficiency in transcription. Heterologous overexpression of individual Arabidopsis Elongator subunits and their respective phenotypes suggest that single Elongator subunits might also have another function next to being a part of the complex. In this review, we shall present the experimental evidence of all molecular mechanisms and catalytic activities performed by Elongator in nucleus and cytoplasm of plant cells, which might explain how Elongator regulates growth, development, and immune responses.
Collapse
|
21
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
23
|
Zhao WN, Tobe BTD, Udeshi ND, Xuan LL, Pernia CD, Zolg DP, Roberts AJ, Mani D, Blumenthal SR, Kurtser I, Patnaik D, Gaisina I, Bishop J, Sheridan SD, Lalonde J, Carr SA, Snyder EY, Haggarty SJ. Discovery of suppressors of CRMP2 phosphorylation reveals compounds that mimic the behavioral effects of lithium on amphetamine-induced hyperlocomotion. Transl Psychiatry 2020; 10:76. [PMID: 32094324 PMCID: PMC7039883 DOI: 10.1038/s41398-020-0753-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
The effective treatment of bipolar disorder (BD) represents a significant unmet medical need. Although lithium remains a mainstay of treatment for BD, limited knowledge regarding how it modulates affective behavior has proven an obstacle to discovering more effective mood stabilizers with fewer adverse side effects. One potential mechanism of action of lithium is through inhibition of the serine/threonine protein kinase GSK3β, however, relevant substrates whose change in phosphorylation may mediate downstream changes in neuroplasticity remain poorly understood. Here, we used human induced pluripotent stem cell (hiPSC)-derived neuronal cells and stable isotope labeling by amino acids in cell culture (SILAC) along with quantitative mass spectrometry to identify global changes in the phosphoproteome upon inhibition of GSK3α/β with the highly selective, ATP-competitive inhibitor CHIR-99021. Comparison of phosphorylation changes to those induced by therapeutically relevant doses of lithium treatment led to the identification of collapsin response mediator protein 2 (CRMP2) as being highly sensitive to both treatments as well as an extended panel of structurally distinct GSK3α/β inhibitors. On this basis, a high-content image-based assay in hiPSC-derived neurons was developed to screen diverse compounds, including FDA-approved drugs, for their ability to mimic lithium's suppression of CRMP2 phosphorylation without directly inhibiting GSK3β kinase activity. Systemic administration of a subset of these CRMP2-phosphorylation suppressors were found to mimic lithium's attenuation of amphetamine-induced hyperlocomotion in mice. Taken together, these studies not only provide insights into the neural substrates regulated by lithium, but also provide novel human neuronal assays for supporting the development of mechanism-based therapeutics for BD and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wen-Ning Zhao
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| | - Brian T. D. Tobe
- grid.479509.60000 0001 0163 8573Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92037 USA ,grid.468218.1Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037 USA ,Present Address: Kaiser Health, San Diego, CA USA
| | - Namrata D. Udeshi
- grid.38142.3c000000041936754XProteomics Platform, Broad Institute of MIT and Harvard University, Cambridge, MA 02142 USA
| | - Lucius L. Xuan
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| | - Cameron D. Pernia
- grid.479509.60000 0001 0163 8573Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA ,grid.468218.1Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Daniel P. Zolg
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA ,grid.6936.a0000000123222966Present Address: TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Amanda J. Roberts
- grid.468218.1Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Deepak Mani
- grid.38142.3c000000041936754XProteomics Platform, Broad Institute of MIT and Harvard University, Cambridge, MA 02142 USA
| | - Sarah R. Blumenthal
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| | - Iren Kurtser
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| | - Debasis Patnaik
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| | - Irina Gaisina
- grid.185648.60000 0001 2175 0319Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Joshua Bishop
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA ,grid.417993.10000 0001 2260 0793Present Address: Merck, Boston, MA USA
| | - Steven D. Sheridan
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| | - Jasmin Lalonde
- grid.34429.380000 0004 1936 8198Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, East, Guelph, ON Canada N1G 2W1
| | - Steven A. Carr
- grid.38142.3c000000041936754XProteomics Platform, Broad Institute of MIT and Harvard University, Cambridge, MA 02142 USA
| | - Evan Y. Snyder
- grid.479509.60000 0001 0163 8573Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA ,grid.468218.1Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92037 USA
| | - Stephen J. Haggarty
- grid.32224.350000 0004 0386 9924Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA ,grid.32224.350000 0004 0386 9924Departments of Psychiatry & Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
24
|
Chen X, Ding AB, Zhong X. Functions and mechanisms of plant histone deacetylases. SCIENCE CHINA-LIFE SCIENCES 2019; 63:206-216. [PMID: 31879846 DOI: 10.1007/s11427-019-1587-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review, we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.
