1
|
Tobias J, Heinl S, Dendinovic K, Ramić A, Schmid A, Daniel C, Wiedermann U. The benefits of Lactiplantibacillus plantarum: From immunomodulator to vaccine vector. Immunol Lett 2025; 272:106971. [PMID: 39765312 DOI: 10.1016/j.imlet.2025.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Probiotics have been increasingly recognized for positively influencing many aspects of human health. Lactiplantibacillus plantarum (L. plantarum), a non-pathogenic bacterium, previously known as Lactobacillus plantarum, is one of the lactic acid bacteria commonly used in fermentation. The probiotic properties of L. plantarum have highlighted its health benefits to humans when consumed in adequate amounts. L. plantarum strains primarily enter the body orally and alter intestinal microflora and modulate the immune responses in their host; thereby benefiting human health. Furthermore, the use of L. plantarum as vaccine vectors delivering mucosal antigens has been shown to be a promising strategy. These aspects, from Immunomodulation to vaccine delivery by L. plantarum in preclinical settings, are highlighted in this review. Along these lines, construction of a recombinant L. plantarum strain expressing a B cell multi-peptide, as a future vaccine to modulate immunity and confer anti-tumor effect by targeting Her-2/neu-overexpressing cancers in local and distal sites, is also presented and discussed.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Stefan Heinl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Dendinovic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ajša Ramić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Xu Y, Wang Z, Li C, Tian S, Du W. Droplet microfluidics: unveiling the hidden complexity of the human microbiome. LAB ON A CHIP 2025; 25:1128-1148. [PMID: 39775305 DOI: 10.1039/d4lc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hornikova T, Jelinkova A, Jiraskova Zakostelska Z, Thon T, Coufal S, Polouckova A, Kopelentova E, Kverka M, Makovicky P, Tlaskalova-Hogenova H, Sediva A, Schwarzer M, Srutkova D. Genetic background and microbiome drive susceptibility to epicutaneous sensitization and food allergy in adjuvant-free mouse model. Front Immunol 2025; 15:1509691. [PMID: 39944558 PMCID: PMC11814220 DOI: 10.3389/fimmu.2024.1509691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/31/2024] [Indexed: 05/09/2025] Open
Abstract
Background The dual allergen exposure hypothesis states that sensitization to food antigens occurs through a damaged skin barrier in individuals with no previous oral tolerance to certain foods. However, the resulting allergic reaction could depend on factors such as the host's genetic predisposition as well as the skin and gut microbiota. Methods Specific-pathogen-free BALB/c and C57BL/6 and germ-free (GF) BALB/c mice were epicutaneously sensitized with ovalbumin (OVA) via dorsal tape-stripped skin and challenged with OVA by intragastric gavage. The development of food allergy (FA) symptoms, the Th2 and mast cell immune response and differences in the skin and gut microbiota were investigated. Results BALB/c mice, but not C57BL/6 mice, showed severe clinical signs of FA (hypothermia, diarrhea) as well as a stronger serum antibody response and Th2 cytokine secretion in the spleen and jejunum after OVA-treatment. The increased mast cell count correlated with higher MCPT-1 production and histidine decarboxylase mRNA expression in the jejunum of these mice. The 16S rRNA sequencing analysis revealed lower abundance of short-chain fatty acids producing bacteria in the gut microbiome of OVA-treated BALB/c mice. Changes in the β-diversity of the gut microbiome reflect both the genetic background as well as the OVA treatment of experimental mice. Compared to SPF mice, GF mice developed more severe anaphylactic hypothermia but no diarrhea, although they had a higher mast cell count, increased MCPT-1 production in the jejunum and serum, and increased arachidonate 5-lipoxygenase mRNA expression. Conclusions We show that the BALB/c mice are a mouse strain of choice for model of adjuvant-free epicutaneous sensitization through the disrupted skin barrier and following food allergy development. Our results highlight the significant influence of genetic background and microbiota on food allergy susceptibility, emphasizing the complex interplay between these factors in the allergic response.
Collapse
Affiliation(s)
- Tereza Hornikova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Andrea Polouckova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Eliska Kopelentova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
4
|
Donald K, Finlay BB. Experimental models of antibiotic exposure and atopic disease. FRONTIERS IN ALLERGY 2024; 5:1455438. [PMID: 39525399 PMCID: PMC11543581 DOI: 10.3389/falgy.2024.1455438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
In addition to numerous clinical studies, research using experimental models have contributed extensive evidence to the link between antibiotic exposure and atopic disease. A number of mouse models of allergy have been developed and used to uncover the specific effects of various microbiota members and perturbations on allergy development. Studies in mice that lack microbes entirely have also demonstrated the various components of the immune system that require microbial exposure. The importance of the early-life period and the mechanisms by which atopy "protective" species identified in human cohorts promote immune development have been elucidated in mice. Finally, non-animal models involving human-derived cells shed light on specific effects of bacteria on human epithelial and immune responses. When considered alongside clinical cohort studies, experimental model systems have provided crucial evidence for the link between the neonatal gut microbiota and allergic disease, immensely supporting the stewardship of antibiotic administration in infants. The following review aims to describe the range of experimental models used for studying factors that affect the relationship between the gut microbiota and allergic disease and summarize key findings that have come from research in animal and in vitro models.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
6
|
Jakubczyk D, Górska S. Impact of Probiotic Bacteria on Respiratory Allergy Disorders. Front Microbiol 2021; 12:688137. [PMID: 34234762 PMCID: PMC8256161 DOI: 10.3389/fmicb.2021.688137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory allergy is a common disease with an increased prevalence worldwide. The effective remedy is still unknown, and a new therapeutic approach is highly desirable. The review elaborates the influence of probiotic bacteria on respiratory allergy prevention and treatment with particular emphasis on the impact of the current methods of their administration – oral and intranasal. The background of the respiratory allergy is complex thus, we focused on the usefulness of probiotics in the alleviation of different allergy factors, in particular involved in pathomechanism, local hypersensitive evidence and the importance of epithelial barrier. In this review, we have shown that (1) probiotic strains may vary in modulatory potential in respiratory allergy, (2) probiotic bacteria are beneficial in oral and intranasal administration, (3) recombinant probiotic bacteria can modulate the course of respiratory allergy.
