1
|
Rosty C, Brosens LAA. Pathology of Gastrointestinal Polyposis Disorders. Gastroenterol Clin North Am 2024; 53:179-200. [PMID: 38280747 DOI: 10.1016/j.gtc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Gastrointestinal polyposis disorders are a group of syndromes defined by clinicopathologic features that include the predominant histologic type of colorectal polyp and specific inherited gene mutations. Adenomatous polyposis syndromes comprise the prototypical familial adenomatous polyposis syndrome and other recently identified genetic conditions inherited in a dominant or recessive manner. Serrated polyposis syndrome is defined by arbitrary clinical criteria. The diagnosis of hamartomatous polyposis syndromes can be suggested from the histologic characteristics of colorectal polyps and the association with various extraintestinal manifestations. Proper identification of affected individuals is important due to an increased risk of gastrointestinal and extragastrointestinal cancers.
Collapse
Affiliation(s)
- Christophe Rosty
- Envoi Specialist Pathologists, Brisbane, Queensland 4059, Australia; University of Queensland, Brisbane, Queensland 4072, Australia; Department of Clinical Pathology, Colorectal Oncogenomics Group, Victorian Comprehensive Cancer Centre, The University of Melbourne, Victoria 3051, Australia.
| | - Lodewijk A A Brosens
- Department of Pathology University Medical Center Utrecht, Utrecht University, Postbus 85500, 3508, Utrecht, Galgenwaad, The Netherlands
| |
Collapse
|
2
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Ovechkin D, Awuah WA, Wellington J, Adebusoye FT, Moskalenko R, Dmytruk S, Abdul-Rahman T, Ovechkina Y. Intestinal intussusception in a child with Peutz-Jeghers syndrome: case report. Ann Med Surg (Lond) 2023; 85:2216-2220. [PMID: 37228960 PMCID: PMC10205367 DOI: 10.1097/ms9.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS), an uncommon inherited autosomal dominant disorder, is distinguished by mucocutaneous pigmentations, many gastrointestinal hamartomatous polyps, and a higher incidence of gastrointestinal tract, genitourinary, and extracolonic malignancies. Recurrent acute intestinal obstruction, in particular intussusception in the young, is a serious sequalae of PJS. Case presentation A clinical observation of a 5-year-old patient with a complicated course of PJS is presented. Emphasis on recurring episodes of acute abdomen, clinical diagnosis including polyp histopathology, and surgical management is emphasised. Clinical findings and investigations While an inpatient, bloodwork demonstrated severe iron deficiency anaemia (haemoglobin 72 g/l, red blood cell 3.1×1012/l) and multiple melanin pigmentations measuring 2-4 mm in size on the lip mucosa during a physical examination. Erosive duodenopathy and polyposis of the stomach were discovered via fibroesophagogastroduodenoscopy (multiple gastric polyps 5-10 mm in size). Acute intussusception of the intestine was discovered by ultrasonography. Interventions and outcome A mid-median laparotomy was performed alongside manual disinvagination with gut viability intact. Histopathology of excised polyps revealed smooth muscle hyperplasia and Ki67 protein (MIB-1) positivity with small intestinal hamartomatous polyps seen macroscopically. Conservative management was initiated for standard postoperative care and intestinal motility. Patient was discharged 9 days postoperatively. Relevance and impact Based on literature data, modern ideas concerning aetiology, diagnosis, and management of patients with PJS are considered. Attention is focused on the high risk of developing cancer of various localisation in PJS, recommendations are given for cancer screening and clinical observation of patients with hereditary gastrointestinal syndromes in childhood.
