1
|
Najar M, Alsabri SG, Guedi GG, Merimi M, Lavoie F, Grabs D, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of epigenetics and the transcription factor Sp1 in the expression of the D prostanoid receptor 1 in human cartilage. Front Cell Dev Biol 2023; 11:1256998. [PMID: 38099292 PMCID: PMC10720455 DOI: 10.3389/fcell.2023.1256998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
D prostanoid receptor 1 (DP1), a prostaglandin D2 receptor, plays a central role in the modulation of inflammation and cartilage metabolism. We have previously shown that activation of DP1 signaling downregulated catabolic responses in cultured chondrocytes and was protective in mouse osteoarthritis (OA). However, the mechanisms underlying its transcriptional regulation in cartilage remained poorly understood. In the present study, we aimed to characterize the human DP1 promoter and the role of DNA methylation in DP1 expression in chondrocytes. In addition, we analyzed the expression level and methylation status of the DP1 gene promoter in normal and OA cartilage. Deletion and site-directed mutagenesis analyses identified a minimal promoter region (-250/-120) containing three binding sites for specificity protein 1 (Sp1). Binding of Sp1 to the DP1 promoter was confirmed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Treatment with the Sp1 inhibitor mithramycin A reduced DP1 promoter activity and DP1 mRNA expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine upregulated DP1 expression, and in vitro methylation reduced the DP1 promoter activity. Neither the methylation status of the DP1 promoter nor the DP1 expression level were different between normal and OA cartilage. In conclusion, our results suggest that the transcription factor Sp1 and DNA methylation are important determinants of DP1 transcription regulation. They also suggest that the methylation status and expression level of DP1 are not altered in OA cartilage. These findings will improve our understanding of the regulatory mechanisms of DP1 transcription and may facilitate the development of intervention strategies involving DP1.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G. Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, University of Montreal Hospital Center (CHUM), Montréal, QC, Canada
| | - Detlev Grabs
- Research Unit in Clinical and Functional Anatomy, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
2
|
Sheikhpour M, Maleki M, Ebrahimi Vargoorani M, Amiri V. A review of epigenetic changes in asthma: methylation and acetylation. Clin Epigenetics 2021; 13:65. [PMID: 33781317 PMCID: PMC8008616 DOI: 10.1186/s13148-021-01049-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ebrahimi Vargoorani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, College of Basic Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
García-Sánchez A, Marcos-Vadillo E, Sanz C, Estravís M, Isidoro-García M, Dávila I. PTGDR expression is upregulated through retinoic acid receptors (RAR) mechanism in allergy. PLoS One 2019; 14:e0215086. [PMID: 30986261 PMCID: PMC6464170 DOI: 10.1371/journal.pone.0215086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Functional studies suggest that promoter polymorphisms of the Prostaglandin D Receptor (PTGDR) gene can be involved in asthma. All-trans Retinoic acid (ATRA) has also been linked to allergic diseases. We have previously described the PTGDR promoter activation mediated by ATRA through response elements (RARE) at position -549T> C. In this study we aimed to analyze the effect of retinoic acid (RA) on the expression of PTGDR, the production of cytokines as well as to evaluate the binding of RA receptors to RA-Response Elements (RARE) sequences. A549 cells were transfected with vectors carrying different PTGDR haplotypes and treated with all-Trans Retinoic Acid (ATRA). PTGDR expression was measured by qPCR. Chromatin Immunoprecipitation assays (ChIP) were performed in ATRA stimulated KU812 cells and in PBMCs of patients carrying CTCT, CCCC or CCCT haplotypes. In addition, a broad panel of cytokines was analyzed by cytometric bead assay in A549 cells. The expression of PTGDR increased in A549 cells transfected with PTGDR-variants. The CCCC haplotype showed a significantly higher expression compared with CTCT. However, we found that RA up-regulated PTGDR expression through RARα mainly in the CTCT variant. Experiments on PBMCs from allergic patients carrying the -549T and -549C variant of the PTGDR promoter after ATRA and RAR antagonist administration confirmed the modulation of PTGDR by ATRA. The cytokine analysis showed that IL4 and IL6 levels were significantly increased in A549 cells transfected with PTGDR. In addition, ATRA treatment decreased the levels of IL4, IL6 and TNFα in A549 cells, whereas it increased IL4 and TNFα levels in PTGDR-transfected cells. We observed genetic differences in the regulation of PTGDR by ATRA that could contribute to the phenotypic differences observed in allergic patients. Our findings showed that RAR modulation by PTGDR might have an impact on Th2 responses, suggesting that RAR could be a potential therapeutic target in allergic inflammation.