Collapse
Affiliation(s)
- Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Sarate PJ, Srutkova D, Geissler N, Schwarzer M, Schabussova I, Inic-Kanada A, Kozakova H, Wiedermann U. Pre- and Neonatal Imprinting on Immunological Homeostasis and Epithelial Barrier Integrity by Escherichia coli Nissle 1917 Prevents Allergic Poly-Sensitization in Mice. Front Immunol 2021; 11:612775. [PMID: 33679699 PMCID: PMC7927790 DOI: 10.3389/fimmu.2020.612775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
A steady rise in the number of poly-sensitized patients has increased the demand for effective prophylactic strategies against multi-sensitivities. Probiotic bacteria have been successfully used in clinics and experimental models to prevent allergic mono-sensitization. In the present study, we have investigated whether probiotic bacteria could prevent poly-sensitization by imprinting on the immune system early in life. We used two recombinant variants of probiotic Escherichia coli Nissle 1917 (EcN): i) EcN expressing birch and grass pollen, poly-allergen chimera construct (EcN-Chim), and ii) an “empty” EcN without allergen expression (EcN-Ctrl). Conventional mice (CV) were treated with either EcN-Chim or EcN-Ctrl in the last week of the gestation and lactation period. Gnotobiotic mice received one oral dose of either EcN-Chim or EcN-Ctrl before mating. The offspring from both models underwent systemic allergic poly-sensitization and intranasal challenge with recombinant birch and grass pollen allergens (rBet v 1, rPhl p 1, and rPhl p 5). In the CV setting, the colonization of offspring via treatment of mothers reduced allergic airway inflammation (AAI) in offspring compared to poly-sensitized controls. Similarly, in a gnotobiotic model, AAI was reduced in EcN-Chim and EcN-Ctrl mono-colonized offspring. However, allergy prevention was more pronounced in the EcN-Ctrl mono-colonized offspring as compared to EcN-Chim. Mono-colonization with EcN-Ctrl was associated with a shift toward mixed Th1/Treg immune responses, increased expression of TLR2 and TLR4 in the lung, and maintained levels of zonulin-1 in lung epithelial cells as compared to GF poly-sensitized and EcN-Chim mono-colonized mice. This study is the first one to establish the model of allergic poly-sensitization in gnotobiotic mice. Using two different settings, gnotobiotic and conventional mice, we demonstrated that an early life intervention with the EcN without expressing an allergen is a powerful strategy to prevent poly-sensitization later in life.
Collapse
Affiliation(s)
- Priya J Sarate
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Nora Geissler
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Cukrowska B, Bierła JB, Zakrzewska M, Klukowski M, Maciorkowska E. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life. Nutrients 2020; 12:nu12040946. [PMID: 32235348 PMCID: PMC7230322 DOI: 10.3390/nu12040946] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
The increase in allergy prevalence observed in recent decades may be a consequence of early intestinal dysbiosis. The intestinal microbiota is formed in the first 1000 days of life, when it is particularly sensitive to various factors, such as the composition of the mother’s microbiota, type of delivery, infant’s diet, number of siblings, contact with animals, and antibiotic therapy. Breastfeeding and vaginal birth favorably affect the formation of an infant’s intestinal microbiota and protect against allergy development. The intestinal microbiota of these infants is characterized by an early dominance of Bifidobacterium, which may have a significant impact on the development of immune tolerance. Bifidobacterium breve is a species commonly isolated from the intestines of healthy breastfed infants and from human milk. This review outlines the most important environmental factors affecting microbiota formation and the importance of Bifidobacterium species (with a particular emphasis on Bifidobacterium breve) in microbiota modulation towards anti-allergic processes. In addition, we present the concept, which assumes that infant formulas containing specific probiotic Bifidobacterium breve strains and prebiotic oligosaccharides may be useful in allergy management in non-breastfed infants.
Collapse
Affiliation(s)
- Bożena Cukrowska
- Department of Pathology, The Children Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-815-19-69
| | - Joanna B. Bierła
- Department of Pathology, The Children Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Magdalena Zakrzewska
- Department of Developmental Age Medicine and Paediatric Nursing, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna St. 37, 15-295 Białystok, Poland; (M.Z.); (E.M.)
| | - Mark Klukowski
- Department of Pediatrics and Pulmonary Diseases, Faculty of Health Sciences, Medical University of Bialystok, Jerzego Waszyngtona St. 17, 15-274 Białystok, Poland;
| | - Elżbieta Maciorkowska
- Department of Developmental Age Medicine and Paediatric Nursing, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna St. 37, 15-295 Białystok, Poland; (M.Z.); (E.M.)
