1
|
Jiao J, Zhong S, Zhao L, Yang X, Tang G, Li P. Genome-wide characterization of effector proteins in Fusarium zanthoxyli and their effects on plant's innate immunity responses. BMC PLANT BIOLOGY 2025; 25:298. [PMID: 40050740 PMCID: PMC11887173 DOI: 10.1186/s12870-025-06327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Stem canker of Zanthoxylum bungeanum is a destructive forest disease, caused by Fusarium zanthoxyli, poses a serious threat to the cultivation of Z. bungeanum. The lack of research on effector proteins in F. zanthoxyli has severely limited our understanding of the molecular interactions between F. zanthoxyli and Z. bungeanum, resulting in insufficient effective control technologies for this disease. RESULTS In this study, a total of 137 effector proteins (FzEPs) were predicted and characterized based on whole genome of F. zanthoxyli, with an average length of 215 amino acids, 8 cysteine residues, and a molecular weight of 23.06 kD. Besides, the phylogenetic evolution, conserved motifs, domains and annotation information of all the 137 effectors were comprehensively demonstrated. Moreover, transcriptomic analysis indicated that 24 effector genes were significantly upregulated in the early infection stages of F. zanthoxyli, which was confirmed by RT-qPCR. Following, the 24 effector DEGs were cloned and transiently over-expressed in the leaves of tobacco to evaluate their effects on the plant's innate immunity. It was found that effector proteins FzEP94 and FzEP123 induced pronounced programmed cell death (PCD), callose deposition, and reactive oxygen species (ROS) burst in tobacco leaves, whereas FzEP83 and FzEP93 significantly suppressed PCD induced by INF1, accompanied by a less pronounced callose accumulation and ROS burst. CONCLUSIONS In this study, we systematically characterized and functionally analyzed the effector proteins of F. zanthoxyli, successfully identifying four effector proteins that can impact the innate immune response of plants. These findings enhance our understanding of effector protein functions in F. zanthoxyli and offer valuable insights for future research on molecular interactions between F. zanthoxyli and Z. bungeanum.
Collapse
Affiliation(s)
- Jiahui Jiao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Siyu Zhong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Le Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghui Tang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peiqin Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
2
|
Xiang H, Stojilkovic B, Gheysen G. Decoding Plant-Pathogen Interactions: A Comprehensive Exploration of Effector-Plant Transcription Factor Dynamics. MOLECULAR PLANT PATHOLOGY 2025; 26:e70057. [PMID: 39854033 PMCID: PMC11757022 DOI: 10.1111/mpp.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics. These include modulating activity of TFs, influencing their incorporation into multimeric complexes, directly changing TF expression levels, promoting their degradation via the ubiquitin-proteasome system, and inducing their subcellular relocalization. The review systematically presents documented interactions, elucidating key mechanisms and their profound impact on host-pathogen dynamics. It emphasises the central role of TFs in plant defence and investigates the convergent evolution of effectors targeting TFs. By providing this overview, we offer valuable insights into this dynamic interaction landscape and suggest potential directions for future research.
Collapse
Affiliation(s)
- Hui Xiang
- Faculty of Bioscience EngineeringGhent UniversityGentBelgium
| | - Boris Stojilkovic
- Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- John Innes CentreNorwichUK
| | | |
Collapse
|
3
|
Zhao H, Huang J, Zhao X, Yu L, Wang X, Zhao C, nasab HR, Tang C, Wang X. Stripe Rust Effector Pst_9302 Inhibits Wheat Immunity to Promote Susceptibility. PLANTS (BASEL, SWITZERLAND) 2023; 13:94. [PMID: 38202402 PMCID: PMC10780974 DOI: 10.3390/plants13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Puccinia striiformis f. sp. tritici is an obligate biotrophic fungus that causes destructive stripe rust disease in wheat. During infection, Pst secretes virulence effectors via a specific infection structure-the haustorium-inside host cells to disturb host immunity and promote fungal colonization and expansion. Hence, the identification and functional analyses of Pst effectors are of great significance in deciphering the Pst pathogenicity mechanism. Here, we identified one candidate Pst effector Pst_9302 that could suppress Bax-triggered cell death in Nicotiana benthamiana. qRT-PCR analyses showed that the transcript levels of Pst_9302 were highly increased during the early infection stages of Pst. The transient expression of Pst_9302 in wheat via the type-three secretion system (T3SS) significantly inhibited the callose deposition induced by Pseudomonas syringae EtHAn. During wheat-Pst interaction, Pst_9302 overexpression suppressed reactive oxygen species (ROS) accumulation and cell death caused by the avirulent Pst race CYR23. The host-induced gene silencing (HIGS) of Pst_9302 resulted in decreased Pst pathogenicity with reduced infection area. The results suggest that Pst_9302 plays a virulence role in suppressing plant immunity and promoting Pst pathogenicity. Moreover, wheat voltage-dependent anion channel 1 protein (TaVDAC1) was identified as candidate Pst_9302-interacting proteins by yeast two-hybrid (Y2H) screening. Pull-down assays using the His-Pst_9302 and GST-TaVDAC1 protein verified their interactions. These results suggest that Pst_9302 may modulate wheat TaVDAC1 to regulate plant immunity.