Collapse
Affiliation(s)
- Asunción García-Sánchez
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Asthma, Allergic and Adverse Reactions (ARADyAL) Network for Cooperative Research in Health of Instituto de Salud Carlos III, Salamanca University Hospital, Salamanca, Spain
| | - Elena Marcos-Vadillo
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Asthma, Allergic and Adverse Reactions (ARADyAL) Network for Cooperative Research in Health of Instituto de Salud Carlos III, Salamanca University Hospital, Salamanca, Spain
- Department of Clinical Biochemistry, Salamanca University Hospital, Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Asthma, Allergic and Adverse Reactions (ARADyAL) Network for Cooperative Research in Health of Instituto de Salud Carlos III, Salamanca University Hospital, Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Miguel Estravís
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Asthma, Allergic and Adverse Reactions (ARADyAL) Network for Cooperative Research in Health of Instituto de Salud Carlos III, Salamanca University Hospital, Salamanca, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Asthma, Allergic and Adverse Reactions (ARADyAL) Network for Cooperative Research in Health of Instituto de Salud Carlos III, Salamanca University Hospital, Salamanca, Spain
- Department of Clinical Biochemistry, Salamanca University Hospital, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Ignacio Dávila
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Asthma, Allergic and Adverse Reactions (ARADyAL) Network for Cooperative Research in Health of Instituto de Salud Carlos III, Salamanca University Hospital, Salamanca, Spain
- Department of Allergy, Salamanca University Hospital, Salamanca, Spain
| |
Collapse
|
4
|
Huo Y, Zhang HY. Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes (Basel) 2018; 9:genes9050237. [PMID: 29751569 PMCID: PMC5977177 DOI: 10.3390/genes9050237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic disease that is caused by airway inflammation. The main features of asthma are airway hyperresponsiveness (AHR) and reversible airway obstruction. The disease is mainly managed using drug therapy. The current asthma drug treatments are divided into two categories, namely, anti-inflammatory drugs and bronchodilators. However, disease control in asthma patients is not very efficient because the pathogenesis of asthma is complicated, inducing factors that are varied, such as the differences between individual patients. In this paper, we delineate the genetic mechanisms of asthma, and present asthma-susceptible genes and genetic pharmacology in an attempt to find a diagnosis, early prevention, and treatment methods for asthma. Finally, we reposition some clinical drugs for asthma therapy, based on asthma genetics.
Collapse
Affiliation(s)
- Yue Huo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Peinhaupt M, Roula D, Theiler A, Sedej M, Schicho R, Marsche G, Sturm EM, Sabroe I, Rothenberg ME, Heinemann A. DP1 receptor signaling prevents the onset of intrinsic apoptosis in eosinophils and functions as a transcriptional modulator. J Leukoc Biol 2018; 104:159-171. [PMID: 29607536 PMCID: PMC6032830 DOI: 10.1002/jlb.3ma1017-404r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/15/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin (PG) D2 is the ligand for the G-protein coupled receptors DP1 (D-type prostanoid receptor 1) and DP2 (also known as chemoattractant receptor homologous molecule, expressed on Th2 cells; CRTH2). Both, DP1 and DP2 are expressed on the cellular surface of eosinophils; although it has become quite clear that PGD2 induces eosinophil migration mainly via DP2 receptors, the role of DP1 in eosinophil responses has remained elusive. In this study, we addressed how DP1 receptor signaling complements the pro-inflammatory effects of DP2. We found that PGD2 prolongs the survival of eosinophils via a DP1 receptor-mediated mechanism that inhibits the onset of the intrinsic apoptotic cascade. The DP1 agonist BW245c prevented the activation of effector caspases in eosinophils and protected mitochondrial membranes from depolarization which-as a consequence-sustained viability of eosinophils. DP1 activation in eosinophils enhanced the expression of the anti-apoptotic gene BCL-XL , but also induced pro-inflammatory genes, such as VLA-4 and CCR3. In HEK293 cells that overexpress recombinant DP1 and/or DP2 receptors, activation of DP1, but not DP2, delayed cell death and stimulated proliferation, along with induction of serum response element (SRE), a regulator of anti-apoptotic, early-response genes. We conclude that DP1 receptors promote the survival via SRE induction and induction of pro-inflammatory genes. Therefore, targeting DP1 receptors, along with DP2, may contribute to anti-inflammatory therapy in eosinophilic diseases.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - David Roula
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Anna Theiler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Sedej
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Eva M Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
García-Solaesa V, Sanz-Lozano CS. Interactions of DNA and Proteins: Electrophoretic Mobility Shift Assay in Asthma. Methods Mol Biol 2017; 1434:91-105. [PMID: 27300533 DOI: 10.1007/978-1-4939-3652-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrophoretic mobility shift assays (EMSA) are used to characterize interactions between nucleic acids and proteins in native conditions. This is based on the fact that the electrophoretic mobility of a nucleic acid becomes slower when it forms complexes with proteins. There are many different variants and applications of this methodology. In this chapter we describe a detailed EMSA protocol applied to the study of asthma.
Collapse
Affiliation(s)
- Virginia García-Solaesa
- Department of Clinical Genetics, University Hospital of Navarra, Pamplona, Navarra, Spain. .,Salamanca Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain.
| | - Catalina S Sanz-Lozano
- Salamanca Institute for Biomedical Research (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Microbiology and Cenetics, University of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
García-Solaesa V, Abad SC. SDS-Polyacrylamide Electrophoresis and Western Blotting Applied to the Study of Asthma. Methods Mol Biol 2017; 1434:107-20. [PMID: 27300534 DOI: 10.1007/978-1-4939-3652-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Western blotting is used to analyze proteins after being separated by electrophoresis and subsequently electro-transferred to a membrane. Once immobilized, a specific protein can be identified through its reaction with a labeled antibody or antigen. It is a methodology commonly used in biomedical research such as asthma studies, to assess the pathways of inflammatory mediators involved in the disease.Here, we describe an example of western blotting to determine the factors involved in asthma. In this chapter, the methodology of western blotting is reviewed, paying attention on potential problems and giving interesting recommendations.
