1
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
2
|
Microarray profiling predicts early neurological and immune phenotypic traits in advance of CNS disease during disease progression in Trypanosoma. b. brucei infected CD1 mouse brains. PLoS Negl Trop Dis 2021; 15:e0009892. [PMID: 34762691 PMCID: PMC8584711 DOI: 10.1371/journal.pntd.0009892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.
Collapse
|
3
|
Hattori T, Iwasaki-Hozumi H, Bai G, Chagan-Yasutan H, Shete A, Telan EF, Takahashi A, Ashino Y, Matsuba T. Both Full-Length and Protease-Cleaved Products of Osteopontin Are Elevated in Infectious Diseases. Biomedicines 2021; 9:biomedicines9081006. [PMID: 34440210 PMCID: PMC8394573 DOI: 10.3390/biomedicines9081006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Circulating full-length osteopontin (FL-OPN) is elevated in plasma from patients with various infectious diseases, such as adult T-cell leukemia, Mycobacterium tuberculosis (TB), hepatitis virus infection, leptospirosis, acquired immune deficiency syndrome (AIDS), AIDS/TB, and coronavirus disease 2019 (COVID-19). Proteolysis of OPN by thrombin, matrix metalloproteases, caspase 8/3, cathepsin D, plasmin, and enterokinase generates various cleaved OPNs with a variety of bioactivities by binding to different target cells. Moreover, OPN is susceptible to gradual proteolysis. During inflammation, one of the cleaved fragments, N-terminal thrombin-cleaved OPN (trOPN or OPN-Arg168 [OPN-R]), induces dendritic cell (DC) adhesion. Further cleavage by carboxypeptidase B2 or carboxypeptidase N removes Arg168 from OPN-R to OPN-Leu167 (OPN-L). Consequently, OPN-L decreases DC adhesion. In particular, the differences in plasma level over time are observed between FL-OPN and its cleaved OPNs during inflammation. We found that the undefined OPN levels (mixture of FL-OPN and cleaved OPN) were elevated in plasma and reflected the pathology of TB and COVID-19 rather than FL-OPN. These infections are associated with elevated levels of various proteases. Inhibition of the cleavage or the activities of cleaved products may improve the outcome of the therapy. Research on the metabolism of OPN is expected to create new therapies against infectious diseases.
Collapse
Affiliation(s)
- Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Correspondence: ; Tel./Fax: +81-866-22-9469
| | - Hiroko Iwasaki-Hozumi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Haorile Chagan-Yasutan
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Ashwnini Shete
- ICMR-National AIDS Research Institute, 73 G-Block, MIDC, Bhosari, Pune 411026, India;
| | - Elizabeth Freda Telan
- STD AIDS Cooperative Central Laboratory, San Lazaro Hospital, Manila 1003, Philippines;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Takashi Matsuba
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka 882-8508, Japan;
| |
Collapse
|
4
|
Rodgers J, Steiner I, Kennedy PGE. Generation of neuroinflammation in human African trypanosomiasis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/6/e610. [PMID: 31467039 PMCID: PMC6745723 DOI: 10.1212/nxi.0000000000000610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/29/2019] [Indexed: 11/26/2022]
Abstract
Human African trypanosomiasis (HAT) is caused by infection due to protozoan parasites of the Trypanosoma genus and is a major fatal disease throughout sub-Saharan Africa. After an early hemolymphatic stage in which the peripheral tissues are infected, the parasites enter the CNS causing a constellation of neurologic features. Although the CNS stage of HAT has been recognized for over a century, the mechanisms generating the neuroinflammatory response are complex and not well understood. Therefore a better understanding of the mechanisms utilized by the parasites to gain access to the CNS compartment is critical to explaining the generation of neuroinflammation. Contrast-enhanced MRI in a murine model of HAT has shown an early and progressive deterioration of blood-CNS barrier function after trypanosome infection that can be reversed following curative treatment. However, further studies are required to clarify the molecules involved in this process. Another important determinant of brain inflammation is the delicate balance of proinflammatory and counterinflammatory mediators. In mouse models of HAT, proinflammatory mediators such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and CXCL10 have been shown to be crucial to parasite CNS invasion while administration of interleukin (IL)-10, a counter inflammatory molecule, reduces the CNS parasite burden as well as the severity of the neuroinflammatory response and the clinical symptoms associated with the infection. This review focuses on information, gained from both infected human samples and animal models of HAT, with an emphasis on parasite CNS invasion and the development of neuroinflammation.
Collapse
Affiliation(s)
- Jean Rodgers
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow.
| | - Israel Steiner
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Peter G E Kennedy
- From the Institute of Biodiversity (J.R.), Animal Health and Comparative Medicine, University of Glasgow; the Department of Neurology (I.S.), Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel; and the Institute of Infection (P.G.E.K), Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| |
Collapse
|
5
|
Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Vatunga G, Ndung'u J, Boudot C, Bisser S, Courtioux B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J Proteomics 2018; 196:150-161. [PMID: 30414516 DOI: 10.1016/j.jprot.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.