Collapse
Affiliation(s)
- Haibin Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Jiangyu Huang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaoyan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Ligang Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Congcong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Hojjatollah Rabbani nasab
- State Key Laboratory of Crop Stress, Plant Protection Department, Golestan Agricultural and Natural Resource Research and Education Center, Gorgan P.O. Box 49156-77555, Iran;
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| |
Collapse
|
4
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
5
|
McLellan H, Harvey SE, Steinbrenner J, Armstrong MR, He Q, Clewes R, Pritchard L, Wang W, Wang S, Nussbaumer T, Dohai B, Luo Q, Kumari P, Duan H, Roberts A, Boevink PC, Neumann C, Champouret N, Hein I, Falter-Braun P, Beynon J, Denby K, Birch PRJ. Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance. Proc Natl Acad Sci U S A 2022; 119:e2114064119. [PMID: 35994659 PMCID: PMC9436328 DOI: 10.1073/pnas.2114064119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sarah E. Harvey
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jens Steinbrenner
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Miles R. Armstrong
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Qin He
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Rachel Clewes
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Wei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Shumei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Thomas Nussbaumer
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Bushra Dohai
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Qingquan Luo
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Priyanka Kumari
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | - Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID 83707
| | - Ana Roberts
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Petra C. Boevink
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christina Neumann
- Justus Liebig Universität Giessen, JLU Institute of Phytopathology, Giessen, Hesse, Germany
| | | | - Ingo Hein
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Pascal Falter-Braun
- Institute of Network Biology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Munich, Germany
| | - Jim Beynon
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine Denby
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paul R. J. Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
6
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
7
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
8
|
Wilson AC, Morgan WR. Functional analysis of a Phytophthora host-translocated effector using the yeast model system. PeerJ 2021; 9:e12576. [PMID: 34966585 PMCID: PMC8663620 DOI: 10.7717/peerj.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Phytophthora plant pathogens secrete effector proteins that are translocated into host plant cells during infection and collectively contribute to pathogenicity. A subset of these host-translocated effectors can be identified by the amino acid motif RXLR (arginine, any amino acid, leucine, arginine). Bioinformatics analysis has identified hundreds of putative RXLR effector genes in Phytophthora genomes, but the specific molecular function of most remains unknown. Methods Here we describe initial studies to investigate the use of Saccharomyces cerevisiae as a eukaryotic model to explore the function of Phytophthora RXLR effector proteins. Results and Conclusions Expression of individual RXLR effectors in yeast inhibited growth, consistent with perturbation of a highly conserved cellular process. Transcriptome analysis of yeast cells expressing the poorly characterized P. sojae RXLR effector Avh110 identified nearly a dozen yeast genes whose expression levels were altered greater than two-fold compared to control cells. All five of the most down-regulated yeast genes are normally induced under low phosphate conditions via the PHO4 transcription factor, indicating that PsAvh110 perturbs the yeast regulatory network essential for phosphate homeostasis and suggesting likely PsAvh110 targets during P. sojae infection of its soybean host.
Collapse
Affiliation(s)
- Avery C Wilson
- Department of Biology, The College of Wooster, Wooster, OH, United States.,School of Medicine, New York Medical College, Valhalla, NY, United States
| | - William R Morgan
- Department of Biology, The College of Wooster, Wooster, OH, United States
| |
Collapse
|
9
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
10
|
Chen S, Ma T, Song S, Li X, Fu P, Wu W, Liu J, Gao Y, Ye W, Dry IB, Lu J. Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA-binding activity of bZIP transcription factor HY5. THE NEW PHYTOLOGIST 2021; 230:1562-1577. [PMID: 33586184 DOI: 10.1111/nph.17280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
The oomycete pathogen Hyaloperonospora arabidopsidis delivers diverse effector proteins into host plant cells to suppress the plant's innate immunity. In this study, we investigate the mechanism of action of a conserved RxLR effector, HaRxLL470, in suppressing plant immunity. Genomic, molecular and biochemical analyses were performed to investigate the function of HaRxLL470 and the mechanism of the interaction between HaRxLL470 and the target host protein during H. arabidopsidis infection. We report that HaRxLL470 enhances plant susceptibility to H. arabidopsidis isolate Noco2 by interacting with the host photomorphogenesis regulator protein HY5. Our results demonstrate that HY5 is not only an important component in the regulation of light signalling, but also positively regulates host plant immunity against H. arabidopsidis by transcriptional activation of defense-related genes. We show that the interaction between HaRxLL470 and HY5 compromises the function of HY5 as a transcription factor by attenuating its DNA-binding activity. The present study demonstrates that HY5 positively regulates host plant defense against H. arabidopsidis whereas HaRxLL470, a conserved RxLR effector across oomycete pathogens, enhances pathogenicity by interacting with HY5 and suppressing transcriptional activation of defense-related genes.
Collapse
Affiliation(s)
- Shuyun Chen
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Ma
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlong Li
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Liu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Gao
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenxiu Ye
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ian B Dry
- CSIRO Agriculture & Food, Urrbrae, SA, 5064, Australia
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola. SUSTAINABILITY 2021. [DOI: 10.3390/su13031226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.
Collapse
|
12
|
Zheng H, Zhang Y, Li J, He L, Wang F, Bi Y, Gao J. Comparative transcriptome analysis between a resistant and a susceptible Chinese cabbage in response to Hyaloperonospora brassicae. PLANT SIGNALING & BEHAVIOR 2020; 15:1777373. [PMID: 32538253 PMCID: PMC8570763 DOI: 10.1080/15592324.2020.1777373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/01/2023]
Abstract
Downy mildew caused by Hyaloperonosporabrassicae (H. brassicae) leads to up to 90% of the crop yield loss in Chinese cabbage in China. A transcriptome analysis was carried out between a resistant line (13-13, R) and a susceptible line (15-14, S) of Chinese cabbage in response to H. brassicae. The NOISeq method was used to find differentially expressed genes (DEGs) between these two groups and GO and KEGG were carried out to find R genes related to downy mildew response of Chinese cabbage. qRT-PCR was carried out to verify the reliability of RNA-seq expression data. A total of 3,055 DEGs were screened out from 41,020 genes and clustered into 6 groups with distinct expression patterns. A total of 87 candidate DEGs were identified by functional annotation based on GO and KEGG analysis. These candidate genes are involved in plant-pathogen interaction pathway, among which 54 and 33 DEGs were categorized into plant-pathogen interaction proteins and transcription factors, respectively. Proteins encoded by these genes have been reported to play an important role in the pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) processes of disease responses in some model plants, such as Arabidopsis, rice, tobacco, and tomato. However, little is known about the mechanisms of these genes in resistance to downy mildew in Chinese cabbage. Our findings are useful for further characterization of these candidate genes and helpful in breeding resistant strains.