Collapse
Affiliation(s)
- Virginia García-Solaesa
- Department of Clinical Genetics, University Hospital of Navarra, Pamplona, Spain. .,Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.
| | - Sara Ciria Abad
- Departament of Molecular Biology, Centro de Análisis Genéticos (Citogen), Zaragoza, Spain
| |
Collapse
|
8
|
García-Sánchez A, Marqués-García F. Review of Methods to Study Gene Expression Regulation Applied to Asthma. Methods Mol Biol 2017; 1434:71-89. [PMID: 27300532 DOI: 10.1007/978-1-4939-3652-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Gene expression regulation is the cellular process that controls, increasing or decreasing, the expression of gene products (RNA or protein). A complex set of interactions between genes, RNA molecules, protein, and other components determined when and where specific genes are activated and the amount of protein or RNA produced. Here, we focus on several methods to study gene regulation applied to asthma and allergic research such as: Western Blot to identify and quantify proteins, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to study protein interactions with nucleic acids, and RNA interference (RNAi) by which gene expression could be silenced.
Collapse
Affiliation(s)
- Asunción García-Sánchez
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain. .,Salamanca Institute for Biomedical Research (IBSAL), UniversityHospital of Salamanca, Salamanca, Spain.
| | - Fernando Marqués-García
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 6:955-961.e1. [PMID: 29133218 DOI: 10.1016/j.jaip.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Asthma is a heterogeneous chronic disease with different clinical expressions and responses to treatment. In recent years, several unbiased approaches based on clinical, physiological, and molecular features have described several phenotypes of asthma. Some phenotypes are allergic, but little is known about whether these phenotypes can be further subdivided. OBJECTIVE We aimed to phenotype patients with allergic asthma using an unbiased approach based on multivariate classification techniques (unsupervised hierarchical cluster analysis). METHODS From a total of 54 variables of 225 patients with well-characterized allergic asthma diagnosed following American Thoracic Society (ATS) recommendation, positive skin prick test to aeroallergens, and concordant symptoms, we finally selected 19 variables by multiple correspondence analyses. Then a cluster analysis was performed. RESULTS Three groups were identified. Cluster 1 was constituted by patients with intermittent or mild persistent asthma, without family antecedents of atopy, asthma, or rhinitis. This group showed the lowest total IgE levels. Cluster 2 was constituted by patients with mild asthma with a family history of atopy, asthma, or rhinitis. Total IgE levels were intermediate. Cluster 3 included patients with moderate or severe persistent asthma that needed treatment with corticosteroids and long-acting β-agonists. This group showed the highest total IgE levels. CONCLUSIONS We identified 3 phenotypes of allergic asthma in our population. Furthermore, we described 2 phenotypes of mild atopic asthma mainly differentiated by a family history of allergy.
Collapse
|
10
|
Marcos-Vadillo E, García-Sánchez A, Sanz C, Davila I, Isidoro-García M. PTGDR gene expression and response to dexamethasone treatment in an in vitro model. PLoS One 2017; 12:e0186957. [PMID: 29088248 PMCID: PMC5663384 DOI: 10.1371/journal.pone.0186957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is a multifactorial pathology influenced by environmental and genetic factors. Glucocorticoid treatment decreases symptoms by regulating genes involved in the inflammatory process through binding to specific DNA sequences. Polymorphisms located in the promoter region of the Prostaglandin D Receptor (PTGDR) gene have been related to asthma. We aimed to analyze the effect of PTGDR promoter haplotypes on gene expression and response to corticosteroid therapy. A549 lung epithelial cells were transfected with vectors carrying four different PTGDR haplotypes (CTCT, CCCC, CCCT and TCCT), and treated with dexamethasone. Different approaches to study the promoter activity (Dual Luciferase Reporter System), gene expression levels (qPCR) and cytokine secretion (Multiplexed Bead-based Flow Cytometric) were used. In addition, in silico analysis was also performed. Cells carrying the TCCT haplotype showed the lowest promoter activity (p-value<0.05) and mRNA expression levels in basal conditions. After dexamethasone treatment, cells carrying the wild-type variant CTCT showed the highest response, and those carrying the TCCT variant the lowest (p-value<0.05) in luciferase assays. Different transcription factor binding patterns were identified in silico. Moreover, differences in cytokine secretion were also found among different promoter haplotypes. Polymorphisms of PTGDR gene influence basal promoter activity and gene expression, as well as the cytokine secretory pattern. Furthermore, an association between these positions and response to corticoid treatment was observed.
Collapse
Affiliation(s)
| | - Asunción García-Sánchez
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Ignacio Davila
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Department of Allergy, University Hospital of Salamanca, Salamanca, Spain
- * E-mail:
| | - María Isidoro-García
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
11
|
Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol 2016; 7:316. [PMID: 27708579 PMCID: PMC5030812 DOI: 10.3389/fphar.2016.00316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs), have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs) and leukotrienes (LTs) are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesized through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2); mast cell maturation, eosinophil recruitment, and allergic responses (PTGD2); vascular and respiratory smooth muscle contraction (PTGF2), and inhibition of platelet aggregation (PTGI2). LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs) (LTC4, LTD4, and LTE4) induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.
Collapse
Affiliation(s)
- José A Cornejo-García
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain; Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain
| | - James R Perkins
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | | - José A Agúndez
- Department of Pharmacology, University of Extremadura Caceres, Spain
| | - Enrique Viguera
- Genetics Unit, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga Malaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | |
Collapse
|
12
|
Identification of Susceptibility Genes of Adult Asthma in French Canadian Women. Can Respir J 2016; 2016:3564341. [PMID: 27445529 PMCID: PMC4904514 DOI: 10.1155/2016/3564341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/05/2015] [Indexed: 11/18/2022] Open
Abstract
Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E - 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients.