Collapse
Affiliation(s)
- Julien Bonnet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Camille Garcia
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Thibaut Leger
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Marie-Pauline Couquet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Philippe Vignoles
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Gedeao Vatunga
- Instituto de Combate e controlo das Tripanossomiases (ICCT), Luanda, Angola.
| | - Joseph Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.
| | - Clotilde Boudot
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France; Pasteur Institute in French Guiana, 23 Boulevard Pasteur, 973006, Cayenne Cedex, French Guiana.
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| |
Collapse
|
6
|
Combining H-FABP and GFAP increases the capacity to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS One 2018; 13:e0200394. [PMID: 29985933 PMCID: PMC6037378 DOI: 10.1371/journal.pone.0200394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) patients may have trauma-induced brain lesions detectable using CT scans. However, most patients will be CT-negative. There is thus a need for an additional tool to detect patients at risk. Single blood biomarkers, such as S100B and GFAP, have been widely studied in mTBI patients, but to date, none seems to perform well enough. In many different diseases, combining several biomarkers into panels has become increasingly interesting for diagnoses and to enhance classification performance. The present study evaluated 13 proteins individually-H-FABP, MMP-1, MMP-3, MMP-9, VCAM, ICAM, SAA, CRP, GSTP, NKDA, PRDX1, DJ-1 and IL-10-for their capacity to differentiate between patients with and without a brain lesion according to CT results. The best performing proteins were then compared and combined with the S100B and GFAP proteins into a CT-scan triage panel. Patients diagnosed with mTBI, with a Glasgow Coma Scale score of 15 and one additional clinical symptom were enrolled at three different European sites. A blood sample was collected at hospital admission, and a CT scan was performed. Patients were divided into two two-centre cohorts and further dichotomised into CT-positive and CT-negative groups for statistical analysis. Single markers and panels were evaluated using Cohort 1. Four proteins-H-FABP, IL-10, S100B and GFAP-showed significantly higher levels in CT-positive patients. The best-performing biomarker was H-FABP, with a specificity of 32% (95% CI 23-40) and sensitivity reaching 100%. The best-performing two-marker panel for Cohort 1, subsequently validated in Cohort 2, was a combination of H-FABP and GFAP, enhancing specificity to 46% (95% CI 36-55). When adding IL-10 to this panel, specificity reached 52% (95% CI 43-61) with 100% sensitivity. These results showed that proteins combined into panels could be used to efficiently classify CT-positive and CT-negative mTBI patients.
Collapse
|
7
|
Ma’ayeh SY, Liu J, Peirasmaki D, Hörnaeus K, Bergström Lind S, Grabherr M, Bergquist J, Svärd SG. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. PLoS Negl Trop Dis 2017; 11:e0006120. [PMID: 29228011 PMCID: PMC5739509 DOI: 10.1371/journal.pntd.0006120] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/21/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Giardia intestinalis is a non-invasive protozoan parasite that causes giardiasis in humans, the most common form of parasite-induced diarrhea. Disease mechanisms are not completely defined and very few virulence factors are known. METHODOLOGY To identify putative virulence factors and elucidate mechanistic pathways leading to disease, we have used proteomics to identify the major excretory-secretory products (ESPs) when Giardia trophozoites of WB and GS isolates (assemblages A and B, respectively) interact with intestinal epithelial cells (IECs) in vitro. FINDINGS The main parts of the IEC and parasite secretomes are constitutively released proteins, the majority of which are associated with metabolism but several proteins are released in response to their interaction (87 and 41 WB and GS proteins, respectively, 76 and 45 human proteins in response to the respective isolates). In parasitized IECs, the secretome profile indicated effects on the cell actin cytoskeleton and the induction of immune responses whereas that of Giardia showed anti-oxidation, proteolysis (protease-associated) and induction of encystation responses. The Giardia secretome also contained immunodominant and glycosylated proteins as well as new candidate virulence factors and assemblage-specific differences were identified. A minor part of Giardia ESPs had signal peptides (29% for both isolates) and extracellular vesicles were detected in the ESPs fractions, suggesting alternative secretory pathways. Microscopic analyses showed ESPs binding to IECs and partial internalization. Parasite ESPs reduced ERK1/2 and P38 phosphorylation and NF-κB nuclear translocation. Giardia ESPs altered gene expression in IECs, with a transcriptional profile indicating recruitment of immune cells via chemokines, disturbances in glucose homeostasis, cholesterol and lipid metabolism, cell cycle and induction of apoptosis. CONCLUSIONS This is the first study identifying Giardia ESPs and evaluating their effects on IECs. It highlights the importance of host and parasite ESPs during interactions and reveals the intricate cellular responses that can explain disease mechanisms and attenuated inflammatory responses during giardiasis.
Collapse
Affiliation(s)
- Showgy Y. Ma’ayeh
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Katarina Hörnaeus
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemsitry and Microbiology, BMC, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
8
|
Kato CD, Matovu E, Mugasa CM, Nanteza A, Alibu VP. The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:4. [PMID: 26807135 PMCID: PMC4722787 DOI: 10.1186/s13223-016-0113-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.
