1
|
Kim KH, Kim SJ, Eccles JD, Ascoli C, Park GY. Tumor immunogenicity regulates host immune responses, and conventional dendritic cell type 2 uptakes the majority of tumor antigens in an orthotopic lung cancer model. Cancer Immunol Immunother 2024; 73:237. [PMID: 39358651 PMCID: PMC11447165 DOI: 10.1007/s00262-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequently, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), whereas cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating antitumor immune responses in an orthotopic murine lung cancer model.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Kim KH, Park GY, Kim SJ, Eccles JD, Ascoli C. Tumor immunogenicity regulates host immune responses, and conventional dendritic cell type 2 uptakes the majority of tumor antigens in an orthotopic lung cancer model. RESEARCH SQUARE 2024:rs.3.rs-4438402. [PMID: 38853999 PMCID: PMC11160902 DOI: 10.21203/rs.3.rs-4438402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequentially, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), where cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating anti-tumor immune responses in an orthotopic murine lung cancer model.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
3
|
Cai R, Zhou C, Tang R, Meng Y, Zeng J, Li Y, Wen X. Current insights on gut microbiome and chronic urticaria: progress in the pathogenesis and opportunities for novel therapeutic approaches. Gut Microbes 2024; 16:2382774. [PMID: 39078229 PMCID: PMC11290762 DOI: 10.1080/19490976.2024.2382774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic urticaria (CU) is a prevalent skin disorder greatly impacting the patients' life quality, in which immune dysregulation mediated by gut microbiome plays a significant role. Several studies have found the gut dysbiosis exists in patients with CU. In addition, infection may also be one of the causes of CU. The primary treatment currently used for CU is the second-generation non-sedating H1-antihistamines (nsAH). However, there are some limitations in current therapies. Based on the latest evidence, this review provides an updated overview of how the gut dysbiosis influences CU development, explores potential therapeutic approaches based on the gut microbiota and summarizes the interaction between gut microbiota and current treatment.
Collapse
Affiliation(s)
- Rui Cai
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruisi Tang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanling Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Moon HG, Eccles JD, Kim SJ, Kim KH, Kim YM, Rehman J, Lee H, Kanabar P, Christman JW, Ackerman SJ, Ascoli C, Kang H, Choi HS, Kim M, You S, Park GY. Complement C1q essential for aeroallergen sensitization via CSF1R + conventional dendritic cells type 2. J Allergy Clin Immunol 2023; 152:1141-1152.e2. [PMID: 37562753 PMCID: PMC10923196 DOI: 10.1016/j.jaci.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago.
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Young-Mee Kim
- Department of Pharmacology, University of Illinois College of Medicine, Chicago
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago
| | - Hyun Lee
- College of Pharmacy, University of Illinois at Chicago, Chicago
| | - Pinal Kanabar
- Research Informatics Core, University of Illinois at Chicago, Chicago
| | - John W Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Columbus; Davis Heart and Lung Research Center, The Ohio State University, Columbus
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago; Department of Medicine, University of Illinois at Chicago, Chicago
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago.