Collapse
Affiliation(s)
- Han Zheng
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yihui Zhang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jingjuan Li
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Lilong He
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Fengde Wang
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Yuping Bi
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| | - Jianwei Gao
- College of Life Science, Shandong Normal University, Jinan, China
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan, China
| |
Collapse
|
13
|
Chen T, Liu R, Dou M, Li M, Li M, Yin X, Liu GT, Wang Y, Xu Y. Insight Into Function and Subcellular Localization of Plasmopara viticola Putative RxLR Effectors. Front Microbiol 2020; 11:692. [PMID: 32373100 PMCID: PMC7186587 DOI: 10.3389/fmicb.2020.00692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Grapevine downy mildew, caused by oomycete fungus Plasmopara viticola, is one of the most devastating diseases of grapes across the major production regions of the world. Although many putative effector molecules have been identified from this pathogen, the functions of the majority of these are still unknown. In this study, we analyzed the potential function of 26 P. viticola effectors from the highly virulent strain YL. Using transient expression in leaf cells of the tobacco Nicotiana benthamiana, we found that the majority of the effectors could suppress cell death triggered by BAX and INF1, while seven could induce cell death. The subcellular localization of effectors in N. benthamiana was consistent with their localization in cells of Vitis vinifera. Those effectors that localized to the nucleus (17/26) showed a variety of subnuclear localization. Ten of the effectors localized predominantly to the nucleolus, whereas the remaining seven localized to nucleoplasm. Interestingly, five of the effectors were strongly related in sequence and showed identical subcellular localization, but had different functions in N. benthamiana leaves and expression patterns in grapevine in response to P. viticola. This study highlights the potential functional diversity of P. viticola effectors.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Meijie Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
15
|
Li T, Wang Q, Feng R, Li L, Ding L, Fan G, Li W, Du Y, Zhang M, Huang G, Schäfer P, Meng Y, Tyler BM, Shan W. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. THE NEW PHYTOLOGIST 2019. [PMID: 31436314 DOI: 10.1111/nph.16139] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruirui Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Licai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meixiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
16
|
Lan X, Liu Y, Song S, Yin L, Xiang J, Qu J, Lu J. Plasmopara viticola effector PvRXLR131 suppresses plant immunity by targeting plant receptor-like kinase inhibitor BKI1. MOLECULAR PLANT PATHOLOGY 2019; 20:765-783. [PMID: 30945786 PMCID: PMC6637860 DOI: 10.1111/mpp.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The grapevine downy mildew pathogen Plasmopara viticola secretes a set of RXLR effectors (PvRXLRs) to overcome host immunity and facilitate infection, but how these effectors function is unclear. Here, the biological function of PvRXLR131 was investigated via heterologous expression. Constitutive expression of PvRXLR131 in Colletotrichum gloeosporioides significantly enhanced its pathogenicity on grapevine leaves. Constitutive expression of PvRXLR131 in Arabidopsis promoted Pseudomonas syringae DC3000 and P. syringae DC3000 (hrcC- ) growth as well as suppressed defence-related callose deposition. Transient expression of PvRXLR131 in Nicotiana benthamiana leaves could also suppress different elicitor-triggered cell death and inhibit plant resistance to Phytophthora capsici. Further analysis revealed that PvRXLR131 interacted with host Vitis vinifera BRI1 kinase inhibitor 1 (VvBKI1), and its homologues in N. benthamiana (NbBKI1) and Arabidopsis (AtBKI1). Moreover, bimolecular fluorescence complementation analysis revealed that PvRXLR131 interacted with VvBKI1 in the plasma membrane. Deletion assays showed that the C-terminus of PvRXLR131 was responsible for the interaction and mutation assays showed that phosphorylation of a conserved tyrosine residue in BKI1s disrupted the interaction. BKI1 was a receptor inhibitor of growth- and defence-related brassinosteroid (BR) and ERECTA (ER) signalling. When silencing of NbBKI1 in N. benthamiana, the virulence function of PvRXLR131 was eliminated, demonstrating that the effector activity is mediated by BKI1. Moreover, PvRXLR131-transgenic plants displayed BKI1-overexpression dwarf phenotypes and suppressed BR and ER signalling. These physiological and genetic data clearly demonstrate that BKI1 is a virulence target of PvRXLR131. We propose that P. viticola secretes PvRXLR131 to target BKI1 as a strategy for promoting infection.
Collapse
Affiliation(s)
- Xia Lan
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yunxiao Liu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Xiang
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
17
|
Wang S, McLellan H, Bukharova T, He Q, Murphy F, Shi J, Sun S, van Weymers P, Ren Y, Thilliez G, Wang H, Chen X, Engelhardt S, Vleeshouwers V, Gilroy EM, Whisson SC, Hein I, Wang X, Tian Z, Birch PRJ, Boevink PC. Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:343-356. [PMID: 30329083 PMCID: PMC6305197 DOI: 10.1093/jxb/ery360] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 05/23/2023]
Abstract
Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Hazel McLellan
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Tatyana Bukharova
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Qin He
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Fraser Murphy
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Jiayang Shi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shaohui Sun
- Heilongjiang Bayi Agricultural University, Daqing, China
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Pauline van Weymers
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Yajuan Ren
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaetan Thilliez
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Haixia Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xinwei Chen
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stefan Engelhardt
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Eleanor M Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Ingo Hein
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Xiaodan Wang
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Paul R J Birch
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
18
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
19
|
Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, Kangasjärvi J, MacLean D, Menke FLH, Banfield MJ, Jones JDG. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. THE NEW PHYTOLOGIST 2018; 220:232-248. [PMID: 30156022 PMCID: PMC6175486 DOI: 10.1111/nph.15277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 05/02/2023]
Abstract
The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Shuta Asai
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Jan Sklenar
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Georgina Fabro
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Dae Sung Kim
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Ruth Lintermann
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Pinja Jaspers
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Michael Wrzaczek
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Jaakko Kangasjärvi
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Daniel MacLean
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | |
Collapse
|
20
|
Allegra A, Gallotta A, Carimi F, Mercati F, Inglese P, Martinelli F. Metabolic Profiling and Post-harvest Behavior of "Dottato" Fig ( Ficus carica L.) Fruit Covered With an Edible Coating From O. ficus-indica. FRONTIERS IN PLANT SCIENCE 2018; 9:1321. [PMID: 30233636 PMCID: PMC6134321 DOI: 10.3389/fpls.2018.01321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Fig fruits are usually highly sensitive to some physiopathological disorders during post-harvest life, such as softening and skin cracking. Indeed, the use of edible coating (EC) has been evaluated in several fruit crops to reduce fruit post-harvest transpiration and to maintain fruit visual quality. The aim of this study was to determine the post-harvest metabolic response of breba figs treated with mucilage extract from O puntia ficus-indica cladodes, using an untargeted metabolomic approach. Coated and non-coated (control) fruit were sealed in plastic bags, and stored at 4°C for 7 days. The effect of the ECs on their quality fruit during cold storage and qualitative attributes were evaluated by analyzing the fruit primary metabolism and other qualitative parameters such as total soluble solids (TSS) content, titratable acidity (TA), fresh weight loss and firmness. Results underlined that EC was effective in maintaining fruit fresh weight, and fruit firmness. Stepwise discriminant analysis was able to discriminate fruit conditions. Alanine, xylulose, aspartic acid, glutamic, acid and 2,5-dihydroxypyrazine showed a significant role on discriminating edible coated fruit from untreated ones. Principal component analysis (PCA) was able to highlight clear differences in the overall metabolism changes between untreated and treated fruit. The application of EC significantly mitigated the decrease of most of the aminoacid content during cold storage. EC treatment caused the changes of several organic acids in comparison to untreated control, increasing the amount of carbohydrates and other key metabolites, such as beta-sitosterol, glycerol, and uracil. These results clearly showed the drastic effects of EC on fig metabolism during post-harvest and shed light on the beneficial mechanisms of this treatment.