Collapse
Affiliation(s)
- Charles D. Kato
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Enock Matovu
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Claire. M. Mugasa
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Ann Nanteza
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Vincent P. Alibu
- />College of Natural Sciences, Makerere University, P.O. BOX 7062, Kampala, Uganda
| |
Collapse
|
9
|
Infektionen. NEUROINTENSIV 2015. [PMCID: PMC7175474 DOI: 10.1007/978-3-662-46500-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In diesem Kapitel werden zunächst die für die Neurointensivmedizin wesentlichen bakteriellen Infektionen (Meningitis, spinale und Hirnabszesse, Spondylodiszitis, septisch-embolische Herdenzephalitis) abgehandelt, die trotz gezielt eingesetzter Antibiotika und neurochirurgischer Therapieoptionen noch mit einer erheblichen Morbidität und Mortalität behaftet sind. Besonderheiten wie neurovaskuläre Komplikationen, die Tuberkulose des Nervensystems, Neuroborreliose, Neurosyphilis und opportunistische Infektionen bei Immunsuppressionszuständen finden hierbei besondere Berücksichtigung. Der zweite Teil dieses Kapitels behandelt akute und chronische Virusinfektionen des ZNS sowie in einem gesonderten Abschnitt die HIVInfektion und HIV-assoziierte Krankheitsbilder sowie Parasitosen und Pilzinfektionen, die in Industrieländern seit Einführung der HAART bei HIV zwar eher seltener, aber mit zunehmender Globalisierung auch in unseren Breiten immer noch anzutreffen sind.
Collapse
|
10
|
Ilboudo H, Bras-Gonçalves R, Camara M, Flori L, Camara O, Sakande H, Leno M, Petitdidier E, Jamonneau V, Bucheton B. Unravelling human trypanotolerance: IL8 is associated with infection control whereas IL10 and TNFα are associated with subsequent disease development. PLoS Pathog 2014; 10:e1004469. [PMID: 25375156 PMCID: PMC4223068 DOI: 10.1371/journal.ppat.1004469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/13/2014] [Indexed: 01/20/2023] Open
Abstract
In West Africa, Trypanosoma brucei gambiense, causing human African trypanosomiasis (HAT), is associated with a great diversity of infection outcomes. In addition to patients who can be diagnosed in the early hemolymphatic phase (stage 1) or meningoencephalitic phase (stage 2), a number of individuals can mount long-lasting specific serological responses while the results of microscopic investigations are negative (SERO TL+). Evidence is now increasing to indicate that these are asymptomatic subjects with low-grade parasitemia. The goal of our study was to investigate the type of immune response occurring in these “trypanotolerant” subjects. Cytokines levels were measured in healthy endemic controls (n = 40), stage 1 (n = 10), early stage 2 (n = 19), and late stage 2 patients (n = 23) and in a cohort of SERO TL+ individuals (n = 60) who were followed up for two years to assess the evolution of their parasitological and serological status. In contrast to HAT patients which T-cell responses appeared to be activated with increased levels of IL2, IL4, and IL10, SERO TL+ exhibited high levels of proinflammatory cytokines (IL6, IL8 and TNFα) and an almost absence of IL12p70. In SERO TL+, high levels of IL10 and low levels of TNFα were associated with an increased risk of developing HAT whereas high levels of IL8 predicted that serology would become negative. Further studies using high throughput technologies, hopefully will provide a more detailed view of the critical molecules or pathways underlying the trypanotolerant phenotype. Whereas immunological mechanisms involved in the control of trypanosome infections have been extensively studied in animal models, knowledge of how Trypanosoma brucei gambiense interacts with its human hosts lags far behind. In this study we measured cytokine levels in sleeping sickness patients and individuals who were apparently able to control infection to subdetection levels over long periods of time or who were engaged in a process of self-cure as demonstrated by the disappearance of specific antibodies. In contrast to patients, trypanotolerant subjects were characterized by a strong inflammatory response with elevated levels of IL8, IL6, and TNFα. This study indicates that both protective immune responses and markers of disease development exist in human T. brucei. gambiense infection and constitute an important step forward to identify new diagnostic or therapeutic targets in the fight against sleeping sickness.