- Department of Pediatrics and Pulmonary Diseases, Faculty of Health Sciences, Medical University of Bialystok, Jerzego Waszyngtona St. 17, 15-274 Białystok, Poland;
| |
Collapse
|
10
|
Schwarzer M, Hermanova P, Srutkova D, Golias J, Hudcovic T, Zwicker C, Sinkora M, Akgün J, Wiedermann U, Tuckova L, Kozakova H, Schabussova I. Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and Do Not Develop Food Allergy. Front Immunol 2019; 10:205. [PMID: 30809227 PMCID: PMC6379318 DOI: 10.3389/fimmu.2019.00205] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Mucosal mast cells (MC) are key players in IgE-mediated food allergy (FA). The evidence on the interaction between gut microbiota, MC and susceptibility to FA is contradictory. Objective: We tested the hypothesis that commensal bacteria are essential for MC migration to the gut and their maturation impacting the susceptibility to FA. Methods: The development and severity of FA symptoms was studied in sensitized germ-free (GF), conventional (CV), and mice mono-colonized with L. plantarum WCFS1 or co-housed with CV mice. MC were phenotypically and functionally characterized. Results: Systemic sensitization and oral challenge of GF mice with ovalbumin led to increased levels of specific IgE in serum compared to CV mice. Remarkably, despite the high levels of sensitization, GF mice did not develop diarrhea or anaphylactic hypothermia, common symptoms of FA. In the gut, GF mice expressed low levels of the MC tissue-homing markers CXCL1 and CXCL2, and harbored fewer MC which exhibited lower levels of MC protease-1 after challenge. Additionally, MC in GF mice were less mature as confirmed by flow-cytometry and their functionality was impaired as shown by reduced edema formation after injection of degranulation-provoking compound 48/80. Co-housing of GF mice with CV mice fully restored their susceptibility to develop FA. However, this did not occur when mice were mono-colonized with L. plantarum. Conclusion: Our results demonstrate that microbiota-induced maturation and gut-homing of MC is a critical step for the development of symptoms of experimental FA. This new mechanistic insight into microbiota-MC-FA axis can be exploited in the prevention and treatment of FA in humans.
Collapse
Affiliation(s)
- Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jaroslav Golias
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Christian Zwicker
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Johnnie Akgün
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ludmila Tuckova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
E. coli Nissle 1917 is a safe mucosal delivery vector for a birch-grass pollen chimera to prevent allergic poly-sensitization. Mucosal Immunol 2019; 12:132-144. [PMID: 30242254 DOI: 10.1038/s41385-018-0084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/27/2018] [Accepted: 08/25/2018] [Indexed: 02/04/2023]
Abstract
Allergic poly-sensitization affects a large number of allergic patients and poses a great challenge for their treatment. In this study we evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) expressing a birch and grass pollen allergen chimera 'Bet v 1, Phl p 1 and Phl p 5' (EcN-Chim) on allergy prevention after oral or intranasal application in poly-sensitized mice. In contrast to oral application, intranasal pretreatment with EcN-Chim prior to poly-sensitization led to a significant reduction of lung inflammation (eosinophils, IL-5, and IL-13 in bronchoalveolar lavage) along with suppressed levels of allergen-specific serum IgE. The suppression was associated with increased levels of allergen-specific IgA in lungs and serum IgG2a along with increased Foxp3, TGF-β, and IL-10 mRNA in bronchial lymph nodes. In vitro EcN induced high levels of IL-10 and IL-6 in both lung and intestinal epithelial cells. Importantly, using in vivo imaging techniques we demonstrated that intranasally applied EcN do not permanently colonize nose, lung, and gut and this strain might therefore be a safe delivery vector against allergy in humans. In conclusion, our data show that intranasal application of recombinant EcN expressing a multiallergen chimera presents a novel and promising treatment strategy for prevention of allergic poly-sensitization.
Collapse
|
12
|
Zahirović A, Lunder M. Microbial Delivery Vehicles for Allergens and Allergen-Derived Peptides in Immunotherapy of Allergic Diseases. Front Microbiol 2018; 9:1449. [PMID: 30013543 PMCID: PMC6036130 DOI: 10.3389/fmicb.2018.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Allergen-specific immunotherapy represents the only available curative approach to allergic diseases. The treatment has proven effective, but it requires repetitive administrations of allergen extracts over 3-5 years and is often associated with adverse events. This implies the need for novel therapeutic strategies with reduced side effects and decreased treatment time, which would improve patients' compliance. Development of vaccines that are molecularly well defined and have improved safety profile in comparison to whole allergen extracts represents a promising approach. Molecular allergy vaccines are based on major allergen proteins or allergen-derived peptides. Often, such vaccines are associated with lower immunogenicity and stability and therefore require an appropriate delivery vehicle. In this respect, viruses, bacteria, and their protein components have been intensively studied for their adjuvant capacity. This article provides an overview of the microbial delivery vehicles that have been tested for use in allergy immunotherapy. We review in vitro and in vivo data on the immunomodulatory capacity of different microbial vehicles for allergens and allergen-derived peptides and evaluate their potential in development of allergy vaccines. We also discuss relevant aspects and challenges concerning the use of microbes and their components in immunotherapy of allergic diseases.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Dysbiosis of Inferior Turbinate Microbiota Is Associated with High Total IgE Levels in Patients with Allergic Rhinitis. Infect Immun 2018; 86:IAI.00934-17. [PMID: 29426044 DOI: 10.1128/iai.00934-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 01/06/2023] Open
Abstract
Abnormalities in the human microbiota are associated with the etiology of allergic diseases. Although disease site-specific microbiota may be associated with disease pathophysiology, the role of the nasal microbiota is unclear. We sought to characterize the microbiota of the site of allergic rhinitis, the inferior turbinate, in subjects with allergic rhinitis (n = 20) and healthy controls (n = 12) and to examine the relationship of mucosal microbiota with disease occurrence, sensitized allergen number, and allergen-specific and total IgE levels. Microbial dysbiosis correlated significantly with total IgE levels representing combined allergic responses but not with disease occurrence, the number of sensitized allergens, or house dust mite allergen-specific IgE levels. Compared to the populations in individuals with low total IgE levels (group IgElow), low microbial biodiversity with a high relative abundance of Firmicutes phylum (Staphylococcus aureus) and a low relative abundance of Actinobacteria phylum (Propionibacterium acnes) was observed in individuals with high total serum IgE levels (group IgEhigh). Phylogeny-based microbial functional potential predicted by the 16S rRNA gene indicated an increase in signal transduction-related genes and a decrease in energy metabolism-related genes in group IgEhigh as shown in the microbial features with atopic and/or inflammatory diseases. Thus, dysbiosis of the inferior turbinate mucosa microbiota, particularly an increase in S. aureus and a decrease in P. acnes, is linked to high total IgE levels in allergic rhinitis, suggesting that inferior turbinate microbiota may be affected by accumulated allergic responses against sensitized allergens and that site-specific microbial alterations play a potential role in disease pathophysiology.