| |
Collapse
|
5
|
Luo Z, Jin Z, Tao X, Wang T, Wei P, Zhu C, Wang Z. Combined microbiome and metabolome analysis of gut microbiota and metabolite interactions in chronic spontaneous urticaria. Front Cell Infect Microbiol 2023; 12:1094737. [PMID: 36710970 PMCID: PMC9874702 DOI: 10.3389/fcimb.2022.1094737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background The pathogenesis of chronic spontaneous urticaria (CSU) is unclear, and it turned out to be involved in biological processes, such as autoimmunity, autoallergy, inflammation, and coagulation. The gut microbiota plays an important role in immune and inflammatory diseases. However, the relationship between chronic spontaneous urticaria and the gut microbiota remains unknown. Methods The stool and serum samples were taken from 15 CSU patients and 15 normal controls. Changes in the composition of gut microbiota and serum metabolism in CSU patients and normal controls were analyzed by 16S ribosomal RNA (rRNA) gene sequencing and untargeted metabolomics. Results The results of 16S rRNA gene sequencing showed that compared with normal controls, CSU patients had increased α-diversity of gut microbiota and significant differences in β-diversity. At the phylum level, the relative abundance of Firmicutes increased and the relative abundance of Bacteroidetes and Proteobacteria decreased in CSU patients compared with healthy controls. At the genus level, six kinds of bacteria were significantly enriched in CSU patients and five in normal controls. Metabolomic analysis revealed altered levels of metabolites such as unsaturated fatty acids and purines. Correlation analysis of gut microbiota and metabolites showed that Lachnospira was negatively correlated with arachidonic acid, and Gemmiger was also negatively correlated with (±)8-HETE. Conclusion This study suggests that changes in gut microbiota and metabolites may play a role in immune and inflammatory pathways in the pathogenesis of CSU patients.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China
| | - Zhangsi Jin
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China
| | - Xiaoran Tao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China
| | - Ting Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China
| | - Panling Wei
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China
| | - Caihong Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China
| | - Zaixing Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Anhui, China,Institute of Dermatology, Anhui Medical University, Anhui, China,*Correspondence: Zaixing Wang,
| |
Collapse
|
6
|
Hernández-Díazcouder A, González-Ramírez J, Sanchez F, Leija-Martínez JJ, Martínez-Coronilla G, Amezcua-Guerra LM, Sánchez-Muñoz F. Negative Effects of Chronic High Intake of Fructose on Lung Diseases. Nutrients 2022; 14:nu14194089. [PMID: 36235741 PMCID: PMC9571075 DOI: 10.3390/nu14194089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the modern diet, excessive fructose intake (>50 g/day) had been driven by the increase, in recent decades, of the consumption of sugar-sweetened beverages. This phenomenon has dramatically increased within the Caribbean and Latin American regions. Epidemiological studies show that chronic high intake of fructose related to sugar-sweetened beverages increases the risk of developing several non-communicable diseases, such as chronic obstructive pulmonary disease and asthma, and may also contribute to the exacerbation of lung diseases, such as COVID-19. Evidence supports several mechanisms—such as dysregulation of the renin−angiotensin system, increased uric acid production, induction of aldose reductase activity, production of advanced glycation end-products, and activation of the mTORC1 pathway—that can be implicated in lung damage. This review addresses how these pathophysiologic and molecular mechanisms may explain the lung damage resulting from high intake of fructose.
Collapse
Affiliation(s)
| | - Javier González-Ramírez
- Cellular Biology Laboratory, Faculty of Nursing, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21100, Mexico
| | - Fausto Sanchez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana Xochimilco, Mexico City 04960, Mexico
| | - José J. Leija-Martínez
- Master and Doctorate Program in Medical, Dental, and Health Sciences, Faculty of Medicine, Universidad Nacional Autónoma de México Campus Ciudad Universitaria, Mexico City 04510, Mexico
- Research Laboratory of Pharmacology, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Gustavo Martínez-Coronilla
- Histology Laboratory, Faculty of Medicine, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21100, Mexico
| | - Luis M. Amezcua-Guerra
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-5573-2911 (ext. 21310)
| |
Collapse
|
7
|
Binstadt BA, Nigrovic PA. The Conundrum of Lung Disease and Drug Hypersensitivity-like Reactions in Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol 2022; 74:1122-1131. [PMID: 35413159 PMCID: PMC9367674 DOI: 10.1002/art.42137] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
An unusual form of lung disease has begun to affect some children with systemic juvenile idiopathic arthritis (JIA), coincident with increasing utilization of interleukin-1 (IL-1) and IL-6 antagonists. Many children with systemic JIA-associated lung disease (SJIA-LD) have a history of clinical and laboratory features resembling drug reaction with eosinophilia and systemic symptoms (DRESS), a presentation now convincingly associated with HLA-DRB1*15. Treatment of DRESS typically requires drug discontinuation, a daunting prospect for clinicians and families who rely upon these agents. Here we review SJIA-LD and its associated DRESS-like phenotype. We suggest an alternative explanation, the cytokine plasticity hypothesis, proposing that IL-1 and IL-6 blockers modulate the milieu in which T cells develop, leading to a pathologic immune response triggered through exposure to common microbes, or to other exogenous or endogenous antigens, rather than to the drugs themselves. This hypothesis differs from DRESS in mechanism but also in clinical implications, predicting that control of pathogenic T cells could permit continued use of IL-1 and IL-6 antagonists in some individuals. The spectrum posed by these two hypotheses provides a conceptual framework that will guide investigation into the pathogenesis of SJIA-LD and may open up new therapeutic avenues for patients with systemic JIA.