Collapse
Affiliation(s)
| | | | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | | | | | | | | | | |
Collapse
|
4
|
Yamamoto H, Sakamoto H, Kumagai H, Abe T, Ishiguro S, Uchida K, Kawasaki Y, Saida Y, Sano Y, Takeuchi Y, Tajika M, Nakajima T, Banno K, Funasaka Y, Hori S, Yamaguchi T, Yoshida T, Ishikawa H, Iwama T, Okazaki Y, Saito Y, Matsuura N, Mutoh M, Tomita N, Akiyama T, Yamamoto T, Ishida H, Nakayama Y. Clinical Guidelines for Diagnosis and Management of Peutz-Jeghers Syndrome in Children and Adults. Digestion 2023; 104:335-347. [PMID: 37054692 DOI: 10.1159/000529799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare disease characterized by the presence of hamartomatous polyposis throughout the gastrointestinal tract, except for the esophagus, along with characteristic mucocutaneous pigmentation. It is caused by germline pathogenic variants of the STK11 gene, which exhibit an autosomal dominant mode of inheritance. Some patients with PJS develop gastrointestinal lesions in childhood and require continuous medical care until adulthood and sometimes have serious complications that significantly reduce their quality of life. Hamartomatous polyps in the small bowel may cause bleeding, intestinal obstruction, and intussusception. Novel diagnostic and therapeutic endoscopic procedures such as small-bowel capsule endoscopy and balloon-assisted enteroscopy have been developed in recent years. SUMMARY Under these circumstances, there is growing concern about the management of PJS in Japan, and there are no practice guidelines available. To address this situation, the guideline committee was organized by the Research Group on Rare and Intractable Diseases granted by the Ministry of Health, Labour and Welfare with specialists from multiple academic societies. The present clinical guidelines explain the principles in the diagnosis and management of PJS together with four clinical questions and corresponding recommendations based on a careful review of the evidence and involved incorporating the concept of the Grading of Recommendations Assessment, Development and Evaluation system. KEY MESSAGES Herein, we present the English version of the clinical practice guidelines of PJS to promote seamless implementation of accurate diagnosis and appropriate management of pediatric, adolescent, and adult patients with PJS.
Collapse
Affiliation(s)
- Hironori Yamamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirotsugu Sakamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideki Kumagai
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takashi Abe
- Department of Gastroenterology, Hanwa Sumiyoshi General Hospital, Osaka, Japan
| | | | - Keiichi Uchida
- Department of Pediatric Surgery, Mie University Hospital, Tsu, Japan
| | - Yuko Kawasaki
- University of Hyogo, College of Nursing, Akashi, Japan
| | - Yoshihisa Saida
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yasushi Sano
- Gastrointestinal Center & Institute of Minimally-invasive Endoscopic Care, Sano Hospital, Kobe, Japan
| | - Yoji Takeuchi
- Division of Hereditary Tumors, Department of Gastrointestinal Oncology, And Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | | | - Takeshi Nakajima
- Department of Clinical Genetic Oncology, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Funasaka
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Shinichiro Hori
- Department of Cancer Genomic Medicine, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Ishikawa Gastroenterology Clinic, Osaka, Japan
| | - Takeo Iwama
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | | | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiro Tomita
- Cancer Treatment Center, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Takashi Akiyama
- Department of Pediatric Surgery, Chuden Hospital, Hiroshima, Hiroshima, Japan
| | - Toshiki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yoshiko Nakayama
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
5
|
Chiraphapphaiboon W, Thongnoppakhun W, Limjindaporn T, Sawasdichai S, Roothumnong E, Prangphan K, Pamornpol B, Limwongse C, Pithukpakorn M. STK11 Causative Variants and Copy Number Variations Identified in Thai Patients With Peutz-Jeghers Syndrome. Cureus 2023; 15:e34495. [PMID: 36874343 PMCID: PMC9983355 DOI: 10.7759/cureus.34495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disorder caused by germline mutations in the serine-threonine kinase 11 (STK11) tumor suppressor gene. This syndrome is characterized by hamartomatous gastrointestinal polyps, mucocutaneous melanin pigmentation, and a higher risk of developing various cancers. Methods We summarized the clinical and molecular characteristics of five unrelated Thai patients with PJS. Denaturing high-performance liquid chromatography (DHPLC) screening, coupled with direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA), were applied for the molecular analysis of STK11. Results A total of four STK11 pathogenic changeswere identified in the five PJS patients, including two frameshift variants (a novel c.199dup, p.Leu67ProfsTer96 and a known c.834_835del, p.Cys278TrpfsTer6) and two types of copy number variations (CNV), exon 1 deletion and exons 2-3 deletion. Among reported STK11 exonic deletions, exon 1 and exons 2-3 deletions were found to be the two most commonly deleted exons. Conclusion All identified STK11 mutations were null mutations that were associated with more severe PJS phenotypes and cancers. This study broadens the phenotypic and mutational spectrum of STK11 in PJS.