Collapse
|
14
|
Investigation of the effects of probiotics on allergy. MARMARA MEDICAL JOURNAL 2018. [DOI: 10.5472/marumj.398839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Maiga MA, Morin S, Bernard H, Rabot S, Adel-Patient K, Hazebrouck S. Neonatal mono-colonization of germ-free mice with Lactobacillus casei enhances casein immunogenicity after oral sensitization to cow's milk. Mol Nutr Food Res 2017; 61. [PMID: 28318108 DOI: 10.1002/mnfr.201600862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 01/10/2023]
Abstract
SCOPE Food allergy is an increasing global health problem and perinatal administration of probiotic bacteria is currently under investigation in order to prevent the development of allergic diseases. Here, we investigated the impact of neonatal mono-colonization of mice with Lactobacillus casei BL23 on an oral sensitization to cow's milk. METHODS AND RESULTS Mono-colonized (LC) mice were obtained by inoculating L. casei to germ-free (GF) parents. Nine-week-old GF, LC, and conventional (CV) mice were orally sensitized to cow's milk with cholera toxin as adjuvant. Compared to GF and CV mice, LC mice developed higher casein-specific IgG responses. In contrast, no significant differences between GF and LC mice were observed for the humoral responses against whey proteins. Immunoblotting experiments performed on αS1-casein hydrolysates revealed the presence of small peptides immunoreactive with sera from LC mice but not from GF mice. After in vitro reactivation of splenocytes, secretion of IL-17 was higher in LC mice than in GF and CV mice. CONCLUSION Neonatal mono-colonization by L. casei BL23 modulated the allergic sensitization toward food antigens. Furthermore, our data suggest that casein-specific humoral responses in LC mice were enhanced because of casein hydrolysis by L. casei into immunogenic peptides.
Collapse
Affiliation(s)
- Matieny Aicha Maiga
- UMR Service de Pharmacologie et d'Immunoanalyse, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphanie Morin
- UMR Service de Pharmacologie et d'Immunoanalyse, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Bernard
- UMR Service de Pharmacologie et d'Immunoanalyse, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Karine Adel-Patient
- UMR Service de Pharmacologie et d'Immunoanalyse, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- UMR Service de Pharmacologie et d'Immunoanalyse, CEA, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Kotredes KP, Thomas B, Gamero AM. The Protective Role of Type I Interferons in the Gastrointestinal Tract. Front Immunol 2017; 8:410. [PMID: 28428788 PMCID: PMC5382159 DOI: 10.3389/fimmu.2017.00410] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
The immune system of the gastrointestinal (GI) tract manages the significant task of recognizing and eliminating pathogens while maintaining tolerance of commensal bacteria. Dysregulation of this delicate balance can be detrimental, resulting in severe inflammation, intestinal injury, and cancer. Therefore, mechanisms to relay important signals regulating cell growth and immune reactivity must be in place to support GI homeostasis. Type I interferons (IFN-I) are a family of pleiotropic cytokines, which exert a wide range of biological effects including promotion of both pro- and anti-inflammatory activities. Using animal models of colitis, investigations into the regulation of intestinal epithelium inflammation highlight the role of IFN-I signaling during fine modulation of the immune system. The intestinal epithelium of the gut guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the IFN-I signal-transduction pathway. The current paradigm depicts an IFN-I-induced antiproliferative state in the intestinal epithelium enabling cell differentiation, cell maturation, and proper intestinal barrier function, strongly supporting its role in maintaining baseline immune activity and clearance of damaged epithelia or pathogens. In this review, we will highlight the importance of IFN-I in intestinal homeostasis by discussing its function in inflammation, immunity, and cancer.
Collapse
Affiliation(s)
- Kevin P Kotredes
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - Brianna Thomas
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
|
19
|
Schwarzer M, Srutkova D, Hermanova P, Leulier F, Kozakova H, Schabussova I. Diet Matters: Endotoxin in the Diet Impacts the Level of Allergic Sensitization in Germ-Free Mice. PLoS One 2017; 12:e0167786. [PMID: 28052076 PMCID: PMC5215724 DOI: 10.1371/journal.pone.0167786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023] Open
Abstract
Germ-free animals have been used to define the vital role of commensal bacteria on the maturation of the host immune system. However, the role of bacterial residues in diet in this setting is poorly understood. Here we investigated the effect of bacterial contamination in sterile diet on the level of allergic sensitization in germ-free mice. Sterile grain-based diets ST1 and R03 were tested for the level of bacterial contamination. ST1 contained higher amount of bacterial DNA, approximately ten times more endotoxin, and induced higher, TLR4-dependent, cytokine production in dendritic cells compared to R03. In a germ-free mouse model of sensitization to the major birch pollen allergen Bet v 1, feeding on ST1 for at least two generations was associated with decreased production of allergen-specific IgE and IgG1 antibodies in sera in comparison to R03. Furthermore, reduced levels of allergen-specific and ConA-induced cytokines IL-4, IL-5 and IL-13 accompanied by increased levels of IFN-γ were detected in splenocytes cultures of these mice. Our results show that contamination of experimental diet with bacterial residues, such as endotoxin, significantly affects the development of allergic sensitization in germ-free mice. Therefore, careful selection of sterile food is critical for the outcomes of germ-free or gnotobiotic experimental models of immune-deviated diseases.
Collapse
Affiliation(s)
- Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Novy Hradek, Czech Republic
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Iniversité Claude Bernard Lyon 1, Lyon, France
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Novy Hradek, Czech Republic
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Novy Hradek, Czech Republic
| | - Francois Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Iniversité Claude Bernard Lyon 1, Lyon, France
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Novy Hradek, Czech Republic
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
20
|
Abstract
Mucosal vaccine based on lactic acid bacteria is an attractive strategy for prevention and treatment of allergic diseases. Here we describe the development of recombinant Lactococcus lactis expressing house dust mite (HDM) allergen as an oral vaccine. The major HDM allergen Der p2 is first codon optimized and synthesized to achieve the maximum expression level in L. lactis. After double digested by NcoI and XbaI, the derp2 fragment is ligated to the same double-digested pNZ8148 vector. The ligation is transformed to L. lactis NZ9000 and correct transformant is verified by sequencing. Western blot analysis is employed to confirm Derp2 expression in L. lactis after nisin induction.