Collapse
Affiliation(s)
| | - Peter A. Nigrovic
- Boston Children's Hospital and Brigham and Women's HospitalBostonMassachusetts
| |
Collapse
|
8
|
Graeff R, Guedes A, Quintana R, Wendt-Hornickle E, Baldo C, Walseth T, O’Grady S, Kannan M. Novel Pathway of Adenosine Generation in the Lungs from NAD +: Relevance to Allergic Airway Disease. Molecules 2020; 25:molecules25214966. [PMID: 33120985 PMCID: PMC7663290 DOI: 10.3390/molecules25214966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Adenosine and uric acid (UA) play a pivotal role in lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). In the present experiments, we measured adenosine synthesis from nicotinamide adenine dinucleotide (NAD+) in membranes prepared from wild type (WT) and CD38 knockout (CD38KO) mouse lungs, from cultured airway smooth muscle and epithelial cells, and in bronchoalveolar lavage fluid after airway challenge with epidemiologically relevant allergens. Adenosine was determined using an enzymatically coupled assay that produces ATP and is detected by luminescence. Uric acid was determined by ELISA. Exposure of cultured airway epithelial cells to Alternaria alternata extract caused significant nucleotide (NAD+ and ATP) release in the culture media. The addition of NAD+ to membranes prepared from WT mice resulted in faster generation of adenosine compared to membranes from CD38KO mice. Formation of adenosine from NAD+ affected UA and ATP concentrations, its main downstream molecules. Furthermore, NAD+ and adenosine concentrations in the bronchoalveolar lavage fluid decreased significantly following airway challenge with house-dust mite extract in WT but not in CD38KO mice. Thus, NAD+ is a significant source of adenosine and UA in the airways in mouse models of allergic airway disease, and the capacity for their generation from NAD+ is augmented by CD38, a major NADase with high affinity for NAD+. This novel non-canonical NAD+-adenosine-UA pathway that is triggered by allergens has not been previously described in the airways.
Collapse
Affiliation(s)
- Richard Graeff
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Alonso Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Ruth Quintana
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Erin Wendt-Hornickle
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Caroline Baldo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Timothy Walseth
- Department of Pharmacology, University of Minnesota Medical School, University of Minnesota, St. Paul, MN 55455, USA;
| | - Scott O’Grady
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Mathur Kannan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence:
| |
Collapse
|
9
|
Menter T, Tzankov A, Zucca E, Kimby E, Hultdin M, Sundström C, Beiske K, Cogliatti S, Banz Y, Cathomas G, Karjalainen-Lindsberg ML, Grobholz R, Mazzucchelli L, Sander B, Hawle H, Hayoz S, Dirnhofer S. Prognostic implications of the microenvironment for follicular lymphoma under immunomodulation therapy. Br J Haematol 2020; 189:707-717. [PMID: 32012230 DOI: 10.1111/bjh.16414] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022]
Abstract
Follicular lymphoma (FL) constitutes a significant proportion of lymphomas and shows frequent relapses. Beyond conventional chemotherapy, new therapeutic approaches have emerged, focussing on the interplay between lymphoma cells and the microenvironment. Here we report the immunophenotypic investigation of the microenvironment of a clinically well-characterized prospective cohort (study SAKK35/10, NCT01307605) of 154 treatment-naïve FL patients in need of therapy, who have been treated with rituximab only or a combination of rituximab and the immunomodulatory drug lenalidomide/Revlimid® A high ratio of CD4- to CD8-positive T cells (P = 0·009) and increased amounts of PD1+ tumour-infiltrating T cells (P = 0·007) were associated with inferior progression-free survival in the whole cohort. Interestingly, the prognostic impact of PD1+ T cells and the CD4/CD8 ratio lost its significance in the subgroup treated with R2 . In the latter group, high amounts of GATA3+ T helper (Th2) equivalents were associated with better progression-free survival (P < 0·001). We identified tumour microenvironmental features that allow prognostic stratification with respect to immuno- and combined immuno- and immunomodulatory therapy. Our analysis indicates that lenalidomide may compensate the adverse prognostic implication of higher amounts of CD4+ and, particularly, PD1+ T cells and that it has favourable effects mainly in cases with higher amounts of Th2 equivalents. [Correction added on 11 February 2020, after online publication: The NCT-trial number was previously incorrect and has been updated in this version].