Collapse
Affiliation(s)
- Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Unité de Recherches sur les Bases Biologiques de la Lutte Intégrée, Bobo-Dioulasso, Burkina Faso
| | - Rachel Bras-Gonçalves
- Institut de Recherche pour le Développement (IRD), UMR IRD-CIRAD 177 INTERTRYP, Campus International de Baillarguet, Montpellier, France
| | - Mamadou Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinée
| | - Laurence Flori
- Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), UMR IRD-CIRAD 177 INTERTRYP, Campus International de Baillarguet, Montpellier, France
- Institut National de la Recherche Agronomique (INRA), UMR 1313 GABI, F78350 Jouy-en-Josas, France
| | - Oumou Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinée
| | - Hassane Sakande
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Unité de Recherches sur les Bases Biologiques de la Lutte Intégrée, Bobo-Dioulasso, Burkina Faso
| | - Mamadou Leno
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinée
| | - Elodie Petitdidier
- Institut de Recherche pour le Développement (IRD), UMR IRD-CIRAD 177 INTERTRYP, Campus International de Baillarguet, Montpellier, France
| | - Vincent Jamonneau
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Unité de Recherches sur les Bases Biologiques de la Lutte Intégrée, Bobo-Dioulasso, Burkina Faso
- Institut de Recherche pour le Développement (IRD), UMR IRD-CIRAD 177 INTERTRYP, Campus International de Baillarguet, Montpellier, France
| | - Bruno Bucheton
- Institut de Recherche pour le Développement (IRD), UMR IRD-CIRAD 177 INTERTRYP, Campus International de Baillarguet, Montpellier, France
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinée
- * E-mail:
| |
Collapse
|
11
|
Bastos IMD, Motta FN, Grellier P, Santana JM. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis. Curr Med Chem 2014; 20:3103-15. [PMID: 23514419 PMCID: PMC3778648 DOI: 10.2174/0929867311320250006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
The trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp. cause Chagas disease, leishmaniasis and human African trypanosomiasis, respectively. It is estimated that over 10 million people worldwide suffer from these neglected diseases, posing enormous social and economic problems in endemic areas. There are no vaccines to prevent these infections and chemotherapies are not adequate. This picture indicates that new chemotherapeutic agents must be developed to treat these illnesses. For this purpose, understanding the biology of the pathogenic trypanosomatid-host cell interface is fundamental for molecular and functional characterization of virulence factors that may be used as targets for the development of inhibitors to be used for effective chemotherapy. In this context, it is well known that proteases have crucial functions for both metabolism and infectivity of pathogens and are thus potential drug targets. In this regard, prolyl oligopeptidase and oligopeptidase B, both members of the S9 serine protease family, have been shown to play important roles in the interactions of pathogenic protozoa with their mammalian hosts and may thus be considered targets for drug design. This review aims to discuss structural and functional properties of these intriguing enzymes and their potential as targets for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.
Collapse
Affiliation(s)
- I M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|
12
|
Holzmuller P, Grébaut P, Semballa S, Gonzatti MI, Geiger A. Proteomics: a new way to improve human African trypanosomiasis diagnosis? Expert Rev Proteomics 2014; 10:289-301. [DOI: 10.1586/epr.13.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Farina A, Dumonceau JM, Antinori P, Annessi-Ramseyer I, Frossard JL, Hochstrasser DF, Delhaye M, Lescuyer P. Bile carcinoembryonic cell adhesion molecule 6 (CEAM6) as a biomarker of malignant biliary stenoses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1018-25. [PMID: 23806607 DOI: 10.1016/j.bbapap.2013.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/25/2022]
Abstract
Differentiating malignant from nonmalignant biliary stenoses is challenging. This could be facilitated by the measurement of cancer biomarkers in bile. We aimed at (i) identifying new cancer biomarkers by comparative proteomic analysis of bile collected from patients with a malignant or benign biliary stenosis (exploratory phase) and (ii) verifying the accuracy of the newly identified potential biomarkers for discriminating malignant versus nonmalignant biliary stenoses in a larger group of patients (confirmation phase). Overall, 66 proteins were found overexpressed (ratio>1.5) in at least one cancer condition using proteomic analysis and 7 proteins were increased in all malignant/nonmalignant disease comparisons. Preliminary screening by immunoblot highlighted carcinoembryonic cell adhesion molecule 6 (CEAM6), a cell surface protein overexpressed in many human cancers, as an interesting candidate biomarker. ELISA subsequently confirmed CEAM6 as a potential bile biomarker for distinguishing malignant from benign biliary stenoses with a receiver operating characteristic (ROC) area under the curve (AUC) of 0.92 (specificity 83%, sensitivity 93%, positive predictive value 93%, and negative predictive value 83%). No significant difference in serum CEAM6 level was found between malignant and nonmalignant samples. Combining bile CEAM6 and serum CA19-9 in a panel further improved diagnostic accuracy for malignant stenoses (AUC 0.96, specificity 83%, sensitivity 97%, positive predictive value 93%, and negative predictive value 91%). CEAM6 measurement in bile could be clinically useful to discriminate between malignant and nonmalignant causes of biliary stenosis. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Annarita Farina
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland.