Collapse
|
13
|
García-Sánchez A, Isidoro-García M, García-Solaesa V, Sanz C, Hernández-Hernández L, Padrón-Morales J, Lorente-Toledano F, Dávila I. Genome-wide association studies (GWAS) and their importance in asthma. Allergol Immunopathol (Madr) 2015; 43:601-8. [PMID: 25433770 DOI: 10.1016/j.aller.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease determined by the interaction of different genes and environmental factors. The first genetic investigations in asthma were candidate gene association studies and linkage studies. In recent years research has focused on association studies that scan the entire genome without any prior conditioning hypothesis: the so-called genome-wide association studies (GWAS). The first GWAS was published in 2007, and described a new locus associated to asthma in chromosome 17q12-q21, involving the ORMDL3, GSDMB and ZPBP2 genes (a description of the genes named in the manuscript are listed in Table 1). None of these genes would have been selected in a classical genetic association study since it was not known they could be implicated in asthma. To date, a number of GWAS studies in asthma have been made, with the identification of about 1000 candidate genes. Coordination of the different research groups in international consortiums and the application of new technologies such as new generation sequencing will help discover new implicated genes and improve our understanding of the molecular mechanisms underlying the disease.
Collapse
Affiliation(s)
- A García-Sánchez
- Departamento de Pediatría, Universidad de Salamanca, Spain; Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain.
| | - M Isidoro-García
- Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain; Servicio de Bioquímica Clínica, Complejo Asistencial Universitario de Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Spain
| | - V García-Solaesa
- Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain; Servicio de Bioquímica Clínica, Complejo Asistencial Universitario de Salamanca, Spain
| | - C Sanz
- Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | - L Hernández-Hernández
- Departamento de Pediatría, Universidad de Salamanca, Spain; Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain
| | - J Padrón-Morales
- Servicio de Bioquímica Clínica, Complejo Asistencial Universitario de Salamanca, Spain
| | - F Lorente-Toledano
- Departamento de Pediatría, Universidad de Salamanca, Spain; Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain; Servicio de Pediatría, Hospital Universitario de Salamanca, Spain
| | - I Dávila
- Departamento de Pediatría, Universidad de Salamanca, Spain; Grupo de Alergia, Instituto Biosanitario de Salamanca (IBSAL), Spain; Servicio de Alergia, Complejo Asistencial Universitario de Salamanca, Spain
| |
Collapse
|
14
|
Sabounchi S, Bollyky J, Nadeau K. Review of Environmental Impact on the Epigenetic Regulation of Atopic Diseases. Curr Allergy Asthma Rep 2015; 15:33. [PMID: 26141578 DOI: 10.1007/s11882-015-0533-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been significant increase in the prevalence of atopy over the past decade that cannot be explained by genetic predisposition. Environmental factors including nutrition, the uterine environment, and lifestyle factors are known to play a role in gene expression through epigenetic modifications. In this article, we review the literature on the environmental impact on epigenetic modulation of atopic diseases including asthma, food allergy, eczema, and allergic rhinitis. Recent public release of epigenomic data for hundreds of human tissues provides a powerful resource for further investigation of the molecular basis of atopic diseases.
Collapse
Affiliation(s)
- Saman Sabounchi
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Stanford University School of Medicine, 269 Campus Drive, CCSR Suite 3215, Stanford, CA, 94305, USA
| | | | | |
Collapse
|
15
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
16
|
de Boer AS, Koszka K, Kiskinis E, Suzuki N, Davis-Dusenbery BN, Eggan K. Genetic validation of a therapeutic target in a mouse model of ALS. Sci Transl Med 2015; 6:248ra104. [PMID: 25100738 DOI: 10.1126/scitranslmed.3009351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons produced from stem cells have emerged as a tool to identify new therapeutic targets for neurological diseases such as amyotrophic lateral sclerosis (ALS). However, it remains unclear to what extent these new mechanistic insights will translate to animal models, an important step in the validation of new targets. Previously, we found that glia from mice carrying the SOD1G93A mutation, a model of ALS, were toxic to stem cell-derived human motor neurons. We use pharmacological and genetic approaches to demonstrate that the prostanoid receptor DP1 mediates this glial toxicity. Furthermore, we validate the importance of this mechanism for neural degeneration in vivo. Genetic ablation of DP1 in SOD1G93A mice extended life span, decreased microglial activation, and reduced motor neuron loss. Our findings suggest that blocking DP1 may be a therapeutic strategy in ALS and demonstrate that discoveries from stem cell models of disease can be corroborated in vivo.