Collapse
Affiliation(s)
- Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
25
|
Mucha J, Pawłowski TA, Klupczyńska EA, Guzicka M, Zadworny M. The Effect of Hydroxamic Siderophores Structure on Acetylation of Histone H3 and Alpha Tubulin in Pinus sylvestris Root Cells. Int J Mol Sci 2019; 20:E6099. [PMID: 31816938 PMCID: PMC6928989 DOI: 10.3390/ijms20236099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 12/03/2022] Open
Abstract
Protein acetylation affects gene expression, as well as other processes in cells, and it might be dependent on the availability of the metals. However, whether iron chelating compounds (siderophores) can have an effect on the acetylation process in plant roots is largely unknown. In the present study, western blotting and confocal microscopy was used to examine the degree of acetylation of histone H3 and alpha tubulin in Pinus sylvestris root cells in the presence of structurally different siderophores. The effect of metabolites that were produced by pathogenic and mycorrhizal fungi was also assessed. No effect was observed on histone acetylation. By contrast, the metabolites of the pathogenic fungus were able to decrease the level of microtubule acetylation, whereas treatment with iron-free ferrioxamine (DFO) was able to increase it. This latter was not observed when ferrioxamine-iron complexes were used. The pathogen metabolites induced important modifications of cytoskeleton organization. Siderophores also induced changes in the tubulin skeleton and these changes were iron-dependent. The effect of siderophores on the microtubule network was dependent on the presence of iron. More root cells with a depolymerized cytoskeleton were observed when the roots were exposed to iron-free siderophores and the metabolites of pathogenic fungi; whereas, the metabolites from mycorrhizal fungi and iron-enriched forms of siderophores slightly altered the cytoskeleton network of root cells. Collectively, these data indicated that the metabolites of pathogenic fungi mirror siderophore action, and iron limitation can lead to enhanced alternations in cell structure and physiology.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (T.A.P.); (E.A.K.); (M.G.); (M.Z.)
| | | | | | | | | |
Collapse
|
26
|
Blume YB. A journey through a plant cytoskeleton: Hot spots in signaling and functioning. Cell Biol Int 2019; 44:1262-1266. [PMID: 31486567 DOI: 10.1002/cbin.11224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
Abstract
This survey paper contains a brief analysis of publications included in the special issue of the scientific journal Cell Biology International titled "Plant Cytoskeleton Structure, Dynamics and Functions". The manuscripts in this special issue reflect some new aspects of plant cytoskeleton organization, signaling and functioning, and results from different Ukrainian research groups, and focuses on bringing together scientists working across different instrumental scales.