| | - Jean-Marc Dumonceau
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Paola Antinori
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Isabelle Annessi-Ramseyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Jean-Louis Frossard
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Denis F Hochstrasser
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Myriam Delhaye
- Department of Gastroenterology, Erasme Hospital, Free University of Brussels, Brussels BE-1070, Belgium
| | - Pierre Lescuyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| |
Collapse
|
14
|
Tiberti N, Lejon V, Hainard A, Courtioux B, Robin X, Turck N, Kristensson K, Matovu E, Enyaru JC, Mumba Ngoyi D, Krishna S, Bisser S, Ndung′u JM, Büscher P, Sanchez JC. Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 2013; 7:e2088. [PMID: 23469311 PMCID: PMC3585011 DOI: 10.1371/journal.pntd.0002088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background Post-therapeutic follow-up is essential to confirm cure and to detect early treatment failures in patients affected by sleeping sickness (HAT). Current methods, based on finding of parasites in blood and cerebrospinal fluid (CSF) and counting of white blood cells (WBC) in CSF, are imperfect. New markers for treatment outcome evaluation are needed. We hypothesized that alternative CSF markers, able to diagnose the meningo-encephalitic stage of the disease, could also be useful for the evaluation of treatment outcome. Methodology/Principal findings Cerebrospinal fluid from patients affected by Trypanosoma brucei gambiense HAT and followed for two years after treatment was investigated. The population comprised stage 2 (S2) patients either cured or experiencing treatment failure during the follow-up. IgM, neopterin, B2MG, MMP-9, ICAM-1, VCAM-1, CXCL10 and CXCL13 were first screened on a small number of HAT patients (n = 97). Neopterin and CXCL13 showed the highest accuracy in discriminating between S2 cured and S2 relapsed patients (AUC 99% and 94%, respectively). When verified on a larger cohort (n = 242), neopterin resulted to be the most efficient predictor of outcome. High levels of this molecule before treatment were already associated with an increased risk of treatment failure. At six months after treatment, neopterin discriminated between cured and relapsed S2 patients with 87% specificity and 92% sensitivity, showing a higher accuracy than white blood cell numbers. Conclusions/Significance In the present study, neopterin was highlighted as a useful marker for the evaluation of the post-therapeutic outcome in patients suffering from sleeping sickness. Detectable levels of this marker in the CSF have the potential to shorten the follow-up for HAT patients to six months after the end of the treatment. The reduction of the number of lumbar punctures performed during the follow-up of patients affected by sleeping sickness (HAT) is considered a research priority. Follow-up, consisting of the examination of cerebrospinal fluid (CSF) for presence of parasites and for the number of leukocytes, is necessary to assess treatment outcome. However, diagnosis of treatment failure is still imperfect and WHO encourages improvements in defining criteria. Many studies have attempted to standardize actual methods and to define a cut-off for the number of white blood cells in CSF to define relapses, while only few have proposed alternatives to current practice. Here we show that neopterin, already proven to be a powerful marker for staging T. b. gambiense HAT, is also useful in evaluating post-therapeutic outcome. The measurement of neopterin concentration in CSF during the follow-up may allow reduction in the number of lumbar punctures from five to three for the majority of cured patients.
Collapse
Affiliation(s)
- Natalia Tiberti
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Veerle Lejon
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alexandre Hainard
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Bertrand Courtioux
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, Limoges, France
| | - Xavier Robin
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Natacha Turck
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | | | - Enock Matovu
- Department of Veterinary Parasitology and Microbiology, School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - John Charles Enyaru
- Department of Biochemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, D. R. Congo
| | - Sanjeev Krishna
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, London, United Kingdom
| | - Sylvie Bisser
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, Limoges, France
| | | | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Charles Sanchez
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Bruschi F, Pinto B. The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens 2013; 2:105-29. [PMID: 25436884 PMCID: PMC4235708 DOI: 10.3390/pathogens2010105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/30/2013] [Accepted: 02/11/2013] [Indexed: 12/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) represent a large family of over twenty different secreted or membrane-bound endopeptidases, involved in many physiological (embryogenesis, precursor or stem cell mobilization, tissue remodeling during wound healing, etc.), as well as pathological (inflammation, tumor progression and metastasis in cancer, vascular pathology, etc.) conditions. For a long time, MMPs were considered only for the ability to degrade extracellular matrix (ECM) molecules (e.g., collagen, laminin, fibronectin) and to release hidden epitopes from the ECM. In the last few years, it has been fully elucidated that these molecules have many other functions, mainly related to the immune response, in consideration of their effects on cytokines, hormones and chemokines. Among others, MMP-2 and MMP-9 are endopeptidases of the MMP family produced by neutrophils, macrophages and monocytes. When infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. In this review, the involvement of MMPs and, in particular, of gelatinases in both protozoan and helminth infections will be described. In cerebral malaria, for example, MMPs play a role in the pathogenesis of such diseases. Also, trypanosomosis and toxoplasmosis will be considered for protozoan infections, as well as neurocysticercosis and angiostrongyloidosis, as regards helminthiases. All these situations have in common the proteolytic action on the blood brain barrier, mediated by MMPs.