Collapse
Affiliation(s)
- Alessio Allegra
- Department of Agricultural, Food and Forest Sciences – Università degli Studi di Palermo, Palermo, Italy
| | - Alessandra Gallotta
- Department of Soil, Plants and Food Science (DiSSPA), University of Bari, Bari, Italy
| | - Francesco Carimi
- Institute of Biosciences and BioResources, Division of Palermo, National Research Council, Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources, Division of Palermo, National Research Council, Palermo, Italy
| | - Paolo Inglese
- Department of Agricultural, Food and Forest Sciences – Università degli Studi di Palermo, Palermo, Italy
| | - Federico Martinelli
- Department of Agricultural, Food and Forest Sciences – Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
21
|
Zhang Y, Huang J, Ochola SO, Dong S. Functional Analysis of PsAvr3c Effector Family From Phytophthora Provides Probes to Dissect SKRP Mediated Plant Susceptibility. FRONTIERS IN PLANT SCIENCE 2018; 9:1105. [PMID: 30090111 PMCID: PMC6069499 DOI: 10.3389/fpls.2018.01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 05/28/2023]
Abstract
PsAvr3c is an effector identified from oomycete plant pathogen Phytophthora sojae that causes soybean root and stem rot disease. Earlier studies have demonstrated that PsAvr3c binds to a novel soybean spliceosomal complex protein, GmSKRP, to reprogram the splicing of hundreds of pre-mRNAs and consequently subvert host immunity. PsAvr3c family genes are present in some other Phytophthora species, but their function remains unknown. Here, we characterized the functions of PsAvh27b (PsAvr3c paralog from P. sojae), ProbiAvh89 and PparvAvh214 (orthologs from P. cinnamomi var. robiniae and Phytophthora parvispora, respectively). The study reveals that both PsAvh27b and ProbiAvh89 interact with GmSKRPs in vitro, and stabilize GmSKRP1 in vivo. However, PparvAvh214 cannot interact with GmSKRPs proteins. The qRT-PCR result illustrates that the alternative splicing of pre-mRNAs of several soybean defense-related genes are altered in PsAvh27b and ProbiAvh89 when over-expressed on soybean hairy roots. Moreover, PsAvr3c family members display differences in promoting Phytophthora infection in a SKRP-dependent manner. Overall, this study highlights that the effector-mediated host pre-mRNA alternative splicing occurs in other pathosystems, thus providing new probes to further dissect SKRP-mediated plant susceptibility.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Sylvans O. Ochola
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, Chxsina
| |
Collapse
|
22
|
Tomczynska I, Stumpe M, Mauch F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:187-203. [PMID: 29671919 DOI: 10.1111/tpj.13928] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| |
Collapse
|
23
|
Ma LS, Pellegrin C, Kahmann R. Repeat-containing effectors of filamentous pathogens and symbionts. Curr Opin Microbiol 2018; 46:123-130. [PMID: 29929732 DOI: 10.1016/j.mib.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Pathogenic and symbiotic filamentous microbes secrete effectors which suppress host immune responses and promote a successful colonization. Pathogen effectors are engaged in the arms race with their hosts and because of this they are subject to intense evolutionary pressure. Effectors particularly prone to rapid evolution display repeat-containing domains which can easily expand or contract and accumulate point mutations without altering their original function. In this review we address the diversity of function in such repeat-containing effectors, focus on new findings and point out avenues for future work.
Collapse
|
24
|
Deb D, Anderson RG, How-Yew-Kin T, Tyler BM, McDowell JM. Conserved RxLR Effectors From Oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae Suppress PAMP- and Effector-Triggered Immunity in Diverse Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:374-385. [PMID: 29106332 DOI: 10.1094/mpmi-07-17-0169-fi] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Effector proteins are exported to the interior of host cells by diverse plant pathogens. Many oomycete pathogens maintain large families of candidate effector genes, encoding proteins with a secretory leader followed by an RxLR motif. Although most of these genes are very divergent between oomycete species, several genes are conserved between Phytophthora species and Hyaloperonospora arabidopsidis, suggesting that they play important roles in pathogenicity. We describe a pair of conserved effector candidates, HaRxL23 and PsAvh73, from H. arabidopsidis and P. sojae respectively. We show that HaRxL23 is expressed early during infection of Arabidopsis. HaRxL23 triggers an ecotype-specific defense response in Arabidopsis, suggesting that it is recognized by a host surveillance protein. HaRxL23 and PsAvh73 can suppress pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in Nicotiana benthamiana and effector-triggered immunity (ETI) in soybean. Transgenic Arabidopsis constitutively expressing HaRxL23 or PsAvh73 exhibit suppression of PTI and enhancement of bacterial and oomycete virulence. Together, our experiments demonstrate that these conserved oomycete RxLR effectors suppress PTI and ETI across diverse plant species.