Collapse
Affiliation(s)
- Yaroslav B Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
27
|
Gardiner J. Posttranslational modification of plant microtubules. PLANT SIGNALING & BEHAVIOR 2019; 14:e1654818. [PMID: 31564233 PMCID: PMC6768230 DOI: 10.1080/15592324.2019.1654818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Microtubules in eukaryotes have a number of posttranslational modifications catalyzed by an array of enzymes. These modifications alter the properties of the microtubules and the ways in which they interact with partner proteins. In recent years many of the enzymes which modify the microtubules have been identified in animals and protozoans. Relatively little work has been done on their function in plants, however. This study uses bioinformatics to identify homologues of these enzymes in plant species from the green alga Chlamydomonas reiinhardtii to the angiosperm Arabidopsis thaliana. Many are conserved and this gives insight into the likely future direction of this dynamic field.
Collapse
|
28
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
29
|
Blume YB. A JOURNEY THROUGH PLANT CYTOSKELETON: HOT SPOTS IN SIGNALING AND FUNCTIONING. Cell Biol Int 2019; 43:978-982. [PMID: 31415134 DOI: 10.1002/cbin.11210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaroslav B Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
30
|
Uhrig RG, Schläpfer P, Roschitzki B, Hirsch-Hoffmann M, Gruissem W. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:176-194. [PMID: 30920011 DOI: 10.1111/tpj.14315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation and acetylation are the two most abundant post-translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co-occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual-PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process-, pathway- and protein-level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway- and cellular process-level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual-PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.
Collapse
Affiliation(s)
- R Glen Uhrig
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pascal Schläpfer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
31
|
Yoon JT, Ahn HK, Pai HS. The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. PLANTA 2018; 248:1551-1567. [PMID: 30191298 DOI: 10.1007/s00425-018-3000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) regulate the cortical microtubule dynamics in Arabidopsis, through interaction with TONNEAU2 (TON2)/FASS and modulation of α-tubulin dephosphorylation. Protein phosphatase 2A is a major protein phosphatase in eukaryotes that dephosphorylates many different substrates to regulate their function. PP2A is assembled into a heterotrimeric complex of scaffolding A subunit, regulatory B subunit, and catalytic C subunit. Plant PP2A catalytic C subunit (PP2AC) isoforms are classified into two subfamilies. In this study, we investigated the cellular functions of the Arabidopsis PP2AC subfamily II genes PP2AC-3 and PP2AC-4, particularly regarding the cortical microtubule (MT) organization. PP2AC-3 and PP2AC-4 strongly interacted with the B'' regulatory subunit TON2. Simultaneous silencing of PP2AC-3 and PP2AC-4 by virus-induced gene silencing (PP2AC-3,4 VIGS) significantly altered plant morphology in Arabidopsis, increasing cell numbers in leaves and stems. The leaf epidermis of PP2AC-3,4 VIGS plants largely lost its jigsaw-puzzle shape and exhibited reduced trichome branch numbers. VIGS of PP2AC-3,4 in Arabidopsis transgenic plants that expressed GFP-fused β-tubulin 6 isoform (GFP-TUB6) for the visualization of MTs caused a reduction in the cortical MT array density in the pavement cells. VIGS of TON2 also led to similar cellular phenotypes and cortical MT patterns compared with those after VIGS of PP2AC-3,4, suggesting that PP2AC-3,4 and their interaction partner TON2 play a role in cortical MT organization in leaf epidermal cells. Furthermore, silencing of PP2AC-3,4 did not affect salt-induced phosphorylation of α-tubulin but delayed its dephosphorylation after salt removal. The reappearance of cortical MT arrays after salt removal was impaired in PP2AC-3,4 VIGS plants. These results suggest an involvement of PP2AC subfamily II in the regulation of cortical MT dynamics under normal and salt-stress conditions in Arabidopsis.