Collapse
Affiliation(s)
- A Sophie de Boer
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute, Stanley Center for Psychiatric Research, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kathryn Koszka
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute, Stanley Center for Psychiatric Research, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Evangelos Kiskinis
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute, Stanley Center for Psychiatric Research, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Naoki Suzuki
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute, Stanley Center for Psychiatric Research, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brandi N Davis-Dusenbery
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute, Stanley Center for Psychiatric Research, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Eggan
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute, Stanley Center for Psychiatric Research, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Hong X, Wang X. Epigenetics and development of food allergy (FA) in early childhood. Curr Allergy Asthma Rep 2014; 14:460. [PMID: 25096861 DOI: 10.1007/s11882-014-0460-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review aims to highlight the latest advance on epigenetics in the development of food allergy (FA) and to offer future perspectives. FA, a condition caused by an immunoglobulin (Ig) E-mediated hypersensitivity reaction to food, has emerged as a major clinical and public health problem worldwide in light of its increasing prevalence, potential fatality, and significant medical and economic impact. Current evidence supports that epigenetic mechanisms are involved in immune regulation and that the epigenome may represent a key "missing piece" of the etiological puzzle for FA. There are a growing number of population-based epigenetic studies on allergy-related phenotypes, mostly focused on DNA methylation. Previous studies mostly applied candidate-gene approaches and have demonstrated that epigenetic marks are associated with multiple allergic diseases and/or with early-life exposures relevant to allergy development (such as early-life smoking exposure, air pollution, farming environment, and dietary fat). Rapid technological advancements have made unbiased genome-wide DNA methylation studies highly feasible, although there are substantial challenge in study design, data analyses, and interpretation of findings. In conclusion, epigenetics represents both an important knowledge gap and a promising research area for FA. Due to the early onset of FA, epigenetic studies of FA in prospective birth cohorts have the potential to better understand gene-environment interactions and underlying biological mechanisms in FA during critical developmental windows (preconception, in utero, and early childhood) and may lead to new paradigms in the diagnosis, prevention, and management of FA and provide novel targets for future drug discovery and therapies for FA.
Collapse
Affiliation(s)
- Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, E4132, Baltimore, MD, 21205-2179, USA
| | | |
Collapse
|
18
|
Bégin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol 2014; 10:27. [PMID: 24932182 PMCID: PMC4057652 DOI: 10.1186/1710-1492-10-27] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 01/18/2023] Open
Abstract
Epigenetics of asthma and allergic disease is a field that has expanded greatly in the last decade. Previously thought only in terms of cell differentiation, it is now evident the epigenetics regulate many processes. With T cell activation, commitment toward an allergic phenotype is tightly regulated by DNA methylation and histone modifications at the Th2 locus control region. When normal epigenetic control is disturbed, either experimentally or by environmental exposures, Th1/Th2 balance can be affected. Epigenetic marks are not only transferred to daughter cells with cell replication but they can also be inherited through generations. In animal models, with constant environmental pressure, epigenetically determined phenotypes are amplified through generations and can last up to 2 generations after the environment is back to normal. In this review on the epigenetic regulation of asthma and allergic diseases we review basic epigenetic mechanisms and discuss the epigenetic control of Th2 cells. We then cover the transgenerational inheritance model of epigenetic traits and discuss how this could relate the amplification of asthma and allergic disease prevalence and severity through the last decades. Finally, we discuss recent epigenetic association studies for allergic phenotypes and related environmental risk factors as well as potential underlying mechanisms for these associations.
Collapse
Affiliation(s)
- Philippe Bégin
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| | - Kari C Nadeau
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| |
Collapse
|
19
|
de Planell-Saguer M, Lovinsky-Desir S, Miller RL. Epigenetic regulation: the interface between prenatal and early-life exposure and asthma susceptibility. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:231-43. [PMID: 24323745 PMCID: PMC4148423 DOI: 10.1002/em.21836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 05/10/2023]
Abstract
Asthma is a complex disease with genetic and environmental influences and emerging evidence suggests that epigenetic regulation is also a major contributor. Here, we focus on the developing paradigm that epigenetic dysregulation in asthma and allergy may start as early as in utero following several environmental exposures. We summarize the pathways important to the allergic immune response that are epigenetically regulated, the key environmental exposures associated with epigenetic changes in asthma genes, and newly identified epigenetic biomarkers that have been linked to clinical asthma. We conclude with a brief discussion about the potential to apply newly developing technologies in epigenetics to the diagnosis and treatment of asthma and allergy. The inherent plasticity of epigenetic regulation following environmental exposures offers opportunities for prevention using environmental remediation, measuring novel biomarkers for early identification of those at risk, and applying advances in pharmaco-epigenetics to tailor medical therapies that maximize efficacy of treatment. 'Precision Medicine' in asthma and allergy is arriving. As the field advances this may involve an individually tailored approach to the prevention, early detection, and treatment of disease based on the knowledge of an individual's epigenetic profile.
Collapse
Affiliation(s)
- Mariangels de Planell-Saguer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Rachel L. Miller
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, College of Physicians and Surgeons, New York, New York
- Correspondence to: Rachel L. Miller, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101B; 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
20
|
The prostaglandin D2 receptor (PTGDR) gene in asthma and allergic diseases. Allergol Immunopathol (Madr) 2014; 42:64-8. [PMID: 23410912 DOI: 10.1016/j.aller.2012.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022]
Abstract
The prostaglandin D2 receptor (PTGDR) gene has been associated to asthma and related phenotypes by linking and association studies. Functional studies involving animal models and other expression studies based on in vitro cell models also point to a possible role of polymorphisms in the promoter region, in the differential binding of transcription factors, and thus in PTGDR expression, which appear to be associated to the development of asthma or of susceptibility to the disease.