Collapse
Affiliation(s)
- Devdutta Deb
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Ryan G Anderson
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Theresa How-Yew-Kin
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Brett M Tyler
- 2 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - John M McDowell
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| |
Collapse
|
25
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
26
|
Evangelisti E, Gogleva A, Hainaux T, Doumane M, Tulin F, Quan C, Yunusov T, Floch K, Schornack S. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol 2017; 15:39. [PMID: 28494759 PMCID: PMC5427549 DOI: 10.1186/s12915-017-0379-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. RESULTS We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. CONCLUSIONS These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.
Collapse
Affiliation(s)
| | - Anna Gogleva
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Thomas Hainaux
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
- Present address: Université Libre de Bruxelles, Bruxelles, Belgium
| | - Mehdi Doumane
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
- Present address: École Normale Supérieure de Lyon, Lyon, France
| | - Frej Tulin
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Clément Quan
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Kévin Floch
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | | |
Collapse
|
27
|
Xiang J, Li X, Yin L, Liu Y, Zhang Y, Qu J, Lu J. A candidate RxLR effector from Plasmopara viticola can elicit immune responses in Nicotiana benthamiana. BMC PLANT BIOLOGY 2017; 17:75. [PMID: 28410577 PMCID: PMC5391559 DOI: 10.1186/s12870-017-1016-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/23/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Diverse plant pathogens deliver effectors into plant cells to alter host processes. Oomycete pathogen encodes a large number of putative RxLR effectors which are likely to play a role in manipulating plant defense responses. The secretome of Plasmopara viticola (downy mildew of grapevine) contains at least 162 candidate RxLR effectors discovered in our recent studies, but their roles in infection and pathogenicity remain to be determined. Here, we characterize in depth one of the putative RxLR effectors, PvRxLR16, which has been reported to induce cell death in Nicotiana benthamiana in our previous study. RESULTS The nuclear localization, W/Y/L motifs, and a putative N-glycosylation site in C-terminal of PvRxLR16 were essential for cell death-inducing activity. Suppressor of G-two allele of Skp1 (SGT1), heat shock protein 90 (HSP90) and required for Mla12 resistance (RAR1), but not somatic embryogenesis receptor-like kinase (SERK3), were required for the cell death response triggered by PvRxLR16 in N. benthamiana. Some mitogen-activated protein kinases and transcription factors were also involved in the perception of PvRxLR16 by N. benthamiana. PvRxLR16 could also significantly enhance plant resistance to Phytophthora capsici and the nuclear localization was required for this ability. However, some other PvRxLR effectors could suppress defense responses and disease resistance induced by PvRxLR16, suggesting that it may not trigger host cell death or immune responses during physiological infection under natural conditions. CONCLUSION These data demonstrate that PvRxLR16 may be recognized by endogenous proteins in nucleus to trigger immune responses in N. benthamiana, which in turn can be suppressed by other PvRxLR effectors.
Collapse
Affiliation(s)
- Jiang Xiang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlong Li
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yunxiao Liu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China.
| |
Collapse
|
28
|
Derevnina L, Dagdas YF, De la Concepcion JC, Bialas A, Kellner R, Petre B, Domazakis E, Du J, Wu CH, Lin X, Aguilera-Galvez C, Cruz-Mireles N, Vleeshouwers VGAA, Kamoun S. Nine things to know about elicitins. THE NEW PHYTOLOGIST 2016; 212:888-895. [PMID: 27582271 DOI: 10.1111/nph.14137] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/11/2016] [Indexed: 05/27/2023]
Abstract
888 I. 888 II. 889 III. 889 IV. 889 V. 891 VI. 891 VII. 891 VIII. 892 IX. 892 X. 893 XI. 893 893 References 893 SUMMARY: Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology.
Collapse
Affiliation(s)
- Lida Derevnina
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yasin F Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Aleksandra Bialas
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ronny Kellner
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné weg 10, 50829, Köln, Germany
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Emmanouil Domazakis
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Juan Du
- Key Laboratory of Horticultural Plant Biology, College of Life Science and Technology, Ministry of Education National Center for Vegetable Improvement (Central China), Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chih-Hang Wu
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiao Lin
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Carolina Aguilera-Galvez
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | | | - Vivianne G A A Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
29
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
30
|
Mukhtar M, McCormack M, Argueso C, Pajerowska-Mukhtar K. Pathogen Tactics to Manipulate Plant Cell Death. Curr Biol 2016; 26:R608-R619. [DOI: 10.1016/j.cub.2016.02.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Xiang J, Li X, Wu J, Yin L, Zhang Y, Lu J. Studying the Mechanism of Plasmopara viticola RxLR Effectors on Suppressing Plant Immunity. Front Microbiol 2016; 7:709. [PMID: 27242731 PMCID: PMC4870276 DOI: 10.3389/fmicb.2016.00709] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
The RxLR effector family, produced by oomycete pathogens, may manipulate host physiological and biochemical events inside host cells. A group of putative RxLR effectors from Plasmopara viticola have been recently identified by RNA-Seq analysis in our lab. However, their roles in pathogenesis are poorly understood. In this study, we attempted to characterize 23 PvRxLR effector candidates identified from a P. viticola isolate “ZJ-1-1.” During host infection stages, expression patterns of the effector genes were varied and could be categorized into four different groups. By using transient expression assays in Nicotiana benthamiana, we found that 17 of these effector candidates fully suppressed programmed cell death elicited by a range of cell death-inducing proteins, including BAX, INF1, PsCRN63, PsojNIP, PvRxLR16 and R3a/Avr3a. We also discovered that all these PvRxLRs could target the plant cell nucleus, except for PvRxLR55 that localized to the membrane. Furthermore, we identified a single effector, PvRxLR28, that showed the highest expression level at 6 hpi. Functional analysis revealed that PvRxLR28 could significantly enhance susceptibilities of grapevine and tobacco to pathogens. These results suggest that most P. viticola effectors tested in this study may act as broad suppressors of cell death to manipulate immunity in plant.
