1
|
Pearson LA, Karuso P, Neilan BA. Structure, biosynthesis and activity of indolactam alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 92:1-45. [PMID: 39384253 DOI: 10.1016/bs.alkal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Indolactam alkaloids are a family of aromatic toxins produced by various actinobacteria and the cyanobacterium, Moorena producens. The best characterized examples include the teleocidins, lyngbyatoxins, olivoretins, blastmycetins, and pendolmycins, which share a nine-membered lactam core, comprised from l-tryptophanol and l-valine. Contact with indolactam alkaloids has been linked to severe dermatitis (swimmers itch), while accidental ingestion may lead to illness and fatalities. Indolactam alkaloids are also potent tumor promotors, due to their activation of protein kinase C isozymes. This chapter reviews the current literature on indolactam alkaloids, from their discovery in the early 1960s up to 2024. Topics covered include the isolation, structural elucidation, biosynthesis, bioactivity, and total synthesis of the indolactam alkaloid core.
Collapse
Affiliation(s)
- Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; The Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, Australia.
| | - Peter Karuso
- Department of Applied Biosciences, Macquarie University, Macquarie Park, NSW, Australia; School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; The Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, Australia
| |
Collapse
|
2
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, da Silva EB, O'Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat Commun 2024; 15:5230. [PMID: 38898025 PMCID: PMC11187115 DOI: 10.1038/s41467-024-49367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexander B Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mitchell N Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Paul R Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, Barbosa da Silva E, O’Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small Molecule in situ Resin Capture - A Compound First Approach to Natural Product Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530684. [PMID: 37398257 PMCID: PMC10312467 DOI: 10.1101/2023.03.02.530684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microbial natural products remain an important resource for drug discovery. Yet, commonly employed discovery techniques are plagued by the rediscovery of known compounds, the relatively few microbes that can be cultured, and laboratory growth conditions that do not elicit biosynthetic gene expression among myriad other challenges. Here we introduce a culture independent approach to natural product discovery that we call the Small Molecule In situ Resin Capture (SMIRC) technique. SMIRC exploits in situ environmental conditions to elicit compound production and represents a new approach to access poorly explored chemical space by capturing natural products directly from the environments in which they are produced. In contrast to traditional methods, this compound-first approach can capture structurally complex small molecules across all domains of life in a single deployment while relying on Nature to provide the complex and poorly understood environmental cues needed to elicit biosynthetic gene expression. We illustrate the effectiveness of SMIRC in marine habitats with the discovery of numerous new compounds and demonstrate that sufficient compound yields can be obtained for NMR-based structure assignment. Two new compound classes are reported including one novel carbon skeleton that possesses a functional group not previously observed among natural products and a second that possesses potent biological activity. We introduce expanded deployments, in situ cultivation, and metagenomics as methods to facilitate compound discovery, enhance yields, and link compounds to producing organisms. This compound first approach can provide unprecedented access to new natural product chemotypes with broad implications for drug discovery.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam N. Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander B. Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mitchell N. Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul R. Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Ducrot YM, Thomas OP, Nicolas M, Kakue G, Desnues A, Payri C, Bertolotti A. Toxic seaweed dermatitis in New Caledonia: An epidemiological and clinical study of 83 cases. J Eur Acad Dermatol Venereol 2023; 37:e66-e69. [PMID: 35974442 DOI: 10.1111/jdv.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Yves-Marie Ducrot
- Centre Médico-Social de Wé, Direction de l'Action Communautaire et de l'Action Sanitaire, Province des îles Loyauté, Lifou, New Caledonia
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Maël Nicolas
- Département de Chimie, Université Cote d'Azur, Nice, France
| | - Georges Kakue
- Direction du Développement Durable et de la Recherche Appliquée, Province des îles Loyauté, Lifou, New Caledonia
| | - Anne Desnues
- IMAGO, Institut de Recherche pour le Développement (IRD), IMAGO, LAMA, Nouméa, New Caledonia
| | - Claude Payri
- UMR ENTROPIE (IRD, UR, CNRS), LabEx-CORAIL, Institut de Recherche pour le Développement, Nouméa, New Caledonia
| | - Antoine Bertolotti
- Service des Maladies Infectieuses - Dermatologie, CHU de la Réunion, Saint-Pierre, France.,Inserm CIC1410, CHU de la Réunion, Saint-Pierre, France
| |
Collapse
|
5
|
Abstract
Cyanobacteria constitute an interesting group of photosynthetic microorganisms due to their morphological and genetic diversity that is related to their extremely long evolution process, which created the need for them to adapt to immensely heterogeneous environmental conditions. Cyanobacteria grow in salt and fresh waters as well as on the surface of soils and rocks. The diverse cell structure is characterized by the fact that they occur in many morphological forms, from small single cells through to larger ones as well as branches, threads, or spirals. Taking into account the presence of cyanobacteria in virtually all possible conditions and places on Earth, cyanobacteria represent an unexplored potential that is worth investigating. This review presents the possibilities of using algae in chosen areas of biotechnology: e.g., as biocatalysts or in industries such as the pharmaceutical industry. It covers the characteristics of secondary metabolites along with their division and the potential of using them as sources of effective drugs for many diseases. It presents an overview of the possibilities of using cyanobacteria in biotransformation processes. These processes are of great importance in the case of, for example, the neutralization of municipal, industrial, or chemical waste, the amount of which is constantly growing every year, and they are also an easier and cheaper path to obtain chemical compounds.