Collapse
|
21
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
22
|
Farkas SA, Milutin-Gašperov N, Grce M, Nilsson TK. Genome-wide DNA methylation assay reveals novel candidate biomarker genes in cervical cancer. Epigenetics 2013; 8:1213-25. [PMID: 24030264 DOI: 10.4161/epi.26346] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oncogenic human papilloma viruses (HPVs) are associated with precancerous cervical lesions and development of cervical cancer. The DNA methylation signatures of the host genome in normal, precancerous and cervical cancer tissue may indicate tissue-specific perturbation in carcinogenesis. The aim of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared with DNA samples from cervical intraepithelial neoplasia grade 3 (CIN3) and normal cervical scrapes. The Illumina Infinium HumanMethylation450 BeadChip method identifies genome-wide DNA methylation changes in CpG islands, CpG shores and shelves. Our findings showed an extensive differential methylation signature in cervical cancer compared with the CIN3 or normal cervical tissues. The identified candidate biomarker genes for cervical cancer represent several types of mechanisms in the cellular machinery that are epigenetically deregulated by hypermethylation, such as membrane receptors, intracellular signaling and gene transcription. The results also confirm extensive hypomethylation of genes in the immune system in cancer tissues. These insights into the functional role of DNA methylome alterations in cervical cancer could be clinically applicable in diagnostics and prognostics, and may guide the development of new epigenetic therapies.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine; Örebro University Hospital; Örebro, Sweden
| | | | - Magdalena Grce
- Department of Molecular Medicine; Rudjer Boskovic Institute; Zagreb, Croatia
| | - Torbjörn K Nilsson
- Department of Laboratory Medicine; Örebro University Hospital; Örebro, Sweden; School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| |
Collapse
|
23
|
Reisdorph N, Wechsler ME. Utilizing metabolomics to distinguish asthma phenotypes: strategies and clinical implications. Allergy 2013; 68:959-62. [PMID: 23968382 DOI: 10.1111/all.12238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms have the ability to alter the phenotype without changing the genetic code. The science of epigenetics has grown considerably in recent years, and future epigenetically based treatments or prevention strategies are likely. Epigenetic associations with asthma have received growing interest because genetic and environmental factors have been unable to independently explain the cause of asthma. RECENT FINDINGS Recent findings suggest that both the environment and underlying genetic sequence variation influence DNA methylation, which in turn seems to modify the risk conferred by genetic variants for various asthma phenotypes. In particular, DNA methylation may act as an archive of a variety of early developmental exposures, which then can modify the risk related to genetic variants. SUMMARY Current asthma treatments may control the symptoms of asthma but do not modify its natural history. Epigenetic mechanisms and novel explanatory models provide burgeoning approaches to significantly increase our understanding of the initiation and progression of asthma. Due to the inheritance of epigenetics, we anticipate a rapid emergence of critical information that will provide novel treatment strategies for asthma in the current generation and ultimately the prevention of asthma in future generations.
Collapse
|
25
|
Cornejo-García JA, Jagemann LR, Blanca-López N, Doña I, Flores C, Guéant-Rodríguez RM, Torres MJ, Fernández J, Laguna JJ, Rosado A, Agúndez JAG, García-Martín E, Canto G, Guéant JL, Blanca M. Genetic variants of the arachidonic acid pathway in non-steroidal anti-inflammatory drug-induced acute urticaria. Clin Exp Allergy 2013. [PMID: 23181793 DOI: 10.1111/j.1365-2222.2012.04078.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND To date, genetic studies of hypersensitivity reactions to non-steroidal anti-inflammatory drugs (NSAIDs) have been carried out mainly in aspirin-induced asthma and to a lesser extent in chronic urticaria, with no studies in patients with acute urticaria (AU), the most common entity induced by these drugs. OBJECTIVE In this work, we analysed the association of common variants of 15 relevant genes encoding both enzymes and receptors from the arachidonic acid (AA) pathway with NSAID-induced AU. METHODS Patients were recruited in several Allergy Services that are integrated into the Spanish network RIRAAF, and diagnosed of AU induced by cross-intolerance (CRI) to NSAIDs. Genotyping was carried out by TaqMan allelic discrimination assays. RESULTS A total of 486 patients with AU induced by CRI to NSAIDs and 536 unrelated controls were included in this large Spanish case-control study. Seven variants from 31 tested in six genes were associated in a discovery study population from Malaga (0.0003 ≤ p-value ≤ 0.041). A follow-up analysis in an independent sample from Madrid replicated three of the SNPs from the ALOX15 (rs7220870), PTGDR (rs8004654) and CYSLTR1 (rs320095) genes (1.055x10(-6) ≤meta-analysis p-value ≤ 0.003). CONCLUSIONS AND CLINICAL RELEVANCE Genetic variants of the AA pathway may play an important role in NSAID-induced AU. These data may help understand the mechanism underlying this disease.
Collapse
Affiliation(s)
- J A Cornejo-García
- INSERM U-954, Nutrition-Génétique et exposition aux risques environmentaux, Faculty of Medicine, University of Nancy, Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
March ME, Sleiman PM, Hakonarson H. Genetic polymorphisms and associated susceptibility to asthma. Int J Gen Med 2013; 6:253-65. [PMID: 23637549 PMCID: PMC3636804 DOI: 10.2147/ijgm.s28156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As complex common diseases, asthma and allergic diseases are caused by the interaction of multiple genetic variants with a variety of environmental factors. Candidate-gene studies have examined the involvement of a very large list of genes in asthma and allergy, demonstrating a role for more than 100 loci. These studies have elucidated several themes in the biology and pathogenesis of these diseases. A small number of genes have been associated with asthma or allergy through traditional linkage analyses. The publication of the first asthma-focused genome-wide association (GWA) study in 2007 has been followed by nearly 30 reports of GWA studies targeting asthma, allergy, or associated phenotypes and quantitative traits. GWA studies have confirmed several candidate genes and have identified new, unsuspected, and occasionally uncharacterized genes as asthma susceptibility loci. Issues of results replication persist, complicating interpretation and making conclusions difficult to draw, and much of the heritability of these diseases remains undiscovered. In the coming years studies of complex diseases like asthma and allergy will probably involve the use of high-throughput next-generation sequencing, which will bring a tremendous influx of new information as well as new problems in dealing with vast datasets.