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Emanuele Zucca
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Institute of Oncology Research, Bellinzona, Switzerland.,Department of Medical Oncology, Inselspital / Bern University Hospital, Bern, Switzerland
| | - Eva Kimby
- Division of Hematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, and Institute of Clinical Medicine, The Medical Faculty, University of Oslo, Oslo, Norway
| | - Sergio Cogliatti
- Institute of Pathology, Cantonal Hospital, St. Gallen, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | | | - Rainer Grobholz
- Institute of Pathology, Cantonal Hospital Aarau, Aarau, Switzerland
| | | | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University, Stockholm, Sweden
| | | | | | - Stefan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
10
|
Fukushima T, Yokooji T, Hirano T, Kataoka Y, Taogoshi T, Matsuo H. Aspirin enhances sensitization to the egg-white allergen ovalbumin in rats. PLoS One 2019; 14:e0226165. [PMID: 31805177 PMCID: PMC6894855 DOI: 10.1371/journal.pone.0226165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/20/2019] [Indexed: 12/04/2022] Open
Abstract
Enhancement of oral absorption of food allergens by non-steroidal anti-inflammatory drugs (NSAIDs), especially aspirin, is considered an exacerbating factor in the development of food allergies. In this study, we examined the effect of aspirin on oral sensitization to and absorption of the egg-white allergen ovalbumin (OVA) in rats. The absorption of OVA was evaluated by measuring the plasma concentration of OVA after oral administration by gavage. To evaluate oral sensitization to OVA, plasma levels of immunoglobulin (Ig) E and IgG1 antibodies (Abs) specific to OVA were determined by enzyme-linked immunosorbent assay after initiation of sensitization. High-dose aspirin (30 mg/kg) increased oral OVA absorption and plasma levels of OVA-specific IgE and IgG1 Abs compared with those observed in vehicle-treated rats. In contrast, low-dose aspirin (3 mg/kg) exerted no changes in either absorption or sensitization. Spermine, an absorption enhancer, increased the oral absorption of OVA to nearly the same extent as high-dose aspirin, whereas the plasma levels of OVA-specific IgE and IgG1 Abs exhibited no significant differences between spermine- and vehicle-treated rats. Among the NSAIDs, diclofenac and indomethacin increased sensitization to OVA, similar to high-dose aspirin, but meloxicam exerted no effects on Ab levels. In conclusion, we showed that high-dose aspirin enhanced oral sensitization to OVA. Our study suggests that enhanced oral sensitization to OVA cannot be ascribed to increased absorption of OVA from the intestinal tract. Although the mechanisms underlying this enhancement of sensitization are still controversial, our study suggests that modification of cytokine production due to impairment of the intestinal barrier function and inhibition of cyclooxygenase-1 activity by aspirin may be involved.