Collapse
|
21
|
Moingeon P, Floch VBL, Airouche S, Baron-Bodo V, Nony E, Mascarell L. Allergen immunotherapy for birch pollen-allergic patients: recent advances. Immunotherapy 2016; 8:555-67. [DOI: 10.2217/imt-2015-0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As of today, allergen immunotherapy is performed with aqueous natural allergen extracts. Recombinant allergen vaccines are not yet commercially available, although they could provide patients with well-defined and highly consistent drug substances. As Bet v 1 is the major allergen involved in birch pollen allergy, with more than 95% of patients sensitized to this allergen, pharmaceutical-grade recombinant Bet v 1-based vaccines were produced and clinically tested. Herein, we compare the clinical results and modes of action of treatments based on either a birch pollen extract or recombinant Bet v 1 expressed as hypoallergenic or natural-like molecules. We also discuss the future of allergen immunotherapy with improved drugs intended for birch pollen-allergic patients suffering from rhinoconjunctivitis.
Collapse
Affiliation(s)
- Philippe Moingeon
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | | | - Sabi Airouche
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Véronique Baron-Bodo
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Emmanuel Nony
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Laurent Mascarell
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| |
Collapse
|
22
|
Ai C, Zhang Q, Ding J, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen W. Mucosal delivery of allergen peptides expressed by Lactococcus lactis inhibit allergic responses in a BALB/c mouse model. Appl Microbiol Biotechnol 2015; 100:1915-1924. [PMID: 26621801 DOI: 10.1007/s00253-015-7187-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
Allergen-specific immunotherapy (SIT) is considered to be the only curative treatment of allergy, but its safety is always affected by immunologic properties and quality of allergen. Recombinant allergen derivative could be a potential therapeutic strategy, but clinical studies showed that macromolecular derivatives could not avoid T cell-mediated side effects. In this study, five Der p2-derived peptides (DPs) containing major T cell epitopes of Der p2 were first artificially synthesized. Compared with Der p2 macromolecular derivative DM, these DPs not only fully eliminated IgE-binding capacity but also reduced T cells reactivity, suggesting these DPs could be better therapeutic molecules. For their application in vivo, Lactococcus lactis was engineered to express these DPs, and their protective effects were evaluated in BALB/c mice models. Western blot showed that all DPs could be produced in the recombinant strains. Mucosal delivery of these strains could inhibit Der p2-induced allergic responses in Der p2-sensitized mice, characterized by a reduction in specific IgE antibody and lung inflammatory responses. These protective effects were associated with an increase of specific IgG2a in serum and regulatory T cells in the mesenteric lymph nodes. On the whole, the suppressive effect induced by the DP mixture could be better than single DP, but a bit weaker than DM. These DPs could be promising candidate molecules for active vaccination and induction of tolerance, and thus promote the development of non-allergenic peptide in the treatment and prevention of allergy.
Collapse
Affiliation(s)
- Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Junrong Ding
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
23
|
Minic R, Gavrovic-Jankulovic M, Petrusic V, Zivkovic I, Eijsink VG, Dimitrijevic L, Mathiesen G. Effects of orally applied Fes p1-displaying L. plantarum WCFS1 on Fes p1 induced allergy in mice. J Biotechnol 2015; 199:23-8. [DOI: 10.1016/j.jbiotec.2015.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
|
24
|
Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E, Rosiak I, Hudcovic T, Schabussova I, Hermanova P, Zakostelska Z, Aleksandrzak-Piekarczyk T, Koryszewska-Baginska A, Tlaskalova-Hogenova H, Cukrowska B. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol 2015; 13:251-62. [PMID: 25942514 DOI: 10.1038/cmi.2015.09] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Increasing numbers of clinical trials and animal experiments have shown that probiotic bacteria are promising tools for allergy prevention. Here, we analyzed the immunomodulatory properties of three selected lactobacillus strains and the impact of their mixture on allergic sensitization to Bet v 1 using a gnotobiotic mouse model. We showed that Lactobacillus (L.) rhamnosus LOCK0900, L. rhamnosus LOCK0908 and L. casei LOCK0919 are recognized via Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) receptors and stimulate bone marrow-derived dendritic cells to produce cytokines in species- and strain-dependent manners. Colonization of germ-free (GF) mice with a mixture of all three strains (Lmix) improved the intestinal barrier by strengthening the apical junctional complexes of enterocytes and restoring the structures of microfilaments extending into the terminal web. Mice colonized with Lmix and sensitized to the Bet v 1 allergen showed significantly lower levels of allergen-specific IgE, IgG1 and IgG2a and an elevated total IgA level in the sera and intestinal lavages as well as an increased transforming growth factor (TGF)-β level compared with the sensitized GF mice. Splenocytes and mesenteric lymph node cells from the Lmix-colonized mice showed the significant upregulation of TGF-β after in vitro stimulation with Bet v 1. Our results show that Lmix colonization improved the gut epithelial barrier and reduced allergic sensitization to Bet v 1. Furthermore, these findings were accompanied by the increased production of circulating and secretory IgA and the regulatory cytokine TGF-β. Thus, this mixture of three lactobacillus strains shows potential for use in the prevention of increased gut permeability and the onset of allergies in humans.