Collapse
Affiliation(s)
- Jiang Xiang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University Beijing, China
| | - Xinlong Li
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University Beijing, China
| | - Jiao Wu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University Beijing, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences Nanning, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University Beijing, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University Beijing, China
| |
Collapse
|
32
|
Asai S, Shirasu K. Plant cells under siege: plant immune system versus pathogen effectors. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:1-8. [PMID: 26343014 DOI: 10.1016/j.pbi.2015.08.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Pathogen-secreted effector proteins enable pathogens to manipulate plant immunity for successful infection. To penetrate host apoplastic space, pathogens reopen the stomata. Once the invasion into the apoplast occurs, pathogens deceive the host detection system by deploying apoplastic effectors. Pathogens also deliver an arsenal of cytosolic effectors into the host cells, which undermine host immunity such as salicylic acid (SA)-dependent immunity. Here we summarize recent findings that highlight the functions of the effectors from fungal, oomycete and bacterial pathogens in the key steps of infection at the stomata, in the apoplast, and inside the cell. We also discuss cell type-specific responses in the host during infection and the necessity of further investigation of plant-pathogen interactions at spatial and temporal resolution.
Collapse
Affiliation(s)
- Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan.
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan.
| |
Collapse
|
33
|
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Recent Progress in RXLR Effector Research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1063-72. [PMID: 26125490 DOI: 10.1094/mpmi-01-15-0022-cr] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some of the most devastating oomycete pathogens deploy effector proteins, with the signature amino acid motif RXLR, that enter plant cells to promote virulence. Research on the function and evolution of RXLR effectors has been very active over the decade that has transpired since their discovery. Comparative genomics indicate that RXLR genes play a major role in virulence for Phytophthora and downy mildew species. Importantly, gene-for-gene resistance against these oomycete lineages is based on recognition of RXLR proteins. Comparative genomics have revealed several mechanisms through which this resistance can be broken, most notably involving epigenetic control of RXLR gene expression. Structural studies have revealed a core fold that is present in the majority of RXLR proteins, providing a foundation for detailed mechanistic understanding of virulence and avirulence functions. Finally, functional studies have demonstrated that suppression of host immunity is a major function for RXLR proteins. Host protein targets are being identified in a variety of plant cell compartments. Some targets comprise hubs that are also manipulated by bacteria and fungi, thereby revealing key points of vulnerability in the plant immune network.
Collapse
Affiliation(s)
- Ryan G Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Devdutta Deb
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Kevin Fedkenheuer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| |
Collapse
|
34
|
Du Y, Berg J, Govers F, Bouwmeester K. Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1. THE NEW PHYTOLOGIST 2015; 207:735-47. [PMID: 25760731 DOI: 10.1111/nph.13355] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 05/21/2023]
Abstract
Resistance against oomycete pathogens is mainly governed by intracellular nucleotide-binding leucine-rich repeat (NLR) receptors that recognize matching avirulence (AVR) proteins from the pathogen, RXLR effectors that are delivered inside host cells. Detailed molecular understanding of how and where NLR proteins and RXLR effectors interact is essential to inform the deployment of durable resistance (R) genes. Fluorescent tags, nuclear localization signals (NLSs) and nuclear export signals (NESs) were exploited to determine the subcellular localization of the potato late blight protein R1 and the Phytophthora infestans RXLR effector AVR1, and to target these proteins to the nucleus or cytoplasm. Microscopic imaging revealed that both R1 and AVR1 occurred in the nucleus and cytoplasm, and were in close proximity. Transient expression of NLS- or NES-tagged R1 and AVR1 in Nicotiana benthamiana showed that activation of the R1-mediated hypersensitive response and resistance required localization of the R1/AVR1 pair in the nucleus. However, AVR1-mediated suppression of cell death in the absence of R1 was dependent on localization of AVR1 in the cytoplasm. Balanced nucleocytoplasmic partitioning of AVR1 seems to be a prerequisite. Our results show that R1-mediated immunity is activated inside the nucleus with AVR1 in close proximity and suggest that nucleocytoplasmic transport of R1 and AVR1 is tightly regulated.
Collapse
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Jeroen Berg
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
35
|
Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Mishra B, Sharma R, Thines M, Hückelhoven R, Doehlemann G. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. THE NEW PHYTOLOGIST 2015; 206:1116-1126. [PMID: 25628012 DOI: 10.1111/nph.13304] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/16/2014] [Indexed: 05/03/2023]
Abstract
The secreted fungal effector Pep1 is essential for penetration of the host epidermis and establishment of biotrophy in the Ustilago maydis-maize pathosystem. Previously, Pep1 was found to be an inhibitor of apoplastic plant peroxidases, which suppresses the oxidative burst, a primary immune response of the host plant and enables fungal colonization. To investigate the conservation of Pep1 in other pathogens, genomes of related smut species were screened for pep1 orthologues. Pep1 proteins were produced in Escherichia coli for functional assays. The biological function of Pep1 was tested by heterologous expression in U. maydis and Hordeum vulgare. Pep1 orthologues revealed a remarkable degree of sequence conservation, indicating that this effector might play a fundamental role in virulence of biotrophic smut fungi. Pep1 function and its role in virulence are conserved in different pathogenic fungi, even across the monocot-dicot border of host plants. The findings described in this study classify Pep1 as a phylogenetically conserved fungal core effector. Furthermore, we documented the influence of Pep1 on the disease caused by Blumeria graminis f. sp. hordei which is a non-smut-related pathosystem.