Collapse
Affiliation(s)
- Takahiro Fukushima
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yokooji
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Taiki Hirano
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Kataoka
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Moon HG, Kim SJ, Jeong JJ, Han SS, Jarjour NN, Lee H, Abboud-Werner SL, Chung S, Choi HS, Natarajan V, Ackerman SJ, Christman JW, Park GY. Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity 2018; 49:275-287.e5. [PMID: 30054206 DOI: 10.1016/j.immuni.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/25/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
Airway epithelial cells (AECs) secrete innate immune cytokines that regulate adaptive immune effector cells. In allergen-sensitized humans and mice, the airway and alveolar microenvironment is enriched with colony stimulating factor-1 (CSF1) in response to allergen exposure. In this study we found that AEC-derived CSF1 had a critical role in the production of allergen reactive-IgE production. Furthermore, spatiotemporally secreted CSF1 regulated the recruitment of alveolar dendritic cells (DCs) and enhanced the migration of conventional DC2s (cDC2s) to the draining lymph node in an interferon regulatory factor 4 (IRF4)-dependent manner. CSF1 selectively upregulated the expression of the chemokine receptor CCR7 on the CSF1R+ cDC2, but not the cDC1, population in response to allergen stimuli. Our data describe the functional specification of CSF1-dependent DC subsets that link the innate and adaptive immune responses in T helper 2 (Th2) cell-mediated allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jong Jin Jeong
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seon-Sook Han
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nizar N Jarjour
- Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Hyun Lee
- Center for Biomolecular Sciences, and Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sherry L Abboud-Werner
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sangwoon Chung
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, OH, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - John W Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, OH, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Ochando J, Braza MS. T follicular helper cells: a potential therapeutic target in follicular lymphoma. Oncotarget 2017; 8:112116-112131. [PMID: 29340116 PMCID: PMC5762384 DOI: 10.18632/oncotarget.22788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Follicular lymphoma (FL), the most common indolent B-cell non-Hodgkin lymphoma (B-NHL), is a germinal center (GC)-derived lymphoma. The mechanisms underlying B-cell differentiation/maturation in GCs could be also involved in their malignant transformation. Moreover, the non-malignant cell composition and architecture of the tumor microenvironment can influence FL development and outcome. Here, we review recent research advances on CD4 helper T cells in FL that highlight the pivotal role of T follicular helper (TFH) cells in a complex multicellular system where they interact with B cells during GC dynamics. After describing the mechanism of FL lymphomagenesis, we discuss the emerging evidence about TFH cell enrichment and involvement in FL tumorigenesis and in B-T cell interaction, TFH regulation by T follicular regulatory cells (TFR) and its potential effect on FL. Then, we provide an overview on the flexible interplay between the different CD4 T-cell subtypes and how this may be predicted in normal and pathologic contexts, according to the cell epigenetic state. Finally, we highlight the importance of targeting TFH cells in the clinic, summarize the main outstanding questions about TFH and TFR cells in FL, and describe strategies to potentiate FL therapy by taking into account TFH cells.
Collapse
Affiliation(s)
- Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mounia S Braza
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Velazquez JR, Soid-Raggi G, Teran LM, Romero-Pavon GF, Ramírez-Jimenez F. CCL4 Levels Differ between Aspirin-Tolerant and Aspirin-Intolerant Patients with Asthma. Health (London) 2017. [DOI: 10.4236/health.2017.911107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Dobrakowski M, Kasperczyk A, Pawlas N, Birkner E, Hudziec E, Chwalińska E, Kasperczyk S. Association between subchronic and chronic lead exposure and levels of antioxidants and chemokines. Int Arch Occup Environ Health 2016; 89:1077-85. [PMID: 27294390 PMCID: PMC5005401 DOI: 10.1007/s00420-016-1144-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Purpose This study aimed to compare the influence of lead on the non-enzymatic antioxidant defenses and the levels of chemokines in workers subchronically and chronically exposed to lead. Methods The study population was divided into three groups. The first group consisted of male workers subchronically exposed to lead for 40 ± 3.2 days, while the second group included male workers chronically exposed to lead. The third group was a control group. Results The levels of uric acid and bilirubin were significantly higher after a subchronic exposure to lead compared to the baseline by 22 and 35 %, respectively. Similarly, the values of total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) increased by 15, 50, and 33 %, respectively. At the same time, the levels of thiol groups and albumin decreased by 5 and 8 %, respectively. Additionally, the levels of interleukin-8 (IL-8) and macrophage inflammatory protein-1β (MIP-1β) were significantly higher after a subchronic exposure to lead compared to the baseline by 34 and 20 %, respectively. Moreover, IL-8 level was significantly higher by 40 % in the group of workers chronically exposed to lead than in the control group, while the level of interferon gamma-induced protein-10 (IP-10) was significantly lower by 28 %. Conclusions Similar to chronic lead exposure, subchronic exposure to lead is associated with elevated blood levels of uric acid and bilirubin in humans. This probably results in increased TAC value despite thiol depletion. However, the compensatory activation of non-enzymatic antioxidant defenses seems to be insufficient to protect against lead-induced oxidative stress, which may be additively enhanced by the pro-inflammatory action of chemokines, especially IL-8.