Collapse
|
6
|
Adamski M, Zimolag E, Kaminski A, Drukała J, Bialczyk J. Effects of cylindrospermopsin, its decomposition products, and anatoxin-a on human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142670. [PMID: 33069473 DOI: 10.1016/j.scitotenv.2020.142670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Toxins produced by cyanobacteria (cyanotoxins) are among the most dangerous natural compounds. In recent years, there have been many published papers related to the toxic alkaloids cylindrospermopsin (CYN) and anatoxin-a (ANTX-a), which are synthesized by several freshwater species of cyanobacteria (i.e. Raphidiopsis raciborskii and Anabaena flos-aquae) and are some of the most common cyanotoxins in aquatic reservoirs. The harmful properties of CYN are wide and primarily include cytotoxicity. To date, several analogs and decomposition products of CYN have been described, which can potentially increase its toxic effects in living organisms. The mode of action of ANTX-a is different than that observed after CYN exposure and involves structures in the nervous system. One of the most frequent situations in which cyanotoxins are introduced into the human body is by skin contact with contaminated water, i.e., during water sports, fishing or agriculture. Unfortunately, to date, knowledge on the influence of CYN, its decomposition products, and ANTX-a on human skin is limited. In this paper, we investigated the impact of CYN, its decomposition products, and ANTX-a on the proliferation of human keratinocytes, which provide a protective barrier on the skin. Moreover, we described the cytotoxic effects developed in the selected cell type and estimated the ability of the keratinocytes to migrate under the influence of the studied cyanotoxins. The obtained results suggest that CYN and its decomposition products at concentrations corresponding to that determined for CYN in nature (1 μg·mL-1) are strong inhibitors of keratinocyte proliferation (70% inhibition within 24 h for pure CYN). The cytotoxic effects of CYN and the CYN decomposition products on keratinocytes was also significant, and the pure toxin (1 μg·mL-1) was estimated to be 35% after 24 h of exposure. Similarly, harmful effects caused by CYN and its byproducts were observed during keratinocyte migration, and the initial form of the toxin (1 μg·mL-1) showed 40% inhibition within 16 h. Different results were obtained for ANTX-a. The toxic effects of this compound on human keratinocytes estimated by the applied tests was observed only at the highest tested concentration (10 μg·mL-1) and after a long period of exposure. The results presented in this paper are, to the best of our knowledge, the first description of the influence of CYN, CYN decomposition products, and ANTX-a on human epidermal cells. Clearly, CYN and its decomposition products are serious threats not only when acting on internal organs but also during the skin contact stage. Further studies on cyanotoxins should focus on the determination of their decomposition products and ecotoxicology in natural aquatic environments.