Collapse
Affiliation(s)
- Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Ludmila Tuckova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Elzbieta Czarnowska
- Department of Pathology, the Children's Memorial Health Institute, Warsaw, Poland
| | - Ilona Rosiak
- Department of Pathology, the Children's Memorial Health Institute, Warsaw, Poland
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Zuzana Zakostelska
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | | | | | - Helena Tlaskalova-Hogenova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Bozena Cukrowska
- Department of Pathology, the Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
25
|
Ai C, Zhang Q, Ding J, Ren C, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen YQ, Chen W. Suppression of dust mite allergy by mucosal delivery of a hypoallergenic derivative in a mouse model. Appl Microbiol Biotechnol 2015; 99:4309-19. [PMID: 25661808 DOI: 10.1007/s00253-015-6407-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Allergic asthma caused by house dust mite (HDM) is becoming a public health problem. Specific immunotherapy is considered to be the only curative treatment, but it is always associated with IgE-mediated side effects in the therapy process. A few studies showed that the disruption of allergen IgE epitopes could reduce IgE reactivity and thus reduce allergenic activity. In this study, a hypoallergenic derivative of the major HDM allergen Der p2 was constructed by genetic engineering. This derivative was confirmed to have a considerably reduced IgE reactivity compared with Der p2. For its application in vivo, recombinant Lactococcus lactis (LL-DM) was engineered to deliver the Der p2 derivative to the intestinal mucosal surface. Oral administration of LL-DM significantly alleviated Der p2-induced airway inflammation, as shown by reduced inflammatory infiltration and a reduction in Th2 cytokines in bronchoalveolar lavage. This protective effect was associated with an up-regulation of specific IgG2a and a decrease in IL-4 level in the spleen which may affect specific IgE response. Moreover, the levels of regulatory T cells in the mesenteric lymph nodes and spleen were markedly increased in mice fed with LL-DM, suggesting that LL-DM can inhibit allergic responses via the induction of regulatory T cell. Our results indicate that the Der p2 derivative is a promising therapeutic molecule for specific immunotherapy and recombinant lactic acid bacteria could be developed as a promising treatment or prevention strategy for allergic diseases.
Collapse
Affiliation(s)
- Chunqing Ai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gnotobiology and the Study of Complex Interactions between the Intestinal Microbiota, Probiotics, and the Host. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Tauer C, Heinl S, Egger E, Heiss S, Grabherr R. Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microb Cell Fact 2014; 13:150. [PMID: 25410118 PMCID: PMC4247782 DOI: 10.1186/s12934-014-0150-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/18/2014] [Indexed: 11/18/2022] Open
Abstract
Background Lactobacillus plantarum constitutes a well-recognized food-grade system for the expression of recombinant proteins in the field of industrial and medical biotechnology. For applications in vivo or in biotechnological processes, the level of expression of e.g. antigens or enzymes is often critical, as expression levels should be of a certain effectiveness, yet, without putting too much strain to the overall system. The key factors that control gene expression are promoter strength, gene copy number and translation efficiency. In order to estimate the impact of these adjusting screws in L. plantarum CD033, we have tested several constitutive promoters in combination with high and low copy number plasmid backbones and varying space between the Shine-Dalgarno sequence and the start-codon. Results By combining strong promoters, such as transcription elongation factor promoters, isolated from L. plantarum CD033 and L. buchneri CD034, a synthetic promoter, originally derived from L. plantarum WCSF1 and a heterologous promoter derived from L. buchneri CD034 with a high and a low copy number origin of replication we demonstrated various expression levels of the model protein mCherry. All promoters were feasible for protein expression and in all cases, the high copy number origin of replication increased expression twofold. We found that the optimal spacer between the Shine-Dalgarno sequence and the start codon in L. plantarum consists of 8 nucleotides and elongation as well as shortening this sequence gradually down-regulates gene expression. Conclusions We have evaluated the effects of a set of gene regulatory tools to fine tune recombinant gene expression in L. plantarum CD033. We have thus, provided potential expression vectors useful for constitutive protein expression in lactic acid bacteria ranging from moderate to strong production levels.
Collapse
Affiliation(s)
- Christopher Tauer
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Muthgasse 11, Vienna, 1190, Austria.
| | - Stefan Heinl
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Muthgasse 11, Vienna, 1190, Austria.
| | - Esther Egger
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Muthgasse 11, Vienna, 1190, Austria.
| | - Silvia Heiss
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Muthgasse 11, Vienna, 1190, Austria.
| | - Reingard Grabherr
- Christian Doppler Laboratory for Genetically Engineered Lactic Acid Bacteria, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Muthgasse 11, Vienna, 1190, Austria.
| |
Collapse
|
28
|
Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen YQ, Chen W. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 2014; 9:e109461. [PMID: 25290938 PMCID: PMC4188596 DOI: 10.1371/journal.pone.0109461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model. Methods Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall) were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro. Results Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes. Conclusion Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.
Collapse
Affiliation(s)
- Chunqing Ai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (QZ); (WC)
| | - Chengcheng Ren
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (QZ); (WC)
| |
Collapse
|
29
|
Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol 2014; 80:6506-16. [PMID: 25107979 DOI: 10.1128/aem.02104-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies.
Collapse
|
30
|
Schabussova I. MedUni Wien Researcher of the Month, Juni 2014. Wien Klin Wochenschr 2014; 126:393-4. [DOI: 10.1007/s00508-014-0566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Kramer MF, Heath MD. Probiotics in the treatment of chronic rhinoconjunctivitis and chronic rhinosinusitis. J Allergy (Cairo) 2014; 2014:983635. [PMID: 24872820 PMCID: PMC4020448 DOI: 10.1155/2014/983635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/24/2014] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinitis and rhinosinusitis (CRS) are relevant health conditions affecting significant percentages of the western population. They are frequently coexisting and aggravating diseases. Both are chronic, noninfectious, and inflammatory conditions sharing to a certain extent important pathophysiologic similarities. Beneficial effects of probiotics are long known to mankind. Research is beginning to unravel the true nature of the human microbiome and its interaction with the immune system. The growing prevalence of atopic diseases in the developed world led to the proposition of the "hygiene hypothesis." Dysbiosis is linked to atopic diseases; probiotic supplementation is able to alter the microbiome and certain probiotic strains have immunomodulatory effects in favour of a suppression of Th-2 and stimulation of a Th1 profile. This review focuses on randomized, double-blind, placebo-controlled trials investigating clinical parameters in the treatment of chronic rhinitis and CRS. An emerging number of publications demonstrate beneficial effects using probiotics in clinical double-blind placebo-controlled (dbpc) trials in allergic rhinitis (AR). Using probiotics as complementary treatment options in AR seems to be a promising concept although the evidence is of a preliminary nature to date and more convincing trials are needed. There are no current data to support the use of probiotics in non-AR or CRS.