Collapse
Affiliation(s)
| | - Wanna Thongnoppakhun
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | | | - Sunisa Sawasdichai
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Ekkapong Roothumnong
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Kanjana Prangphan
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Benjaporn Pamornpol
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Chanin Limwongse
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Manop Pithukpakorn
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, THA
| |
Collapse
|
6
|
Strong Hereditary Predispositions to Colorectal Cancer. Genes (Basel) 2022; 13:genes13122326. [PMID: 36553592 PMCID: PMC9777620 DOI: 10.3390/genes13122326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. A strong predisposition to cancer is generally only observed in colorectal cancer (5% of cases) and breast cancer (2% of cases). Colorectal cancer is the most common cancer with a strong genetic predisposition, but it includes dozens of various syndromes. This group includes familial adenomatous polyposis, attenuated familial adenomatous polyposis, MUTYH-associated polyposis, NTHL1-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, Lynch syndrome, and Muir-Torre syndrome. The common symptom of all these diseases is a very high risk of colorectal cancer, but depending on the condition, their course is different in terms of age and range of cancer occurrence. The rate of cancer development is determined by its conditioning genes, too. Hereditary predispositions to cancer of the intestine are a group of symptoms of heterogeneous diseases, and their proper diagnosis is crucial for the appropriate management of patients and their successful treatment. Mutations of specific genes cause strong colorectal cancer predispositions. Identifying mutations of predisposing genes will support proper diagnosis and application of appropriate screening programs to avoid malignant neoplasm.
Collapse
|
7
|
Gu GL, Zhang Z, Zhang YH, Yu PF, Dong ZW, Yang HR, Yuan Y. Detection and analysis of common pathogenic germline mutations in Peutz-Jeghers syndrome. World J Gastroenterol 2021; 27:6631-6646. [PMID: 34754157 PMCID: PMC8554407 DOI: 10.3748/wjg.v27.i39.6631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Different types of pathogenic mutations may produce different clinical phenotypes, but a correlation between Peutz-Jeghers syndrome (PJS) genotype and clinical phenotype has not been found. Not all patients with PJS have detectable mutations of the STK11/LKB1 gene, what is the genetic basis of clinical phenotypic heterogeneity of PJS? Do PJS cases without STK11/LKB1 mutations have other pathogenic genes? Those are clinical problems that perplex doctors. AIM The aim was to investigate the specific gene mutation of PJS, and the correlation between the genotype and clinical phenotype of PJS. METHODS A total of 24 patients with PJS admitted to the Air Force Medical Center, PLA (formerly the Air Force General Hospital, PLA) from November 1994 to January 2020 were randomly selected for inclusion in the study. One hundred thirty-nine common hereditary tumor-related genes including STK11/LKB1 were screened and analyzed for pathogenic germline mutations by high-throughput next-generation sequencing (NGS). The mutation status of the genes and their relationship with clinical phenotypes of PJS were explored. RESULTS Twenty of the 24 PJS patients in this group (83.3%) had STK11/LKB1 gene mutations, 90% of which were pathogenic mutations, and ten had new mutation sites. Pathogenic mutations in exon 7 of STK11/LKB1 gene were significantly lower than in other exons. Truncation mutations are more common in exons 1 and 4 of STK11/LKB1, and their pathogenicity was significantly higher than that of missense mutations. We also found SLX4 gene mutations in PJS patients. CONCLUSION PJS has a relatively complicated genetic background. Changes in the sites responsible for coding functional proteins in exon 1 and exon 4 of STK11/LKB1 may be one of the main causes of PJS. Mutation of the SLX4 gene may be a cause of genetic heterogeneity in PJS.