Collapse
Affiliation(s)
- Michal Adamski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Eliza Zimolag
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ariel Kaminski
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Drukała
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jan Bialczyk
- Department of Plant Physiology and Development, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
7
|
Durán-Vinet B, Araya-Castro K, Chao TC, Wood SA, Gallardo V, Godoy K, Abanto M. Potential applications of CRISPR/Cas for next-generation biomonitoring of harmful algae blooms: A review. HARMFUL ALGAE 2021; 103:102027. [PMID: 33980455 DOI: 10.1016/j.hal.2021.102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Research on harmful algal and cyanobacterial blooms (HABs and CHABs) has risen dramatically due to their increasing global distribution, frequency, and intensity. These blooms jeopardize public health, ecosystem function, sustainability and can have negative economic impacts. Numerous monitoring programs have been established using light microscopy, liquid chromatography coupled to mass spectrometry (LC-MS), ELISA, and spectrophotometry to monitor HABs/CHABs outbreaks. Recently, DNA/RNA-based molecular methods have been integrated into these programs to replace or complement traditional methods through analyzing environmental DNA and RNA (eDNA/eRNA) with techniques such as quantitative polymerase chain reaction (qPCR), fluorescent in situ hybridization (FISH), sandwich hybridization assay (SHA), isothermal amplification methods, and microarrays. These have enabled the detection of rare or cryptic species, enhanced sample throughput, and reduced costs and the need for visual taxonomic expertise. However, these methods have limitations, such as the need for high capital investment in equipment or detection uncertainties, including determining whether organisms are viable. In this review, we discuss the potential of newly developed molecular diagnosis technology based on Clustered Regularly Interspaced Short Palindromic Repeats/Cas proteins (CRISPR/Cas), which utilizes the prokaryotic adaptative immune systems of bacteria and archaea. Cas12 and Cas13-based platforms can detect both DNA and RNA with attomolar sensitivity within an hour. CRISPR/Cas diagnostic is a rapid, inexpensive, specific, and ultrasensitive technology that, with some further development, will provide many new platforms that can be used for HABs/CHABs biomonitoring and research.
Collapse
Affiliation(s)
- B Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile; Bachelor of Biotechnology (Honours) Program, Faculty of Agricultural and Forestry Sciences, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile.
| | - K Araya-Castro
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - T C Chao
- Institute of Environmental Change & Society, Department of Biology, University of Regina, Wascana Parkway, 3737 Regina, Canada
| | - S A Wood
- Coastal and Freshwater Group, Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - V Gallardo
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile; Bachelor of Biotechnology (Honours) Program, Faculty of Agricultural and Forestry Sciences, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - K Godoy
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Microscopy and Flow Cytometry Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| | - M Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Genomics and Bioinformatics Unit, Universidad de La Frontera, Av. Francisco Salazar, 1145 Temuco, Chile
| |
Collapse
|
8
|
Adverse Skin Reactions to Plants and Plant Products. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
|
10
|
Lovell C, Paulsen E, Lepoittevin JP. Adverse Skin Reactions to Plants and Plant Products. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_88-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Lovell C, Paulsen E, Lepoittevin JP. Plants and Plant Products. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_88-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Nagai H, Sato S, Iida K, Hayashi K, Kawaguchi M, Uchida H, Satake M. Oscillatoxin I: A New Aplysiatoxin Derivative, from a Marine Cyanobacterium. Toxins (Basel) 2019; 11:E366. [PMID: 31234410 PMCID: PMC6628398 DOI: 10.3390/toxins11060366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria have been shown to produce a number of bioactive compounds, including toxins. Some bioactive compounds obtained from a marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) have been recognized as drug leads; one of these compounds is aplysiatoxin. We have isolated various aplysiatoxin derivatives from a M. producens sample obtained from the Okinawan coastal area. The frozen sample was extracted with organic solvents. The ethyl acetate layer was obtained from the crude extracts via liquid-liquid partitioning, then separated by HPLC using a reversed-phase column. Finally, 1.1 mg of the compound was isolated. The chemical structure of the isolated compound was elucidated with spectroscopic methods, using HR-MS and 1D and 2D NMR techniques, and was revealed to be oscillatoxin I, a new member of the aplysiatoxin family. Oscillatoxin I showed cytotoxicity against the L1210 mouse lymphoma cell line and diatom growth-inhibition activity against the marine diatom Nitzschia amabilis.
Collapse
Affiliation(s)
- Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Shingo Sato
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Kaori Iida
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Kazutaka Hayashi
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Mioko Kawaguchi
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Hajime Uchida
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa 236-8648, Japan.