Collapse
Affiliation(s)
- Christoph Hemetsberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85350, Freising-Weihenstephan, Germany
| | - André N Mueller
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Alexandra Matei
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Christian Herrberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology, D-06466, Stadt Seeland/OT Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology, D-06466, Stadt Seeland/OT Gatersleben, Germany
| | - Bagdevi Mishra
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Str. 2, D-85350, Freising-Weihenstephan, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Biocenter, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
36
|
Carella P, Wilson DC, Cameron RK. Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 5:775. [PMID: 25620972 PMCID: PMC4288333 DOI: 10.3389/fpls.2014.00775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, much of what we know about the phytohormone salicylic acid (SA) and its role in plant defense comes from experiments using young plants. We are interested in understanding why young plants are susceptible to virulent strains of Pseudomonas syringae, while mature plants exhibit a robust defense response known as age-related resistance (ARR). SA-mediated signaling is important for defense in young plants, however, ARR occurs independently of the defense regulators NPR1 and WHY1. Furthermore, intercellular SA accumulation is an important component of ARR, and intercellular washing fluids from ARR-competent plants exhibit antibacterial activity, suggesting that SA acts as an antimicrobial agent in the intercellular space. Young plants accumulate both intracellular and intercellular SA during PAMP- and effector-triggered immunity, however, virulent P. syringae promotes susceptibility by suppressing SA accumulation using the phytotoxin coronatine. Here we outline the hypothesis that mature, ARR-competent Arabidopsis alleviates coronatine-mediated suppression of SA accumulation. We also explore the role of SA in other mature-plant processes such as flowering and senescence, and discuss their potential impact on ARR.
Collapse
Affiliation(s)
| | | | - Robin K. Cameron
- *Correspondence: Robin K. Cameron, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada e-mail:
| |
Collapse
|
37
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:40-50. [PMID: 27839074 DOI: 10.1094/mpmi-10-13-0313-ta.testissue] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
38
|
Tanaka S, Han X, Kahmann R. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway. FRONTIERS IN PLANT SCIENCE 2015; 6:349. [PMID: 26042138 PMCID: PMC4436567 DOI: 10.3389/fpls.2015.00349] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/03/2015] [Indexed: 05/19/2023]
Abstract
Microbes attempting to colonize plants are recognized through the plant immune surveillance system. This leads to a complex array of global as well as specific defense responses, which are often associated with plant cell death and subsequent arrest of the invader. The responses also entail complex changes in phytohormone signaling pathways. Among these, salicylic acid (SA) signaling is an important pathway because of its ability to trigger plant cell death. As biotrophic and hemibiotrophic pathogens need to invade living plant tissue to cause disease, they have evolved efficient strategies to downregulate SA signaling by virulence effectors, which can be proteins or secondary metabolites. Here we review the strategies prokaryotic pathogens have developed to target SA biosynthesis and signaling, and contrast this with recent insights into how plant pathogenic eukaryotic fungi and oomycetes accomplish the same goal.
Collapse
Affiliation(s)
| | | | - Regine Kahmann
- *Correspondence: Regine Kahmann, Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany,
| |
Collapse
|
39
|
Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller NP, Martin F, Rouxel T, Lawrence CB. Microbe-Independent Entry of Oomycete RxLR Effectors and Fungal RxLR-Like Effectors Into Plant and Animal Cells Is Specific and Reproducible. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:51-56. [PMID: 27839069 DOI: 10.1094/mpmi-99-99-0002.testissue] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Brett M Tyler
- 1 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Shiv D Kale
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Qunqing Wang
- 1 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Kai Tao
- 1 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Helen R Clark
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Kelly Drews
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Vincenzo Antignani
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Amanda Rumore
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Tristan Hayes
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Jonathan M Plett
- 3 Lab of Excellence ARBRE, UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, Centre INRA de Nancy, 54280 Champenoux, France
| | - Isabelle Fudal
- 4 INRA-Bioger, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - Biao Gu
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
- 5 College of Plant Protection and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinghe Chen
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Katharyn J Affeldt
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Erwin Berthier
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Gregory J Fischer
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Daolong Dou
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
- 7 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixing Shan
- 5 College of Plant Protection and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nancy P Keller
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Francis Martin
- 3 Lab of Excellence ARBRE, UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, Centre INRA de Nancy, 54280 Champenoux, France
| | - Thierry Rouxel
- 4 INRA-Bioger, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | | |
Collapse
|
40
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:17-27. [PMID: 27839075 DOI: 10.1094/mpmi-10-13-0313-cr.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
41
|
Xiong Q, Ye W, Choi D, Wong J, Qiao Y, Tao K, Wang Y, Ma W. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1379-89. [PMID: 25387135 DOI: 10.1094/mpmi-06-14-0190-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.
Collapse
|
42
|
Doehlemann G, Requena N, Schaefer P, Brunner F, O'Connell R, Parker JE. Reprogramming of plant cells by filamentous plant-colonizing microbes. THE NEW PHYTOLOGIST 2014; 204:803-14. [PMID: 25539003 DOI: 10.1111/nph.12938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.
Collapse
|
43
|
The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition. PLoS Pathog 2014; 10:e1004496. [PMID: 25393742 PMCID: PMC4231120 DOI: 10.1371/journal.ppat.1004496] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023] Open
Abstract
The downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) is a filamentous oomycete that invades plant cells via sophisticated but poorly understood structures called haustoria. Haustoria are separated from the host cell cytoplasm and surrounded by an extrahaustorial membrane (EHM) of unknown origin. In some interactions, including Hpa-Arabidopsis, haustoria are progressively encased by host-derived, callose-rich materials but the molecular mechanisms by which callose accumulates around haustoria remain unclear. Here, we report that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) is expressed at high levels in Hpa infected cells. Unlike other plasma membrane proteins, which are often excluded from the EHM, PDLP1 is located at the EHM in Hpa-infected cells prior to encasement. The transmembrane domain and cytoplasmic tail of PDLP1 are sufficient to convey this localization. PDLP1 also associates with the developing encasement but this association is lost when encasements are fully mature. We found that the pdlp1,2,3 triple mutant is more susceptible to Hpa while overexpression of PDLP1 enhances plant resistance, suggesting that PDLPs enhance basal immunity against Hpa. Haustorial encasements are depleted in callose in pdlp1,2,3 mutant plants whereas PDLP1 over-expression elevates callose deposition around haustoria and across the cell surface. These data indicate that PDLPs contribute to callose encasement of Hpa haustoria and suggests that the deposition of callose at haustoria may involve similar mechanisms to callose deposition at plasmodesmata.