Collapse
Affiliation(s)
- Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., University of Pisa, School of Medicine, Via Roma, 55, 56126, Italy.
| | - Barbara Pinto
- Department of Translational Research, N.T.M.S., University of Pisa, School of Medicine, Via Roma, 55, 56126, Italy.
| |
Collapse
|
16
|
Tiberti N, Matovu E, Hainard A, Enyaru JC, Lejon V, Robin X, Turck N, Ngoyi DM, Krishna S, Bisser S, Courtioux B, Büscher P, Kristensson K, Ndung'u JM, Sanchez JC. New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients. Clin Transl Med 2013; 2:1. [PMID: 23369533 PMCID: PMC3561069 DOI: 10.1186/2001-1326-2-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/25/2012] [Indexed: 12/26/2022] Open
Abstract
Accurate stage determination is crucial in the choice of treatment for patients suffering from sleeping sickness, also known as human African trypanosomiasis (HAT). Current staging methods, based on the counting of white blood cells (WBC) and the detection of parasites in the cerebrospinal fluid (CSF) have limited accuracy. We hypothesized that immune mediators reliable for staging T. b. gambiense HAT could also be used to stratify T. b. rhodesiense patients, the less common form of HAT. A population comprising 85 T. b. rhodesiense patients, 14 stage 1 (S1) and 71 stage 2 (S2) enrolled in Malawi and Uganda, was investigated. The CSF levels of IgM, MMP-9, CXCL13, CXCL10, ICAM-1, VCAM-1, neopterin and B2MG were measured and their staging performances evaluated using receiver operating characteristic (ROC) analyses. IgM, MMP-9 and CXCL13 were the most accurate markers for stage determination (partial AUC 88%, 86% and 85%, respectively). The combination in panels of three molecules comprising CXCL13-CXCL10-MMP-9 or CXCL13-CXCL10-IgM significantly increased their staging ability to partial AUC 94% (p value < 0.01). The present study highlighted new potential markers for stage determination of T. b. rhodesiense patients. Further investigations are needed to better evaluate these molecules, alone or in panels, as alternatives to WBC to make reliable choice of treatment.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Translation of human African trypanosomiasis biomarkers towards field application. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Tiberti N, Hainard A, Lejon V, Courtioux B, Matovu E, Enyaru JC, Robin X, Turck N, Kristensson K, Ngoyi DM, Vatunga GML, Krishna S, Büscher P, Bisser S, Ndung’u JM, Sanchez JC. Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness. PLoS One 2012; 7:e40909. [PMID: 22815865 PMCID: PMC3399808 DOI: 10.1371/journal.pone.0040909] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022] Open
Abstract
Background Sleeping sickness, or human African trypanosomiasis (HAT), is a protozoan disease that affects rural communities in sub-Saharan Africa. Determination of the disease stage, essential for correct treatment, represents a key issue in the management of patients. In the present study we evaluated the potential of CXCL10, CXCL13, ICAM-1, VCAM-1, MMP-9, B2MG, neopterin and IgM to complement current methods for staging Trypanosoma brucei gambiense patients. Methods and Findings Five hundred and twelve T. b. gambiense HAT patients originated from Angola, Chad and the Democratic Republic of the Congo (D.R.C.). Their classification as stage 2 (S2) was based on the number of white blood cells (WBC) (>5/µL) or presence of parasites in the cerebrospinal fluid (CSF). The CSF concentration of the eight markers was first measured on a training cohort encompassing 100 patients (44 S1 and 56 S2). IgM and neopterin were the best in discriminating between the two stages of disease with 86.4% and 84.1% specificity respectively, at 100% sensitivity. When a validation cohort (412 patients) was tested, neopterin (14.3 nmol/L) correctly classified 88% of S1 and S2 patients, confirming its high staging power. On this second cohort, neopterin also predicted both the presence of parasites, and of neurological signs, with the same ability as IgM and WBC, the current reference for staging. Conclusions This study has demonstrated that neopterin is an excellent biomarker for staging T. b. gambiense HAT patients. A rapid diagnostic test for detecting this metabolite in CSF could help in more accurate stage determination.
Collapse
Affiliation(s)
- Natalia Tiberti
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Alexandre Hainard
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Veerle Lejon
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bertrand Courtioux
- INSERM UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, Limoges, France
| | - Enock Matovu
- Department of Veterinary Parasitology and Microbiology, School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - John Charles Enyaru
- Department of Biochemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Xavier Robin
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Natacha Turck
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | | | - Dieudonné Mumba Ngoyi
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, D. R. Congo
| | | | - Sanjeev Krishna
- Division of Cellular and Molecular Medicine, Centre for Infection, St. George’s, University of London, London, Great Britain
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sylvie Bisser
- INSERM UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, Limoges, France
| | | | - Jean-Charles Sanchez
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012:748206. [PMID: 22792442 PMCID: PMC3390111 DOI: 10.1155/2012/748206] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 12/29/2022] Open
Abstract
Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.
Collapse
|
20
|
Seke Etet PF, Mahomoodally MF. New insights in staging and chemotherapy of African trypanosomiasis and possible contribution of medicinal plants. ScientificWorldJournal 2012; 2012:343652. [PMID: 22593674 PMCID: PMC3349134 DOI: 10.1100/2012/343652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a fatal if untreated fly-borne neuroinflammatory disease caused by protozoa of the species Trypanosoma brucei (T.b.). The increasing trend of HAT cases has been reversed, but according to WHO experts, new epidemics of this disease could appear. In addition, HAT is still a considerable burden for life quality and economy in 36 sub-Saharan Africa countries with 15-20 million persons at risk. Following joined initiatives of WHO and private partners, the fight against HAT was re-engaged, resulting in considerable breakthrough. We present here what is known at this day about HAT etiology and pathogenesis and the new insights in the development of accurate tools and tests for disease staging and severity monitoring in the field. Also, we elaborate herein the promising progresses made in the development of less toxic and more efficient trypanocidal drugs including the potential of medicinal plants and related alternative drug therapies.