Collapse
Affiliation(s)
- Guo-Li Gu
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Zhi Zhang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Yu-Hui Zhang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Zhi-Wei Dong
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Hai-Rui Yang
- Department of General Surgery, Air Force Medical Center, Chinese People's Liberation Army, Beijing 100142, China
| | - Ying Yuan
- Department of Medical Oncology, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
8
|
Lam KK, Thean LF, Cheah PY. Advances in colorectal cancer genomics and transcriptomics drive early detection and prevention. Int J Biochem Cell Biol 2021; 137:106032. [PMID: 34182137 DOI: 10.1016/j.biocel.2021.106032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Colorectal carcinoma (CRC) is a high incidence cancer and leading cause of cancer mortality worldwide. The advances in genomics and transcriptomics in the past decades have improved the detection and prevention of CRC in familial CRC syndromes. Nevertheless, the ultimate goal of personalized medicine for sporadic CRC is still not within reach due no less to the difficulty in integrating population disparity and clinical data to combat what essentially is a very heterogenous disease. This minireview highlights the achievement of the past decades and present possible direction in the hope of early detection and metastasis prevention for reducing CRC-associated morbidity and mortality.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Zhao N, Wu H, Li P, Wang Y, Dong L, Xiao H, Wu C. A novel pathogenic splice site variation in STK11 gene results in Peutz-Jeghers syndrome. Mol Genet Genomic Med 2021; 9:e1729. [PMID: 34080793 PMCID: PMC8404226 DOI: 10.1002/mgg3.1729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 01/16/2023] Open
Abstract
Background Peutz–Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease resulting in multiple gastrointestinal hamartomatous polyps, mucocutaneous pigmentation, and an increased risk of various types of cancer, and is caused by variations in the serine/threonine protein kinase STK11 (LKB1). Methods STK11 gene variations were identified by analyzing STK11 cDNA and genomic DNA. Minigenes carrying the wild‐type and mutant sequences were subjected to in vitro splicing assay to dissect the features of these mutations. The different distribution of wild‐type and mutant protein in cells were tested by Immunofluorescence assays and the functional analysis of the variation were performed using Western blot. Results A novel heterozygous splice‐acceptor site variation (c.921‐2 A>C) in intron 7 of the STK11 gene which is co‐segregates with the PJS phenotypes in the proband and all the affected family members and three previously reported variations (c.180C>G, c.580G>A, c.787_790del) were identified in the four families. The c.921‐2 A>C substitution resulted in the inactivation of a splice site and the utilization of a cryptic splice acceptor site surrounding exon 8, generating three different aberrant RNA transcripts, leading to frameshift translation and protein truncation. The results of minigenes indicated that the spliceosome can use a variety of 3’ acceptor site sequences to pair with a given 5’ donor site. The immunofluorescent visualization showed that the distribution of mutant STK11 was different from that of wild‐type STK11, suggesting the mutation may be the causative effect on the dysfunction of the mutant protein. The rescue experiments indicated that the failure of suppressing mTOR phosphorylation by shRNA STK11 could be eliminated by supply of wild‐type STK11 rather than mutant STK11. Conclusion We identified a novel heterozygous mutation (c.921‐2 A>C) in the STK11 in a Chinese PJS family. Haploinsufficiency of STK11 might contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Na Zhao
- Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Huizhi Wu
- Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Ping Li
- Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Yuxian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Dong
- Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Han Xiao
- Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Peutz-Jeghers syndrome is a rare, autosomal dominant, hereditary polyposis syndrome defined by gastrointestinal hamartomas and mucocutaneous pigmentations, caused by a germline mutation in the serine/ threonine kinase 11 or liver kinase B1 (STK11/LKB1) genes. Hamartomatous polyps located throughout the gastrointestinal tract can be complicated by bleeding and small bowel intussusception, potentially leading to the need for emergency surgery. Individuals suffering from Peutz-Jeghers syndrome have an increased lifetime risk of various forms of cancer (gastrointestinal, pancreatic, lung, breast, uterine, ovarian and testicular). Surveillance should lead to the prevention of complications and thus a reduction in mortality and morbidity of patients. RECENT FINDINGS A combined approach based on wireless capsule endoscopy, magnetic resonance enterography and device-assisted enteroscopy is effective in reduction of the polyp burden and thus decreasing the risk of bleeding and intussusception. Current guidelines for screening and surveillance are mostly based on expert opinion rather than evidence. SUMMARY Peutz-Jeghers syndrome is an emerging disease that significantly affects the quality of life enjoyed by patients. Despite of all the progress in improved early diagnostics, options for advanced endoscopic therapy and elaborate surveillance, acute and chronic complications decrease the life expectancy of patients suffering from Peutz-Jeghers syndrome.