Collapse
Affiliation(s)
- Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- The Sainsbury Laboratory (TSL), Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
32
|
Yang C, Shen W, Chen H, Chu L, Xu Y, Zhou X, Liu C, Chen C, Zeng J, Liu J, Li Q, Gao C, Charron JB, Luo M. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC PLANT BIOLOGY 2018; 18:226. [PMID: 30305032 PMCID: PMC6180487 DOI: 10.1186/s12870-018-1454-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) function as key epigenetic factors in repressing the expression of genes in multiple aspects of plant growth, development and plant response to abiotic or biotic stresses. To date, the molecular function of HDACs is well described in Arabidopsis thaliana, but no systematic analysis of this gene family in soybean (Glycine max) has been reported. RESULTS In this study, 28 HDAC genes from soybean genome were identified, which were asymmetrically distributed on 12 chromosomes. Phylogenetic analysis demonstrated that GmHDACs fall into three major groups previously named RPD3/HDA1, SIR2, and HD2. Subcellular localization analysis revealed that YFP-tagged GmSRT4, GmHDT2 and GmHDT4 were predominantly localized in the nucleus, whereas GmHDA6, GmHDA13, GmHDA14 and GmHDA16 were found in both the cytoplasm and nucleus. Real-time quantitative PCR showed that GmHDA6, GmHDA13, GmHDA14, GmHDA16 and GmHDT4 were broadly expressed across plant tissues, while GmHDA8, GmSRT2, GmSRT4 and GmHDT2 showed differential expression across various tissues. Interestingly, we measured differential changes in GmHDACs transcripts accumulation in response to several abiotic cues, indicating that these epigenetic modifiers could potentially be part of a dynamic transcriptional response to stress in soybean. Finally, we show that the levels of histone marks previously reported to be associated with plant HDACs are modulated by cold and heat in this legume. CONCLUSION We have identified and classified 28 HDAC genes in soybean. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to environmental stress.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Chunmiao Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jiahui Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009 China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
33
|
Lytvyn DI, Olenieva VD, Yemets AI, Blume YB. Histochemical Analysis of Tissue-Specific α-Tubulin Acetylation as a Response to Autophagy Induction by Different Stress Factors in Arabidopsis thaliana. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718040059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Lee K, Lee HY, Back K. Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J Pineal Res 2018; 64. [PMID: 29247559 DOI: 10.1111/jpi.12460] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
In plants, melatonin production is strictly regulated, unlike the production of its precursor, serotonin, which is highly inducible in response to stimuli, such as senescence and pathogen exposure. Exogenous serotonin treatment does not greatly induce the production of N-acetylserotonin (NAS) and melatonin in plants, which suggests the possible existence of one or more regulatory genes in the pathway for the biosynthesis of melatonin from serotonin. In this report, we found that NAS was rapidly and abundantly converted into serotonin in rice seedlings, indicating the presence of an N-acetylserotonin deacetylase (ASDAC). To clone the putative ASDAC gene, we screened 4 genes that were known as histone deacetylase (HDAC) genes, but encoded proteins targeted into chloroplasts or mitochondria rather than nuclei. Of 4 recombinant Escherichia coli strains expressing these genes, one E. coli strain expressing the rice HDAC10 gene was found to be capable of producing serotonin in response to treatment with NAS. The recombinant purified rice HDAC10 (OsHDAC10) protein exhibited ASDAC enzyme activity toward NAS, N-acetyltyramine (NAT), N-acetyltryptamine, and melatonin, with the highest ASDAC activity for NAT. In addition, its Arabidopsis ortholog, AtHDAC14, showed similar ASDAC activity to that of OsHDAC10. Both OsHDAC10 and AtHDAC14 were found to be expressed in chloroplasts. Phylogenetic analysis indicated that ASDAC homologs were present in archaea, but not in cyanobacteria, which differs from the distribution of serotonin N-acetyltransferase (SNAT). This suggests that SNAT and ASDAC may have evolved differently from ancestral eukaryotic cells.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, Korea
| |
Collapse
|
35
|
Füßl M, Lassowskat I, Née G, Koskela MM, Brünje A, Tilak P, Giese J, Leister D, Mulo P, Schwarzer D, Finkemeier I. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei. FRONTIERS IN PLANT SCIENCE 2018; 9:461. [PMID: 29692793 PMCID: PMC5902713 DOI: 10.3389/fpls.2018.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/23/2018] [Indexed: 05/03/2023]
Abstract
The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.