Collapse
Affiliation(s)
- Paul F Seke Etet
- Department of Neurological Sciences (DNNMMS), University of Verona, Via Delle Grazie 8, 37134 Verona, Italy
| | | |
Collapse
|
21
|
Etet PFS, Palomba M, Colavito V, Grassi-Zucconi G, Bentivoglio M, Bertini G. Sleep and Rhythm Changes at the Time ofTrypanosoma bruceiInvasion of the Brain Parenchyma in the Rat. Chronobiol Int 2012; 29:469-81. [DOI: 10.3109/07420528.2012.660713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Towards Point-of-Care Diagnostic and Staging Tools for Human African Trypanosomiaisis. J Trop Med 2012; 2012:340538. [PMID: 22545057 PMCID: PMC3321554 DOI: 10.1155/2012/340538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Human African trypanosomiasis is a debilitating disease prevalent in rural sub-Saharan Africa. Control of this disease almost exclusively relies on chemotherapy that should be driven by accurate diagnosis, given the unacceptable toxicity of the few available drugs. Unfortunately, the available diagnostics are characterised by low sensitivities due to the inherent low parasitaemia in natural infections. Demonstration of the trypanosomes in body fluids, which is a prerequisite before treatment, often follows complex algorithms. In this paper, we review the available diagnostics and explore recent advances towards development of novel point-of-care diagnostic tests.
Collapse
|
23
|
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier that protects the central nervous system (CNS) from invasion by blood-borne pathogens including parasites. However, some intracellular and extracellular parasites can traverse the BBB during the course of infection and cause neurological disturbances and/or damage which are at times fatal. The means by which parasites cross the BBB and how the immune system controls the parasites within the brain are still unclear. In this review we present the current understanding of the processes utilized by two human neuropathogenic parasites, Trypanosoma brucei spp and Toxoplasma gondii, to go across the BBB and consequences of CNS invasion. We also describe briefly other parasites that can invade the brain and how they interact with or circumvent the BBB. The roles played by parasite-derived and host-derived molecules during parasitic and white blood cell invasion of the brain are discussed.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Applied Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
24
|
Bisser S, Courtioux B. La maladie du sommeil, fin d’une épidémie ? Rev Neurol (Paris) 2012; 168:230-8. [DOI: 10.1016/j.neurol.2011.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/06/2011] [Indexed: 10/28/2022]
|
25
|
Njamnshi AK, Seke Etet PF, Perrig S, Acho A, Funsah JY, Mumba D, Muyembe JJ, Kristensson K, Bentivoglio M. Actigraphy in human African trypanosomiasis as a tool for objective clinical evaluation and monitoring: a pilot study. PLoS Negl Trop Dis 2012; 6:e1525. [PMID: 22348168 PMCID: PMC3279345 DOI: 10.1371/journal.pntd.0001525] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/29/2011] [Indexed: 02/05/2023] Open
Abstract
Background Human African trypanosomiasis (HAT) or sleeping sickness leads to a complex neuropsychiatric syndrome with characteristic sleep alterations. Current division into a first, hemolymphatic stage and second, meningoencephalitic stage is primarily based on the detection of white blood cells and/or trypanosomes in the cerebrospinal fluid. The validity of this criterion is, however, debated, and novel laboratory biomarkers are under study. Objective clinical HAT evaluation and monitoring is therefore needed. Polysomnography has effectively documented sleep-wake disturbances during HAT, but could be difficult to apply as routine technology in field work. The non-invasive, cost-effective technique of actigraphy has been widely validated as a tool for the ambulatory evaluation of sleep disturbances. In this pilot study, actigraphy was applied to the clinical assessment of HAT patients. Methods/Principal Findings Actigraphy was recorded in patients infected by Trypanosoma brucei gambiense, and age- and sex-matched control subjects. Simultaneous nocturnal polysomnography was also performed in the patients. Nine patients, including one child, were analyzed at admission and two of them also during specific treatment. Parameters, analyzed with user-friendly software, included sleep time evaluated from rest-activity signals, rest-activity rhythm waveform and characteristics. The findings showed sleep-wake alterations of various degrees of severity, which in some patients did not parallel white blood cell counts in the cerebrospinal fluid. Actigraphic recording also showed improvement of the analyzed parameters after treatment initiation. Nocturnal polysomnography showed alterations of sleep time closely corresponding to those derived from actigraphy. Conclusions/Significance The data indicate that actigraphy can be an interesting tool for HAT evaluation, providing valuable clinical information through simple technology, well suited also for long-term follow-up. Actigraphy could therefore objectively contribute to the clinical assessment of HAT patients. This method could be incorporated into a clinical scoring system adapted to HAT to be used in the evaluation of novel treatments and laboratory biomarkers. The clinical picture of the parasitic disease human African trypanosomiasis (HAT, also called sleeping sickness) is dominated by sleep alterations. We here used actigraphy to evaluate patients affected by the Gambiense form of HAT. Actigraphy is based on the use of battery-run, wrist-worn devices similar to watches, widely used in middle-high income countries for ambulatory monitoring of sleep disturbances. This pilot study was motivated by the fact that the use of polysomnography, which is the gold standard technology for the evaluation of sleep disorders and has greatly contributed to the objective identification of signs of disease in HAT, faces tangible challenges in resource-limited countries where the disease is endemic. We here show that actigraphy provides objective data on the severity of sleep-wake disturbances that characterize HAT. This technique, which does not disturb the patient's routine activities and can be applied at home, could therefore represent an interesting, non-invasive tool for objective HAT clinical assessment and long-term monitoring under field conditions. The use of this method could provide an adjunct marker of HAT severity and for treatment follow-up, or be evaluated in combination with other disease biomarkers in body fluids that are currently under investigation in many laboratories.