Collapse
|
44
|
Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16955-60. [PMID: 25368167 DOI: 10.1073/pnas.1410031111] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life.
Collapse
|
45
|
Fletcher J, Leach JE, Eversole K, Tauxe R. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research. PHYTOPATHOLOGY 2014:PHYTO09120236RVWtest. [PMID: 27454683 PMCID: PMC10962904 DOI: 10.1094/phyto-09-12-0236-rvw.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.
Collapse
Affiliation(s)
- Jacqueline Fletcher
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Jan E Leach
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Kellye Eversole
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Robert Tauxe
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| |
Collapse
|
46
|
Fletcher J, Leach JE, Eversole K, Tauxe R. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research. PHYTOPATHOLOGY 2014:PHYTO09120236IAtest. [PMID: 27454682 DOI: 10.1094/phyto-09-12-0236-ia.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.
Collapse
Affiliation(s)
- Jacqueline Fletcher
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Jan E Leach
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Kellye Eversole
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Robert Tauxe
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| |
Collapse
|
47
|
Nunney L, Elfekih S, Stouthamer R. The Importance of Multilocus Sequence Typing: Cautionary Tales from the Bacterium Xylella fastidiosa. PHYTOPATHOLOGY 2014:PHYTO10110298Rtest. [PMID: 27454684 DOI: 10.1094/phyto-10-11-0298-r.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial identification methods have evolved rapidly over the last few decades. One such method is multilocus sequence typing (MLST). MLST is a powerful tool for understanding the evolutionary dynamics of pathogens and to gain insight into their genetic diversity. We illustrate the importance of accurate typing by reporting on three problems that have arisen in the study of a single bacterial species, the plant pathogen Xylella fastidiosa. Two of these were particularly serious since they concerned contamination of important research material that has had detrimental consequences for Xylella research: the contamination of DNA used in the sequencing of an X. fastidiosa genome (Ann-1) with DNA from another X. fastidiosa strain, and the unrecognized mislabeling of a strain (Temecula1) distributed from a culture collection (ATCC). We advocate the routine use of MLST to define strains maintained in culture collections and emphasize the importance of confirming the purity of DNA submitted for sequencing. We also present a third example that illustrates the value of MLST in guiding the choice of taxonomic types. Beyond these situations, there is a strong case for MLST whenever an isolate is used experimentally, especially where genotypic differences are suspected to influence the outcome.
Collapse
Affiliation(s)
- L Nunney
- First and second authors: Department of Biology, University of California, Riverside 92521; and third author: Department of Entomology, University of California, Riverside 92521
| | - S Elfekih
- First and second authors: Department of Biology, University of California, Riverside 92521; and third author: Department of Entomology, University of California, Riverside 92521
| | - R Stouthamer
- First and second authors: Department of Biology, University of California, Riverside 92521; and third author: Department of Entomology, University of California, Riverside 92521
| |
Collapse
|
48
|
Asai S, Rallapalli G, Piquerez SJM, Caillaud MC, Furzer OJ, Ishaque N, Wirthmueller L, Fabro G, Shirasu K, Jones JDG. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid. PLoS Pathog 2014; 10:e1004443. [PMID: 25329884 PMCID: PMC4199768 DOI: 10.1371/journal.ppat.1004443] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/02/2014] [Indexed: 12/20/2022] Open
Abstract
Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.
Collapse
Affiliation(s)
- Shuta Asai
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, Japan
| | | | | | | | - Oliver J. Furzer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Naveed Ishaque
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Lennart Wirthmueller
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Georgina Fabro
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
49
|
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:196-206. [PMID: 24405032 DOI: 10.1094/mpmi-10-13-0313-ia] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
|
50
|
Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang Y, Gijzen M. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. PLoS One 2014; 9:e89738. [PMID: 24586999 PMCID: PMC3933651 DOI: 10.1371/journal.pone.0089738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022] Open
Abstract
The aim of this work was to map and identify the Phytophthora sojae Avr1c gene. Progeny from a cross of P. sojae strains ACR10×P7076 were tested for virulence on plants carrying Rps1c. Results indicate that avirulence segregates as a dominant trait. We mapped the Avr1c locus by performing whole genome re-sequencing of composite libraries created from pooled samples. Sequence reads from avirulent (Pool1) and virulent (Pool2) samples were aligned to the reference genome and single nucleotide polymorphisms (SNP) were identified for each pool. High quality SNPs were filtered to select for positions where SNP frequency was close to expected values for each pool. Only three SNP positions fit all requirements, and these occurred in close proximity. Additional DNA markers were developed and scored in the F₂ progeny, producing a fine genetic map that places Avr1c within the Avr1a gene cluster. Transient expression of Avr1c or Avr1a triggers cell death on Rps1c plants, but Avr1c does not trigger cell death on Rps1a plants. Sequence comparisons show that the RXLR effector genes Avr1c and Avr1a are closely related paralogs. Gain of virulence on Rps1c in P. sojae strain P7076 is achieved by gene deletion, but in most other strains this is accomplished by gene silencing. This work provides practical tools for crop breeding and diagnostics, as the Rps1c gene is widely deployed in commercial soybean cultivars.
Collapse
Affiliation(s)
- Ren Na
- Agriculture and Agri-Food Canada, London, Canada
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Dan Yu
- Agriculture and Agri-Food Canada, London, Canada
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Yun Zhang
- Agriculture and Agri-Food Canada, London, Canada
| | - Kuflom Kuflu
- Agriculture and Agri-Food Canada, London, Canada
| | - Ryan Austin
- Agriculture and Agri-Food Canada, London, Canada
| | - Dinah Qutob
- Agriculture and Agri-Food Canada, London, Canada
| | - Jun Zhao
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mark Gijzen
- Agriculture and Agri-Food Canada, London, Canada
| |
Collapse
|