Collapse
Affiliation(s)
- Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ines Lassowskat
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Guillaume Née
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Minna M. Koskela
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Priyadarshini Tilak
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jonas Giese
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- *Correspondence: Iris Finkemeier,
| |
Collapse
|
36
|
Hartl M, Füßl M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 2017; 13:949. [PMID: 29061669 PMCID: PMC5658702 DOI: 10.15252/msb.20177819] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.
Collapse
Affiliation(s)
- Markus Hartl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Mass Spectrometry Facility, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Magdalena Füßl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paul J Boersema
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan-Oliver Jost
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ahmet Bakirbas
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Magdalena Plöchinger
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Greg Bg Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jürgen Cox
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael E Salvucci
- US Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany .,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| |
Collapse
|
37
|
Olenieva V, Lytvyn D, Yemets A, Bergounioux C, Blume Y. Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell Biol Int 2017; 43:1056-1064. [PMID: 28816419 DOI: 10.1002/cbin.10843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/12/2017] [Indexed: 12/31/2022]
Abstract
Microtubules (MTs) play an important role in the regulation of autophagy development in yeast and animal as well as in plant cells. MTs participate in maturation and traffic of autophagosomes through their dynamic state changes and post-translational modifications of tubulin, namely acetylation. We subjected Arabidopsis thaliana seedlings to metabolic-, salt-, osmotic stresses as well as irradiation of ultraviolet B and investigated the involvement of plant MTs in the development of stress-induced autophagy via tubulin acetylation. For this purpose Arabidopsis thaliana line expressing autophagy-related protein 8 h (atg8h)-GFP was generated to investigate autophagy, applying the level of free GFP as an indicator of autophagy development. Using autophagosome confocal imaging and Western blot analysis of Atg8 post-translational lipidation and synchronous GFP release it was shown that all examined stressful stimuli led to pronounced development of autophagy, particularly in different root tissues. Moreover, autophagy development was accompanied by α-tubulin acetylation under all stressful conditions. Presented data indicate the possible role of the post-translational acetylation of α-tubulin in the mediation of plant stress-induced autophagy.
Collapse
Affiliation(s)
- Vira Olenieva
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro Lytvyn
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Catherine Bergounioux
- Laboratory of Cell Cycle Chromatin and Development, Institute of Plant Sciences Paris-Saclay IPS2, CNRS 9213, INRA 1403, Université Paris-Sud, Université Evry Val d'Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
38
|
Uhrig RG, Schläpfer P, Mehta D, Hirsch-Hoffmann M, Gruissem W. Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes. BMC Genomics 2017; 18:514. [PMID: 28679357 PMCID: PMC5499015 DOI: 10.1186/s12864-017-3894-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background Reversible protein acetylation occurring on Lys-Ne has emerged as a key regulatory post-translational modification in eukaryotes. It is mediated by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) that catalyze the addition and removal of acetyl groups from target proteins. Estimates indicate that protein acetylation is second to protein phosphorylation in abundance, with thousands of acetylated sites now identified in different subcellular compartments. Considering the important regulatory role of protein phosphorylation, elucidating the diversity of KATs and KDACs across photosynthetic eukaryotes is essential in furthering our understanding of the impact of reversible protein acetylation on plant cell processes. Results We report a genome-scale analysis of lysine acetyltransferase (KAT)- and lysine deacetylase (KDAC)-families from 53 photosynthetic eukaryotes. KAT and KDAC orthologs were identified in sequenced genomes ranging from glaucophytes and algae to land plants and then analyzed for evolutionary relationships. Based on consensus molecular phylogenetic and subcellular localization data we found new sub-classes of