Collapse
Affiliation(s)
- Michał Dobrakowski
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland.
| | - Aleksandra Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| | - Natalia Pawlas
- Institute of Occupational Medicine and Environmental Health in Sosnowiec, ul. Kościelna 13, 41-200, Sosnowiec, Poland
| | - Ewa Birkner
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| | - Edyta Hudziec
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| | - Ewa Chwalińska
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| |
Collapse
|
15
|
Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, Salvemini D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 2015; 44:91-9. [PMID: 25220279 PMCID: PMC4275321 DOI: 10.1016/j.bbi.2014.08.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
Abstract
Many commonly used chemotherapeutics including oxaliplatin are associated with the development of a painful chemotherapy-induced peripheral neuropathy (CIPN). This dose-limiting complication can appear long after the completion of therapy causing a significant reduction in quality-of-life and impeding cancer treatment. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (i.e., IB-MECA) blocked the development of chemotherapy induced-neuropathic pain in models evoked by distinct agents including oxaliplatin without interfering with their anticancer activities. The mechanism(s) of action underlying these beneficial effects has yet to be explored. Our results herein demonstrate that the development of oxaliplatin-induced mechano-hypersensitivity (allodynia and hyperalgesia) in rats is associated with the hyperactivation of astrocytes, but not microglial cells, increased production of pro-inflammatory and neuroexcitatory cytokines (TNF, IL-1β), and reductions in the levels of anti-inflammatory/neuroprotective cytokines (IL-10, IL-4) in the dorsal horn of the spinal cord. These events did not require lymphocytic mobilization since oxaliplatin did not induce CD45(+)/CD3(+) T-cell infiltration into the spinal cord. A3AR agonists blocked the development of neuropathic pain with beneficial effects strongly associated with the modulation of spinal neuroinflammatory processes: attenuation of astrocytic hyperactivation, inhibition of TNF and IL-1β production, and an increase in IL-10 and IL-4. These results suggest that inhibition of an astrocyte-associated neuroinflammatory response contributes to the protective actions of A3AR signaling and continues to support the pharmacological basis for selective A3AR agonists as adjuncts to chemotherapeutic agents for the management of chronic pain.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Carrie Wahlman
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Joshua W. Little
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Timothy Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Dillip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
16
|
Aspirin-intolerant asthma: a comprehensive review of biomarkers and pathophysiology. Clin Rev Allergy Immunol 2014. [PMID: 23184151 DOI: 10.1007/s12016-012-8340-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aspirin-exacerbated respiratory disease is a tetrad of nasal polyps, chronic hypertrophic eosinophilic sinusitis, asthma, and sensitivity to aspirin. Unawareness of this clinical condition by patients and physicians may have grave consequences because of its association with near-fatal asthma. The pathogenesis of aspirin-intolerant asthma is not related with an immunoglobin E mechanism, but with an abnormal metabolism of the lipoxygenase (LO) and cyclooxygenase (COX) pathways. At present, a diagnosis of aspirin sensitivity can be established only by provocative aspirin challenge, which represents a health risk for the patient. This circumstance has encouraged the search for aspirin intolerance-specific biomarkers. Major attempts have focused on mediators related with inflammation and eicosanoid regulation. The use of modern laboratory techniques including high-throughput methods has facilitated the detection of dozens of biological metabolites associated with aspirin-intolerant asthma disease. Not surprisingly, the majority of these is implicated in the LO and COX pathways. However, substantial amounts of data reveal the participation of many genes deriving from different ontologies. Biomarkers may represent a powerful, noninvasive tool in the diagnosis of aspirin sensitivity; moreover, they could provide a new way to classify asthma phenotypes.