Collapse
Affiliation(s)
- Matthias F. Kramer
- Allergy Therapeutics plc., Dominion Way, Worthing, West Sussex BN14 8SA, UK
| | - Matthew D. Heath
- Allergy Therapeutics plc., Dominion Way, Worthing, West Sussex BN14 8SA, UK
| |
Collapse
|
32
|
Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice. Appl Microbiol Biotechnol 2014; 98:6353-64. [PMID: 24770368 DOI: 10.1007/s00253-014-5678-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 12/23/2022]
Abstract
Peanut allergy (PNA) has becoming a non-negligible health concern worldwide. Thus far, allergen-specific immunotherapy aimed at inducing mucosal tolerance has widely been regarded as a major management strategy for PNA. The safety profiles and the intrinsic probiotic properties of lactic acid bacteria (LAB) render them attractive delivery vehicles for mucosal vaccines. In the present study, we exploited genetically modified Lactococcus lactis to produce peanut allergen Ara h 2 via different protein-targeting systems and their immunomodulatory potency for allergic immune responses in mice were investigated. By comparison with the strain expressing the cytoplasmic form of Ara h 2 (LL1), the strains expressing the secreted and anchored forms of Ara h 2 (LL2 and LL3) were more potent in redirecting a Th2-polarized to a non-allergic Th1 immune responses. Induction of SIgA and regulatory T cells were also observed at the local levels by orally administration of recombinant L. lactis. Our results indicate that allergen-producing L. lactis strains modulated allergic immune responses and may be developed as promising mucosal vaccines for managing allergic diseases.
Collapse
|
33
|
Weiss R, Scheiblhofer S, Roesler E, Weinberger E, Thalhamer J. mRNA vaccination as a safe approach for specific protection from type I allergy. Expert Rev Vaccines 2014; 11:55-67. [DOI: 10.1586/erv.11.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Schwarzer M, Srutkova D, Schabussova I, Hudcovic T, Akgün J, Wiedermann U, Kozakova H. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 2013; 31:5405-12. [PMID: 24055352 DOI: 10.1016/j.vaccine.2013.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/19/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022]
Abstract
The main goal in reversing the allergy epidemic is the development of effective prophylactic strategies. We investigated the prophylactic effect of neonatal mother-to-offspring mono-colonization with Bifidobacterium longum ssp. longum CCM 7952 on subsequent allergic sensitization. Adult male and female germ-free (GF) mice were mono-colonized with B. longum, mated and their offspring, as well as age-matched GF controls, were sensitized with the major birch pollen allergen Bet v 1. Furthermore, signaling pathways involved in the recognition of B. longum were investigated in vitro. Neonatal mono-colonization of GF mice with B. longum suppressed Bet v 1-specific IgE-dependent β-hexosaminidase release as well as levels of total IgE and allergen-specific IgG2a in serum compared to sensitized GF controls. Accordingly, Bet v 1-induced production of both Th1- and Th2-associated cytokines in spleen cell cultures was significantly reduced in these mice. The general suppression of Bet v 1-specific immune responses in B. longum-colonized mice was associated with increased levels of regulatory cytokines IL-10 and TGF-β in serum. In vitro, B. longum induced low maturation status of bone marrow-derived dendritic cells and production of IL-10 in TLR2-, MyD88-, and MAPK-dependent manner. Our data demonstrate that neonatal mono-colonization with B. longum reduces allergic sensitization, likely by activation of regulatory responses via TLR2, MyD88, and MAPK signaling pathways. Thus, B. longum might be a promising candidate for perinatal intervention strategies against the onset of allergic diseases in humans.
Collapse
Affiliation(s)
- Martin Schwarzer
- Department of Immunology and Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Novy Hradek, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kawashima T, Kosaka A, Yan H, Guo Z, Uchiyama R, Fukui R, Kaneko D, Kumagai Y, You DJ, Carreras J, Uematsu S, Jang MH, Takeuchi O, Kaisho T, Akira S, Miyake K, Tsutsui H, Saito T, Nishimura I, Tsuji NM. Double-stranded RNA of intestinal commensal but not pathogenic bacteria triggers production of protective interferon-β. Immunity 2013; 38:1187-97. [PMID: 23791646 DOI: 10.1016/j.immuni.2013.02.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
The small intestine harbors a substantial number of commensal bacteria and is sporadically invaded by pathogens, but the response to these microorganisms is fundamentally different. We identified a discriminatory sensor by using Toll-like receptor 3 (TLR3). Double-stranded RNA (dsRNA) of one major commensal species, lactic acid bacteria (LAB), triggered interferon-β (IFN-β) production, which protected mice from experimental colitis. The LAB-induced IFN-β response was diminished by dsRNA digestion and treatment with endosomal inhibitors. Pathogenic bacteria contained less dsRNA and induced much less IFN-β than LAB, and dsRNA was not involved in pathogen-induced IFN-β induction. These results identify TLR3 as a sensor to small intestinal commensal bacteria and suggest that dsRNA in commensal bacteria contributes to anti-inflammatory and protective immune responses.