Collapse
Affiliation(s)
- Ilja Tacheci
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
11
|
Wagner A, Aretz S, Auranen A, Bruno MJ, Cavestro GM, Crosbie EJ, Goverde A, Jelsig AM, Latchford AR, van Leerdam ME, Lepisto AH, Puzzono M, Winship I, Zuber V, Möslein G. The Management of Peutz-Jeghers Syndrome: European Hereditary Tumour Group (EHTG) Guideline. J Clin Med 2021; 10:jcm10030473. [PMID: 33513864 PMCID: PMC7865862 DOI: 10.3390/jcm10030473] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The scientific data to guide the management of Peutz–Jeghers syndrome (PJS) are sparse. The available evidence has been reviewed and discussed by diverse medical specialists in the field of PJS to update the previous guideline from 2010 and formulate a revised practical guideline for colleagues managing PJS patients. Methods: Literature searches were performed using MEDLINE, Embase, and Cochrane. Evidence levels and recommendation strengths were assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). A Delphi process was followed, with consensus being reached when ≥80% of the voting guideline committee members agreed. Recommendations and statements: The only recent guidelines available were for gastrointestinal and pancreatic management. These were reviewed and endorsed after confirming that no more recent relevant papers had been published. Literature searches were performed for additional questions and yielded a variable number of relevant papers depending on the subject addressed. Additional recommendations and statements were formulated. Conclusions: A decade on, the evidence base for recommendations remains poor, and collaborative studies are required to provide better data about this rare condition. Within these restrictions, multisystem, clinical management recommendations for PJS have been formulated.
Collapse
Affiliation(s)
- Anja Wagner
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000CA Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-10-7036913
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, 53127 Bonn, Germany;
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127 Bonn, Germany
| | - Annika Auranen
- Department of Obstetrics and Gynecology and Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland;
| | - Marco J. Bruno
- Department of Gastroenterology & Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000CA Rotterdam, The Netherlands;
| | - Giulia M. Cavestro
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.M.C.); (M.P.)
| | - Emma J. Crosbie
- Department of Gynecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK;
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester M13 9WL, UK
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000CA Rotterdam, The Netherlands;
| | - Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, 2100 Copenhagen, Denmark;
| | - Andrew R. Latchford
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
- Polyposis Registry, St. Marks Hospital, London HA1 3UJ, UK
| | - Monique E. van Leerdam
- Department of Gastro-intestinal Oncology, Netherlands Cancer Institute, 1006BE Amsterdam, The Netherlands;
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Anna H. Lepisto
- Department of Surgery, University Hospital of Helsinki, 00029 Helsinki, Finland;
| | - Marta Puzzono
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.M.C.); (M.P.)
| | - Ingrid Winship
- Department of Genomic Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne 3052, Australia;
| | - Veronica Zuber
- Breast Surgery Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Gabriela Möslein
- Center for Hereditary Tumors, Ev. BETHESDA Khs. Duisburg, Academic Hospital University of Düsseldorf, 47053 Duisburg, Germany;
| |
Collapse
|
12
|
Zhang Z, Duan FX, Gu GL, Yu PF. Mutation analysis of related genes in hamartoma polyp tissue of Peutz-Jeghers syndrome. World J Gastroenterol 2020; 26:1926-1937. [PMID: 32390703 PMCID: PMC7201153 DOI: 10.3748/wjg.v26.i16.1926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/29/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare disease with clinical manifestations of pigmented spots on the lips, mucous membranes and extremities, scattered gastrointestinal polyps, and susceptibility to tumors. The clinical heterogeneity of PJS is obvious, and the relationship between clinical phenotype and genotype is still unclear. AIM To investigate the mutation status of hereditary colorectal tumor-associated genes in hamartoma polyp tissue of PJS patients and discuss its relationship with the clinicopathological data of PJS. METHODS Twenty patients with PJS were randomly selected for this study and were treated in the Air Force Medical Center (former Air Force General Hospital) PLA between 2008 and 2017. Their hamartoma polyp tissues were used for APC, AXIN2, BMPR1A, EPCAM, MLH1, MLH3, MSH2, MSH6, MUTYH, PMS1, PMS2, PTEN, SMAD4, and LKB1/STK11 gene sequencing using next-generation sequencing technology. The correlations between the sequencing results and clinical pathological data of PJS were analyzed. RESULTS Fourteen types of LKB1/STK11 mutations were detected in 16 cases (80.0%), of which 8 new mutations were found (3 types of frameshift deletion mutations: c.243delG, c.363_364delGA, and c.722delC; 2 types of frameshift insertions: c. 144_145insGCAAG, and c.454_455insC; 3 types of splice site mutations: c.464+1G>T, c.464+1G>A, and c.598-1G>A); 9 cases (45.0%) were found to have 18 types of heterozygous mutations in the remaining 13 genes except LKB1/STK11. Of these, MSH2: c.792+1G>A, MSH6: c.3689C>G, c.4001+13C>CTTAC, PMS1: c.46C>t, and c.922G>A were new mutations. CONCLUSION The genetic mutations in hamartoma polyp tissue of PJS are complex and diverse. Moreover, other gene mutations in PJS hamartoma polyp tissue were observed, with the exception of LKB1/STK11 gene, especially the DNA mismatch repair gene (MMR). Colorectal hamartoma polyps with LKB1/STK11 mutations were larger in diameter than those with other gene mutations.