enzymes in established KAT- and KDAC-families. Specifically, we identified a non-photosynthetic origin of the HD-tuin family KDACs, a new monocot-specific Class I HDA-family sub-class, and a phylogenetically distinct Class II algal/heterokont sub-class which maintains an ankyrin domain not conserved in land plant Class II KDACs. Protein structure analysis showed that HDA- and SRT-KDACs exist as bare catalytic subunits with highly conserved median protein length, while all KATs maintained auxiliary domains, with CBP- and TAFII250-KATs displaying protein domain gain and loss over the course of photosynthetic eukaryote evolution in addition to variable protein length. Lastly, promoter element enrichment analyses across species revealed conserved cis-regulatory sequences that support KAT and KDAC involvement in the regulation of plant development, cold/drought stress response, as well as cellular processes such as the circadian clock. Conclusions Our results reveal new evolutionary, structural, and biological insights into the KAT- and KDAC-families of photosynthetic eukaryotes, including evolutionary parallels to protein kinases and protein phosphatases. Further, we provide a comprehensive annotation framework through our extensive phylogenetic analysis, from which future research investigating aspects of protein acetylation in plants can use to position new findings in a broader context. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3894-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.,Plant Biology Department, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Devang Mehta
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
39
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
40
|
Luo M, Cheng K, Xu Y, Yang S, Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. FRONTIERS IN PLANT SCIENCE 2017; 8:2147. [PMID: 29326743 PMCID: PMC5737090 DOI: 10.3389/fpls.2017.02147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Ming Luo, Keqiang Wu,
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming Luo, Keqiang Wu,
| |
Collapse
|
41
|
Hu H, Gu X, Xue LJ, Swamy PS, Harding SA, Tsai CJ. Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus. FRONTIERS IN PLANT SCIENCE 2016; 7:1493. [PMID: 27790223 PMCID: PMC5061773 DOI: 10.3389/fpls.2016.01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 05/03/2023]
Abstract
Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes.
Collapse
Affiliation(s)
- Hao Hu
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Xi Gu
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Liang-Jiao Xue
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Prashant S. Swamy
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
| | - Scott A. Harding
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Chung-Jui Tsai
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| |
Collapse
|
42
|
Shen Y, Issakidis-Bourguet E, Zhou DX. Perspectives on the interactions between metabolism, redox, and epigenetics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5291-5300. [PMID: 27531885 DOI: 10.1093/jxb/erw310] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Epigenetic modifications of chromatin usually involve consumption of key metabolites and redox-active molecules. Primary metabolic flux and cellular redox states control the activity of enzymes involved in chromatin modifications, such as DNA methylation, histone acetylation, and histone methylation, which in turn regulate gene expression and/or enzymatic activity of specific metabolic and redox pathways. Thus, coordination of metabolism and epigenetic regulation of gene expression is critical to control growth and development in response to the cellular environment. Much has been learned from animal and yeast cells with regard to the interplay between metabolism and epigenetic regulation, and now the metabolic control of epigenetic pathways in plants is an increasing area of study. Epigenetic mechanisms are largely similar between plant and mammalian cells, but plants display very important differences in both metabolism and metabolic/redox signaling pathways. In this review, we summarize recent developments in the field and discuss perspectives of studying interactions between plant epigenetic and metabolism/redox systems, which are essential for plant adaptation to environmental conditions.
Collapse
Affiliation(s)
- Yuan Shen
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-sud 11, 91400 Orsay, France
| | | | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-sud 11, 91400 Orsay, France
| |
Collapse
|
43
|
Uhrig RG, Labandera AM, Muhammad J, Samuel M, Moorhead GB. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase. J Biol Chem 2016; 291:5926-5934. [PMID: 26742850 DOI: 10.1074/jbc.m115.683656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.