Collapse
Affiliation(s)
- Michael E March
- Center for Applied Genomics, Abramson Research Center of the Joseph Stokes Jr Research Institute, The Children's Hospital of Philadelphia
| | | | | |
Collapse
|
27
|
Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, Mazaleyrat N, Weber J, Karvonen AM, Hirvonen MR, Braun-Fahrländer C, Lauener R, von Mutius E, Kabesch M, Tost J. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 2013; 68:355-64. [PMID: 23346934 DOI: 10.1111/all.12097] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Genetic susceptibility and environmental influences are important contributors to the development of asthma and atopic diseases. Epigenetic mechanisms may facilitate gene by environment interactions in these diseases. METHODS We studied the rural birth cohort PASTURE (Protection against allergy: study in rural environments) to investigate (a) whether epigenetic patterns in asthma candidate genes are influenced by farm exposure in general, (b) change over the first years of life, and (c) whether these changes may contribute to the development of asthma. DNA was extracted from cord blood and whole blood collected at the age of 4.5 years in 46 samples per time point. DNA methylation in 23 regions in ten candidate genes (ORMDL1, ORMDL2, ORMDL3, CHI3L1, RAD50, IL13, IL4, STAT6, FOXP3, and RUNX3) was assessed by pyrosequencing, and differences between strata were analyzed by nonparametric Wilcoxon-Mann-Whitney tests. RESULTS In cord blood, regions in ORMDL1 and STAT6 were hypomethylated in DNA from farmers' as compared to nonfarmers' children, while regions in RAD50 and IL13 were hypermethylated (lowest P-value (STAT6) = 0.001). Changes in methylation over time occurred in 15 gene regions (lowest P-value (IL13) = 1.57*10(-8)). Interestingly, these differences clustered in the genes highly associated with asthma (ORMDL family) and IgE regulation (RAD50, IL13, and IL4), but not in the T-regulatory genes (FOXP3, RUNX3). CONCLUSIONS In this first pilot study, DNA methylation patterns change significantly in early childhood in specific asthma- and allergy-related genes in peripheral blood cells, and early exposure to farm environment seems to influence methylation patterns in distinct genes.
Collapse
Affiliation(s)
| | - F. Busato
- Laboratory for Epigenetics; Centre National de Génotypage; CEA-Institut de Génomique; Evry; France
| | - J. Genuneit
- Ulm University; Institute of Epidemiology and Medical Biometry; Ulm; Germany
| | | | - J.-C. Dalphin
- Department of Respiratory Disease; Université de Franche-Comté; University Hospital; Besancon; France
| | - J. Riedler
- Children's Hospital Schwarzach; Schwarzach; Austria
| | - N. Mazaleyrat
- Laboratory for Epigenetics; Centre National de Génotypage; CEA-Institut de Génomique; Evry; France
| | - J. Weber
- LMU Munich; University Children's Hospital; Munich; Germany
| | - A. M. Karvonen
- Department of Environmental Health; National Institute for Health and Welfare; Kuopio; Finland
| | | | | | | | - E. von Mutius
- LMU Munich; University Children's Hospital; Munich; Germany
| | | | - J. Tost
- Laboratory for Epigenetics; Centre National de Génotypage; CEA-Institut de Génomique; Evry; France
| | | |
Collapse
|
28
|
Abstract
The aim of this study was to explore whether prostaglandin D2 receptor (PTGDR) polymorphisms confer susceptibility to asthma. A meta-analysis was conducted on the associations between the PTGDR -549 C/T, -441 C/T, and -197 C/T polymorphisms and asthma using: (1) allele contrast, (2) the recessive model, (3) the dominant model, and (4) the additive model. Three polymorphism haplotypes were constructed in the order -549/-441/-179. Meta-analysis was performed on the haplotype CCC (high transcriptional activity) and of TCT (low transcriptional activity). A total of 13 separate comparative studies in 9 articles involving 7,155 patients with asthma and 7,285 control subjects were included in this meta-analysis. An association between asthma and the PTGDR -549 C/T polymorphism was found by allele contrast (OR = 1.133, 95 % CI = 1.004-1.279, P = 0.043). Ethnicity-specific meta-analysis showed an association between asthma and the PTGDR -549 C allele in Europeans (OR = 1.192, 95 % CI = 1.032-1.377, P = 0.017). Furthermore, stratifying subjects by age indicated an association between the PTGDR -549 C allele and asthma in adults (OR = 1.248, 95 % CI = 1.076-1.447, P = 0.003), but no association in children (OR = 0.933, 95 % CI = 0.756-1.154, P = 0.324). Analyses using the dominant and additive models showed the similar pattern as that observed for the PTGDR -549 C allele, that is, a significant association in Europeans and adults, but not in children. No association was found between asthma and the PTGDR -441 C/T or -197 C/T polymorphisms, and meta-analysis stratified by ethnicity and age also revealed no association between asthma and these polymorphisms. Furthermore, no association was found between asthma and the CCC and TCT haplotypes of PTGDR, and meta-analysis stratified by ethnicity and age revealed no association between asthma and the CCC and TCT PTGDR haplotypes. This meta-analysis demonstrates that the PTGDR -549 C/T polymorphism confers susceptibility to asthma in Europeans and adults. However, no association was found between the PTGDR 441 C/T and -197 C/T polymorphisms or the CCC and TCT haplotypes and asthma susceptibility.