Collapse
|
17
|
Less travelled roads in clinical immunology and allergy: drug reactions and the environmental influence. Clin Rev Allergy Immunol 2014; 45:1-5. [PMID: 23842719 DOI: 10.1007/s12016-013-8381-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Allergy and clinical immunology are examples of areas of knowledge in which working hypotheses are dominant over mechanistic understanding. As such, sometimes scientific efforts follow major streams and overlook some epidemiologically prevalent conditions that thus become underestimated by the research community. For this reason, we welcome the present issue of Clinical Reviews in Allergy and Immunology that is dedicated to uncommon themes in clinical immunology and allergy. First, comprehensive discussions are provided for allergy phenomena of large potential impact in clinical practice such as reactions to cephalosporins or aspirin-induced asthma and in everyday life such as allergies to food additives or legumes. Further, the issue addresses other uncommon themes such as urticaria and angioedema, cercarial dermatitis, or late-onset inflammation to soft tissue fillers. Last, there will be discussion on transversal issues such as olfactory defects in autoimmunity, interleukin 1 beta pathway, and the search for new serological markers in chronic inflammation. As a result, we are convinced that this issue will be of help to clinicians involved in internal medicine as well as to allergists and clinical immunologists. More importantly, we are convinced that these discussions will be of interest also to basic scientists for the numerous translational implications.
Collapse
|
18
|
Tilley S, Volmer J, Picher M. Therapeutic applications. Subcell Biochem 2014; 55:235-76. [PMID: 21560050 PMCID: PMC7120595 DOI: 10.1007/978-94-007-1217-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The current treatments offered to patients with chronic respiratory diseases are being re-evaluated based on the loss of potency during long-term treatments or because they only provide significant clinical benefits to a subset of the patient population. For instance, glucocorticoids are considered the most effective anti-inflammatory therapies for chronic inflammatory and immune diseases, such as asthma. But they are relatively ineffective in asthmatic smokers, and patients with chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF). As such, the pharmaceutical industry is exploring new therapeutic approaches to address all major respiratory diseases. The previous chapters demonstrated the widespread influence of purinergic signaling on all pulmonary functions and defense mechanisms. In Chap. 8, we described animal studies which highlighted the critical role of aberrant purinergic activities in the development and maintenance of chronic airway diseases. This last chapter covers all clinical and pharmaceutical applications currently developed based on purinergic receptor agonists and antagonists. We use the information acquired in the previous chapters on purinergic signaling and lung functions to scrutinize the preclinical and clinical data, and to realign the efforts of the pharmaceutical industry.
Collapse
Affiliation(s)
- Stephen Tilley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, 29799, USA,
| | | | | |
Collapse
|
19
|
Teng B, Smith JD, Rosenfeld ME, Robinet P, Davis ME, Morrison RR, Mustafa SJ. A₁ adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice. Cardiovasc Res 2014; 102:157-65. [PMID: 24525840 DOI: 10.1093/cvr/cvu033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. METHODS AND RESULTS Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. CONCLUSION The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O'Neil A, Davey CG, Sanna L, Maes M. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 2013; 11:74. [PMID: 23506529 PMCID: PMC3751197 DOI: 10.1186/1741-7015-11-74] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/18/2013] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer's disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory 'braking signals', including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor-α and interleukin (IL)--6, but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders.
Collapse
Affiliation(s)
- Michael Berk
- School of Medicine, Deakin University, 75 Pigdon's Road, Waurn Ponds, Geelong, Victoria 3216, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moon HG, Kang CS, Choi JP, Choi DS, Choi HI, Choi YW, Jeon SG, Yoo JY, Jang MH, Gho YS, Kim YK. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback. Exp Mol Med 2013; 45:e6. [PMID: 23306703 PMCID: PMC3584657 DOI: 10.1038/emm.2013.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|