Collapse
Affiliation(s)
- R Glen Uhrig
- From the Department of Biological Sciences, University of Calgary, Calgary,Alberta T2N 1N4, Canada
| | - Anne-Marie Labandera
- From the Department of Biological Sciences, University of Calgary, Calgary,Alberta T2N 1N4, Canada
| | - Jamshed Muhammad
- From the Department of Biological Sciences, University of Calgary, Calgary,Alberta T2N 1N4, Canada
| | - Marcus Samuel
- From the Department of Biological Sciences, University of Calgary, Calgary,Alberta T2N 1N4, Canada
| | - Greg B Moorhead
- From the Department of Biological Sciences, University of Calgary, Calgary,Alberta T2N 1N4, Canada.
| |
Collapse
|
44
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
45
|
Shen Y, Wei W, Zhou DX. Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression. TRENDS IN PLANT SCIENCE 2015; 20:614-621. [PMID: 26440431 DOI: 10.1016/j.tplants.2015.07.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 05/18/2023]
Abstract
Histone lysine acetylation is well known for being important in the epigenetic regulation of gene expression in eukaryotic cells. Recent studies have uncovered a plethora of acetylated proteins involved in important metabolic pathways, such as photosynthesis and respiration in plants. Enzymes involved in histone acetylation and deacetylation are being identified as regulators of acetylation of metabolic enzymes. Importantly, key metabolites, such as acetyl-CoA and NAD(+), are involved in protein acetylation and deacetylation processes, and their cellular levels may regulate the activity of histone acetyltransferases (HAT) and deacetylases (HDAC). Further research is required to determine whether and how HATs and HDACs sense cellular metabolite signals to control gene expression and metabolic enzyme activity through lysine acetylation and deacetylation.
Collapse
Affiliation(s)
- Yuan Shen
- Institute of Plant Sciences Paris-Saclay (IPS2), University Paris-sud 11, 91405 Orsay, France
| | - Wei Wei
- Institute of interdisciplinary Scientific Research, Jianghan University, 430056, Wuhan, China
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), University Paris-sud 11, 91405 Orsay, France.
| |
Collapse
|
46
|
Kataya ARA, Heidari B, Hagen L, Kommedal R, Slupphaug G, Lillo C. Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal β-oxidation. PLANT PHYSIOLOGY 2015; 167:493-506. [PMID: 25489022 PMCID: PMC4326747 DOI: 10.1104/pp.114.254409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B'θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B'θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B'θ and appears to occur by piggybacking transport. B'θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Behzad Heidari
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Lars Hagen
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Roald Kommedal
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Geir Slupphaug
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| | - Cathrine Lillo
- Centre for Organelle Research (A.R.A.K., B.H., C.L.) and Department of Mathematics and Natural Sciences, Faculty of Science and Technology (R.K.), University of Stavanger, N-4036 Stavanger, Norway; andDepartment of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway (L.H., G.S.)
| |
Collapse
|
47
|
Abstract
Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research.
Collapse
Affiliation(s)
- Alois Schweighofer
- Institute of Biotechnology, University of Vilnius, V. Graičiūno 8, 02241, Vilnius, Lithuania,
| | | |
Collapse
|
48
|
Lillo C, Kataya ARA, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. PLANT, CELL & ENVIRONMENT 2014; 37:2631-48. [PMID: 24810976 DOI: 10.1111/pce.12364] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.
Collapse
Affiliation(s)
- Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | | | | | | | | | | | | |
Collapse
|
49
|
Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. PLANT, CELL & ENVIRONMENT 2014; 37:1259-69. [PMID: 24236403 DOI: 10.1111/pce.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3-HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type-II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.
Collapse
Affiliation(s)
- Vincent Grandperret
- Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, Université de Bourgogne, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, Dijon cedex, 21065, France
| | | | | | | |
Collapse
|
50
|
Regulated Changes in the Acetylation of α-Tubulin on Lys40during Growth and Organ Development in Fast Plants,Brassica rapaL. Biosci Biotechnol Biochem 2014; 77:2228-33. [DOI: 10.1271/bbb.130475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|