| | - Masayuki Satake
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Roué M, Darius HT, Chinain M. Solid Phase Adsorption Toxin Tracking (SPATT) Technology for the Monitoring of Aquatic Toxins: A Review. Toxins (Basel) 2018; 10:toxins10040167. [PMID: 29677131 PMCID: PMC5923333 DOI: 10.3390/toxins10040167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
The Solid Phase Adsorption Toxin Tracking (SPATT) technology, first introduced in 2004, uses porous synthetic resins capable of passively adsorbing toxins produced by harmful microalgae or cyanobacteria and dissolved in the water. This method allows for the detection of toxic compounds directly in the water column and offers numerous advantages over current monitoring techniques (e.g., shellfish or fish testing and microalgae/cyanobacteria cell detection), despite some limitations. Numerous laboratory and field studies, testing different adsorbent substrates of which Diaion® HP20 resin appears to be the most versatile substrate, have been carried out worldwide to assess the applicability of these passive monitoring devices to the detection of toxins produced by a variety of marine and freshwater microorganisms. SPATT technology has been shown to provide reliable, sensitive and time-integrated sampling of various aquatic toxins, and also has the potential to provide an early warning system for both the occurrence of toxic microalgae or cyanobacteria and bioaccumulation of toxins in foodstuffs. This review describes the wide range of lipophilic and hydrophilic toxins associated with toxin-producing harmful algal blooms (HABs) that are successfully detected by SPATT devices. Implications in terms of monitoring of emerging toxic risks and reinforcement of current risk assessment programs are also discussed.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement (IRD), UMR 241 EIO, P.O. box 53267, 98716 Pirae, Tahiti, French Polynesia.
| | - Hélène Taiana Darius
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM), UMR 241 EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mireille Chinain
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM), UMR 241 EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
14
|
Funari E, Manganelli M, Buratti FM, Testai E. Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:867-880. [PMID: 28458204 DOI: 10.1016/j.scitotenv.2017.03.232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria thrive in many aquatic environments, where they can produce cyanotoxins with different toxicological profile. Anthropic pressure and climate changes are causing the expansion in terms of time and space of their blooms, increasing the concerns for human health in several exposure scenarios. Here the update of the Italian guidelines for the management of cyanobacterial blooms in bathing water is presented. A risk-based approach has been developed according to the current scientific knowledge on cyanobacteria distribution in the Italian Lakes and on chemical, toxicological and epidemiological aspects of different cyanotoxins, summarized in the first part of the paper. Oral, dermal and inhalation exposure to cyanotoxins, during recreational activities, are individually examined, to develop a framework of thresholds and actions aimed at preventing harmful effects for bathers. Guidelines, also by comparing international guidance values and/or guidelines, provide criteria to plan environmental monitoring activities, health surveillance and public communication systems. Finally the still important scientific gaps and research needs are highlighted.
Collapse
Affiliation(s)
- Enzo Funari
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maura Manganelli
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Franca M Buratti
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Emanuela Testai
- Istituto Superiore di Sanità, Dept. of Environment and Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
15
|
Puschner B, Bautista AC, Wong C. Debromoaplysiatoxin as the Causative Agent of Dermatitis in a Dog after Exposure to Freshwater in California. Front Vet Sci 2017; 4:50. [PMID: 28428958 PMCID: PMC5382154 DOI: 10.3389/fvets.2017.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/24/2017] [Indexed: 11/23/2022] Open
Abstract
Contamination of recreational waters with cyanobacterial toxins continues to increase and presents a risk to animals and humans. Although cases of acute hepato- and neurotoxicoses in dogs following cyanotoxin exposure exist, no reports of skin-related reactions in dogs exist. A 5-year-old female spayed 34 kg Bracco Italiano was initially presented for rapid onset of severe pruritus and urticaria. Marked excoriation and erythema were noted over the chest and neck, while urticaria was noted in the inguinal regions and ventral abdomen. Initial basic dermatology work-up excluded parasitic, fungal, and bacterial organisms. Due to the severity and progression of urticaria, the dog received IV dexamethasone and IM diphenhydramine. Improvement of the urticaria and the dog’s clinical status was noted over the next 45 min. Assessment of the dog’s environment revealed access to a lake on the property with visible algal bloom. Water from the lake was submitted for toxicology testing and revealed the presence of debromoaplysiatoxin. Access to the lake was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the skin irritation. To the authors’ knowledge, this is the first case report of debromoaplysiatoxin exposure in a dog after swimming in cyanobacteria-contaminated water. Veterinarians should recognize the potential harm that contaminated waters may cause in terms of dermal, hepatic, and neurological conditions. In addition, more prudent oversight of contaminated recreational waters is recommended for animals and humans to prevent adverse events and intoxications.