Collapse
|
29
|
Hizawa N. The search for genetic links in NSAID-induced acute urticaria and the arachidonic acid pathway. Clin Exp Allergy 2012. [DOI: 10.1111/cea.12026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- N. Hizawa
- Department of Pulmonary Medicine; Faculty of Medicine; University of Tsukuba; Tsukuba; Japan
| |
Collapse
|
30
|
Salam MT, Zhang Y, Begum K. Epigenetics and childhood asthma: current evidence and future research directions. Epigenomics 2012; 4:415-29. [PMID: 22920181 PMCID: PMC3458510 DOI: 10.2217/epi.12.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Asthma is the most common chronic disease of childhood, affecting one in eight children in the USA and worldwide. It is a complex disease, influenced by both environmental exposures and genetic factors. Although epigenetic modifications (DNA methylation, histone modification and miRNA) can affect transcriptional activity in multiple genetic pathways relevant for asthma development, very limited work has been carried out so far to examine the role of epigenetic variations on asthma development and management. This review provides a brief overview of epigenetic modifications, summarizes recent findings, and discusses some of the major methodological concerns that are relevant for asthma epigenetics.
Collapse
Affiliation(s)
- Muhammad T Salam
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
31
|
Kabesch M, Adcock IM. Epigenetics in asthma and COPD. Biochimie 2012; 94:2231-41. [PMID: 22874820 DOI: 10.1016/j.biochi.2012.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms are likely to play a role in many complex diseases, the extent of which we only beginning to understand. COPD and asthma are two respiratory diseases subject to strong environmental influences depending on underlying genetic susceptibility. Epigenetic mechanisms such as DNA methylation, histone modification and microRNA may be involved in these processes by modulating environmental effects to influence disease development. Given their demonstrated modifiable nature, epigenetic mechanisms may open new possibilities for therapeutic intervention. Here we give an overview of recent developments in the field of respiratory epigenetics in relation to asthma and COPD in the context of our current understanding of mechanisms leading to such diseases.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology, Hannover Medical School, Allergy and Neonatology, Hannover, Germany.
| | | |
Collapse
|
32
|
Hong X, Wang X. Early life precursors, epigenetics, and the development of food allergy. Semin Immunopathol 2012; 34:655-69. [PMID: 22777545 DOI: 10.1007/s00281-012-0323-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022]
Abstract
Food allergy (FA), a major clinical and public health concern worldwide, is caused by a complex interplay of environmental exposures, genetic variants, gene-environment interactions, and epigenetic alterations. This review summarizes recent advances surrounding these key factors, with a particular focus on the potential role of epigenetics in the development of FA. Epidemiologic studies have reported a number of nongenetic factors that may influence the risk of FA, such as timing of food introduction and feeding pattern, diet/nutrition, exposure to environmental tobacco smoking, prematurity and low birth weight, microbial exposure, and race/ethnicity. Current studies on the genetics of FA are mainly conducted using candidate gene approaches, which have linked more than 10 genes to the genetic susceptibility of FA. Studies on gene-environment interactions of FA are very limited. Epigenetic alteration has been proposed as one of the mechanisms to mediate the influence of early life environmental exposures and gene-environment interactions on the development of diseases later in life. The role of epigenetics in the regulation of the immune system and the epigenetic effects of some FA-associated environmental exposures are discussed in this review. There is a particular lack of large-scale prospective birth cohort studies that simultaneously assess the interrelationships of early life exposures, genetic susceptibility, epigenomic alterations, and the development of FA. The identification of these key factors and their independent and joint contributions to FA will allow us to gain important insight into the biological mechanisms by which environmental exposures and genetic susceptibility affect the risk of FA and will provide essential information to develop more effective new paradigms in the diagnosis, prevention, and management of FA.
Collapse
Affiliation(s)
- Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205-2179, USA.
| | | |
Collapse
|
33
|
Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep 2012; 12:211-20. [PMID: 22451193 PMCID: PMC3358775 DOI: 10.1007/s11882-012-0257-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Environmental epigenetic regulation in asthma and allergic disease is an exciting area that has gained a great deal of scientific momentum in recent years. Environmental exposures, including prenatal maternal smoking, have been associated with asthma-related outcomes that may be explained by epigenetic regulation. In addition, several known allergy and asthma genes have been found to be susceptible to epigenetic regulation. We review the latest experimental and translational studies that have been published this past year in several areas, including 1) characterization of environmental asthma triggers that induce epigenetic changes, 2) characterization of allergic immune and regulatory pathways important to asthma that undergo epigenetic regulation, 3) evidence of active epigenetic regulation in asthma experimental models and the production of asthma biomarkers, 4) evidence of transmission of an asthma-related phenotype across multiple generations, and 5) "pharmaco-epigenetics." The field has certainly advanced significantly in the past year.
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Rachel L. Miller
- Columbia University College of Physicians and Surgeons, PH8E-101; 630 West 168th Street, New York, NY, 10032 USA
| |
Collapse
|