Collapse
Affiliation(s)
- Tadaomi Kawashima
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology-AIST, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
de Azevedo M, Innocentin S, Dorella F, Rocha C, Mariat D, Pontes D, Miyoshi A, Azevedo V, Langella P, Chatel JM. Immunotherapy of allergic diseases using probiotics or recombinant probiotics. J Appl Microbiol 2013; 115:319-33. [DOI: 10.1111/jam.12174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 12/11/2022]
Affiliation(s)
- M.S.P. de Azevedo
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais (ICB/UFMG); Belo Horizonte MG, Brazil
- INRA; UMR1319 Micalis; Jouy-en-Josas France
- AgroParisTech; UMR Micalis; Jouy-en-Josas France
| | - S. Innocentin
- INRA; UMR1319 Micalis; Jouy-en-Josas France
- AgroParisTech; UMR Micalis; Jouy-en-Josas France
- Lymphocyte Signalling and Development Laboratory; Babraham Institute; Babraham Research Campus; Cambridge CB22 3AT UK
| | - F.A. Dorella
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais (ICB/UFMG); Belo Horizonte MG, Brazil
| | - C.S. Rocha
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais (ICB/UFMG); Belo Horizonte MG, Brazil
| | - D. Mariat
- INRA; UMR1319 Micalis; Jouy-en-Josas France
- AgroParisTech; UMR Micalis; Jouy-en-Josas France
| | - D.S. Pontes
- Departamento de Ciências Biológicas; Universidade Estadual da Paraíba; Campus V; João Pessoa PB, Brazil
| | - A. Miyoshi
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais (ICB/UFMG); Belo Horizonte MG, Brazil
| | - V. Azevedo
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais (ICB/UFMG); Belo Horizonte MG, Brazil
| | - P. Langella
- INRA; UMR1319 Micalis; Jouy-en-Josas France
- AgroParisTech; UMR Micalis; Jouy-en-Josas France
| | - J.-M. Chatel
- INRA; UMR1319 Micalis; Jouy-en-Josas France
- AgroParisTech; UMR Micalis; Jouy-en-Josas France
| |
Collapse
|
37
|
Corazza N, Kaufmann T. Novel insights into mechanisms of food allergy and allergic airway inflammation using experimental mouse models. Allergy 2012; 67:1483-90. [PMID: 23106364 DOI: 10.1111/all.12065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 11/28/2022]
Abstract
Over the last decades, considerable efforts have been undertaken in the development of animal models mimicking the pathogenesis of allergic diseases occurring in humans. The mouse has rapidly emerged as the animal model of choice, due to considerations of handling and costs and, importantly, due to the availability of a large and increasing arsenal of genetically modified mouse strains and molecular tools facilitating the analysis of complex disease models. Here, we review latest developments in allergy research that have arisen from in vivo experimentation in the mouse, with a focus on models of food allergy and allergic asthma, which constitute major health problems with increasing incidence in industrialized countries. We highlight recent novel findings and controversies in the field, most of which were obtained through the use of gene-deficient or germ-free mice, and discuss new potential therapeutic approaches that have emerged from animal studies and that aim at attenuating allergic reactions in human patients.
Collapse
Affiliation(s)
- N. Corazza
- Institute of Pathology; University of Bern; Bern; Switzerland
| | - T. Kaufmann
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| |
Collapse
|
38
|
Schabussova I, Hufnagl K, Tang MLK, Hoflehner E, Wagner A, Loupal G, Nutten S, Zuercher A, Mercenier A, Wiedermann U. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One 2012; 7:e40271. [PMID: 22792257 PMCID: PMC3391241 DOI: 10.1371/journal.pone.0040271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/04/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. METHODS BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. RESULTS Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. CONCLUSION Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring by activating regulatory pathways, likely through TLR2/4 signalling.
Collapse
Affiliation(s)
- Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mimi L. K. Tang
- Department of Allergy and Immunology, Royal Children’s Hospital, The University of Melbourne, Melbourne, Australia
- Department of Allergy and Immune Disorders, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Royal Children’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Elisabeth Hoflehner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Loupal
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, The University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sophie Nutten
- Nutrition and Health Department, Nestlé Research Center, Lausanne, Switzerland
| | | | - Annick Mercenier
- Nutrition and Health Department, Nestlé Research Center, Lausanne, Switzerland
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol 2011; 29:499-508. [DOI: 10.1016/j.tibtech.2011.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 12/13/2022]
|
40
|
Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, Rossmann P, Hrnčíř T, Kverka M, Zákostelská Z, Klimešová K, Přibylová J, Bártová J, Sanchez D, Fundová P, Borovská D, Srůtková D, Zídek Z, Schwarzer M, Drastich P, Funda DP. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 2011; 8:110-20. [PMID: 21278760 PMCID: PMC4003137 DOI: 10.1038/cmi.2010.67] [Citation(s) in RCA: 498] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Metagenomic approaches are currently being used to decipher the genome of the microbiota (microbiome), and, in parallel, functional studies are being performed to analyze the effects of the microbiota on the host. Gnotobiological methods are an indispensable tool for studying the consequences of bacterial colonization. Animals used as models of human diseases can be maintained in sterile conditions (isolators used for germ-free rearing) and specifically colonized with defined microbes (including non-cultivable commensal bacteria). The effects of the germ-free state or the effects of colonization on disease initiation and maintenance can be observed in these models. Using this approach we demonstrated direct involvement of components of the microbiota in chronic intestinal inflammation and development of colonic neoplasia (i.e., using models of human inflammatory bowel disease and colorectal carcinoma). In contrast, a protective effect of microbiota colonization was demonstrated for the development of autoimmune diabetes in non-obese diabetic (NOD) mice. Interestingly, the development of atherosclerosis in germ-free apolipoprotein E (ApoE)-deficient mice fed by a standard low-cholesterol diet is accelerated compared with conventionally reared animals. Mucosal induction of tolerance to allergen Bet v1 was not influenced by the presence or absence of microbiota. Identification of components of the microbiota and elucidation of the molecular mechanisms of their action in inducing pathological changes or exerting beneficial, disease-protective activities could aid in our ability to influence the composition of the microbiota and to find bacterial strains and components (e.g., probiotics and prebiotics) whose administration may aid in disease prevention and treatment.
Collapse
|