Collapse
Affiliation(s)
- Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Adrienne C Bautista
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Chris Wong
- VCA Sacramento Veterinary Referral Center, Sacramento, CA, USA
| |
Collapse
|
16
|
Carmichael WW, Boyer GL. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. HARMFUL ALGAE 2016; 54:194-212. [PMID: 28073476 DOI: 10.1016/j.hal.2016.02.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 05/17/2023]
Abstract
Harmful cyanobacterial blooms (cHABs) have significant socioeconomic and ecological costs, which impact drinking water, fisheries, agriculture, tourism, real estate, water quality, food web resilience and habitats, and contribute to anoxia and fish kills. Many of these costs are well described, but in fact are largely unmeasured. Worldwide cHABs can produce toxins (cyanotoxins), which cause acute or chronic health effects in mammals (including humans) and other organisms. There are few attempts to characterize the full health-related effects other than acute incidences, which may go unrecorded. At present these are difficult to access and evaluate and may be ascribed to other causes. Such information is fundamental to measure the full costs of cHABs and inform the need for often-costly management and remediation. This paper synthesizes information on cHABs occurrence, toxicology and health effects, and relates this to past and current conditions in the Great Lakes, a major global resource which supplies 84% of the surface water in North America. This geographic region has seen a significant resurgence of cHABs since the 1980s. In particular we focus on Lake Erie, where increased reporting of cHABs has occurred from the early 1990's. We evaluate available information and case reports of cHAB-related illness and death and show that cHABs occur throughout the basin, with reports of animal illness and death, especially dogs and livestock. Lake Erie has consistently experienced cHABs and cyanotoxins in the last decade with probable cases of human illness, while the other Great Lakes show intermittent cHABs and toxins, but no confirmed reports on illness or toxicity. The dominant toxigenic cyanobacterium is the genus Microcystis known to produce microcystins. The presence of other cyanotoxins (anatoxin-a, paralytic shellfish toxins) implicates other toxigenic cyanobacteria such as Anabaena (Dolichospermum) and Lyngbya.
Collapse
Affiliation(s)
- Wayne W Carmichael
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - Gregory L Boyer
- Department of Chemistry, State University of New York-College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| |
Collapse
|
17
|
Taylor MS, Stahl-Timmins W, Redshaw CH, Osborne NJ. Toxic alkaloids in Lyngbya majuscula and related tropical marine cyanobacteria. HARMFUL ALGAE 2014; 31:1-8. [PMID: 28040098 DOI: 10.1016/j.hal.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 06/06/2023]
Abstract
The cyanobacterium Lyngbya majuscula is found in the littoral zone and to a depth of 30m in tropical, subtropical and temperate regions across the globe, as well as being an important contributor to coral reef ecosystems. This cyanobacterium produces a range of chemicals that may contribute to a variety of negative health outcomes including skin, eye and respiratory irritation. The toxic compounds, lyngbyatoxin A and debromoaplysiatoxin, have been implicated in acute dermatologic reactions in human swimmers, and experiments involving these two toxins show the formation of acute dermal lesions. We explore the reported distribution and health implications of L. majuscula, with reference to factors affecting bloom frequency. The likely implications of climate change upon the distribution of the organism, and frequency of blooms are also described.
Collapse
Affiliation(s)
- Mark S Taylor
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK.
| | - Will Stahl-Timmins
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK
| | - Clare H Redshaw
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Nicholas J Osborne
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK; Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Australia
| |
Collapse
|
18
|
In vitro and in vivo toxicity evaluation of the freshwater cyanobacterium Heteroleiblenia kuetzingii. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractCyanobacteria are prokaryotic organisms characterized by their ability to produce secondary metabolites with different biological activities. The aim of this work was to evaluate the in vitro and in vivo toxicity of the cosmopolitan freshwater cyanobacterium H. kuetzingii. An extract from H. kuetzingii and cyanobacterial growth media were assessed for presence of intracellular and extracellular toxins by in vitro tests using primary cell cultures from mouse kidney and fibroblasts, cell lines A549 and 3T3, a fish cell line RTgill-W1 as well as by a traditional in vivo mouse bioassay. The presence of toxicity was compared with the ELISA and HPLC data for corresponding cyanotoxins. In vitro tests showed pronounced cytotoxicity of the cyanobacterium extract and growth medium in which H. kuetzingii released potential extracellular toxic compounds as the mammalian cells were significantly more sensitive to exposure compared to the fish cells. Histopathological analyses of the liver and kidneys of treated mice showed pathological changes such as leukocyte infiltration and necrosis, changes in the proximal and distal convoluted tubules, lack of differentiation of Bowman’s space, enlarged Bowman’s capsules and massive hemorrhages. ELISA and HPLC analyses confirmed the presence of saxitoxins and microcystins at low concentrations. In addition, the histological analyses suggest that H. kuetzingii produces other, yet unknown toxic metabolites. Monitoring efforts are therefore required to evaluate the potential hazard for the freshwater aquatic systems and possible public health implications associated with this cyanobacterium.
Collapse
|