Collapse
Affiliation(s)
- Alfred K Njamnshi
- Neurology Department, Central Hospital Yaoundé/Faculty of Medicine, University of Yaoundé I, Yaoundé, Cameroon.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Matrix metalloproteinases (MMPs) were originally identified as matrixin proteases that act in the extracellular matrix. Recent works have uncovered nontraditional roles for MMPs in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized matrixins participate in many physiological and pathological cellular processes, in which they can act as both degradative and regulatory proteases. In this review, we discuss the transcriptional and translational control of matrixin expression, their regulation of intracellular sorting, and the structural basis of activation and inhibition. In particular, we highlight the emerging roles of various matrixin forms in diseases. The activity of matrix metalloproteinases is regulated at several levels, including enzyme activation, inhibition, complex formation and compartmentalization. Most MMPs are secreted and have their function in the extracellular environment. MMPs are also found inside cells, both in the nucleus, cytosol and organelles. The role of intracellular located MMPs is still poorly understood, although recent studies have unraveled some of their functions. The localization, activation and activity of MMPs are regulated by their interactions with other proteins, proteoglycan core proteins and / or their glycosaminoglycan chains, as well as other molecules. Complexes formed between MMPs and various molecules may also include interactions with noncatalytic sites. Such exosites are regions involved in substrate processing, localized outside the active site, and are potential binding sites of specific MMP inhibitors. Knowledge about regulation of MMP activity is essential for understanding various physiological processes and pathogenesis of diseases, as well as for the development of new MMP targeting drugs.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo of Urbino, Via O. Ubaldini 7, 61029 Urbino (PU), Italy.
| | | |
Collapse
|
27
|
Infektionen. NEUROINTENSIV 2012. [PMCID: PMC7123678 DOI: 10.1007/978-3-642-16911-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trotz Weiterentwicklung moderner Antibiotika in den letzten Jahren sind die Letalitätszahlen der bakteriellen (eitrigen) Meningitis weiterhin hoch; Überlebende haben häufig neurologische Residuen. Die ungünstigen klinischen Verläufe der bakteriellen Meningitis sind meist Folge intrakranieller Komplikationen, wie z. B. eines generalisierten Hirnödems, einer zerebrovaskulären arteriellen oder venösen Beteiligung oder eines Hydrozephalus.
Collapse
|
28
|
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2011; 133:257-79. [PMID: 22138604 DOI: 10.1016/j.pharmthera.2011.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with processes of tissue remodeling and are expressed in all infections with protozoan parasites. We here report the status of MMP research in malaria, trypanosomiasis, leishmaniasis and toxoplasmosis. In all these infections, the balances between MMPs and endogenous MMP inhibitors are disturbed, mostly in favor of active proteolysis. When the infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. These pathologies include cerebral malaria, sleeping sickness (human African trypanosomiasis), Chagas disease (human American trypanosomiasis), leishmaniasis and toxoplasmic encephalitis in immunocompromised hosts. Destruction of the integrity of the blood-brain barrier (BBB) is a common denominator that may be executed by leukocytic MMPs under the control of host cytokines and chemokines as well as influenced by parasite products. Mechanisms by which parasite-derived products alter host expression of MMP and endogenous MMP inhibitors, have only been described for hemozoin (Hz) in malaria. Hence, understanding these interactions in other parasitic infections remains an important challenge. Furthermore, the involved parasites are also known to produce their own metalloproteinases, and this forms an extra stimulus to investigate MMP inhibitory drugs as therapeutics. MMP inhibitors (MMPIs) may dampen collateral tissue damage, as is anecdotically reported for tetracyclines as MMP regulators in parasite infections.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium
| | | | | |
Collapse
|
29
|
Grab DJ, Chakravorty SJ, van der Heyde H, Stins MF. How can microbial interactions with the blood-brain barrier modulate astroglial and neuronal function? Cell Microbiol 2011; 13:1470-8. [DOI: 10.1111/j.1462-5822.2011.01661.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|