Collapse
Affiliation(s)
- Zhi Zhang
- Air Force Clinical College (Air Force Medical Center) of Anhui Medical University, Beijing 100142, China
| | - Fu-Xiao Duan
- Department of General Surgery, the General Hospital of Northern Theater Command PLA, Shenyang 110016, Liaoning Province, China
| | - Guo-Li Gu
- Department of General Surgery, Air Force Medical Center, PLA, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force Medical Center, PLA, Beijing 100142, China
| |
Collapse
|
13
|
Lipsa A, Kowtal P, Sarin R. Novel germline STK11 variants and breast cancer phenotype identified in an Indian cohort of Peutz-Jeghers syndrome. Hum Mol Genet 2020; 28:1885-1893. [PMID: 30689838 DOI: 10.1093/hmg/ddz027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/26/2022] Open
Abstract
Peutz-Jeghers syndrome (PJS) caused by germline STK11 variants is a rare autosomal dominant cancer predisposition syndrome characterized by multiple gastrointestinal (GI) hamartomatous polyps, mucocutaneous pigmentation and a high inherited risk of developing GI, breast and other cancers. Despite GI and breast being the two most common PJS-associated cancer sites, the immunohistochemical (IHC) and molecular features of these tumors in carriers of STK11 variant is not known. Detailed phenotyping including tumor IHC and its correlation with comprehensive STK11 genotyping by full gene sequencing followed by large genomic rearrangement analysis was performed in an Indian PJS cohort. A total of 4 distinct STK11 pathogenic or likely pathogenic variants were identified in 10 PJS cases from 7 of the 19 families tested-in 4/5 classical PJS families and 3/14 suspected PJS families. The pathogenic STK11 variant identified was novel in 3/7 families. In addition, four distinct, likely benign variants identified in seven families were also novel. All of the four breast cancer cases in families with STK11 pathogenic variant were estrogen receptor (ER)-positive and Her2-negative. Several novel STK11 variants identified in this Indian PJS cohort highlight the need to study PJS in different populations across the world. This is the first report showing ER positivity in breast cancer in carriers of STK11 variants and needs confirmation in a larger pooled cohort of PJS associated breast cancers. This could help establish the role of chemoprevention or prophylactic oophorectomy in female carriers of STK11 pathogenic variants.
Collapse
Affiliation(s)
- Anuja Lipsa
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer-Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Pradnya Kowtal
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer-Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Rajiv Sarin
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer-Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Cancer Genetics Clinic, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
Li BR, Sun T, Jiang YL, Ning SB. Pathogenesis, diagnosis, and treatment of Peutz-Jeghers syndrome. Shijie Huaren Xiaohua Zazhi 2019; 27:576-582. [DOI: 10.11569/wcjd.v27.i9.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS), an autosomal dominant inherited disease, is caused by germinal mutations of the STK11. It is characterized by gastrointestinal hamartomas, mucocutaneous pigmentation and increased cancer risk. Germline mutations in STK11 cause a harmful effect on cell apoptosis, G1 arrest, and cell polarization, which leads to polyp formation and cancer occurrence. Balloon-assisted enteroscopy is widely used in removal of PJS polyps in the small bowel and it is proved to be safe and effective. We suggest to screen polyps and cancer in PJS patients, which seems to benefit these patients in the long run.
Collapse
Affiliation(s)
- Bai-Rong Li
- Department of Gastroenterology, Chinese People's Liberation Army Air Force Characteristic Medical Center, Beijing 100142, China
| | - Tao Sun
- Department of Gastroenterology, Chinese People's Liberation Army Air Force Characteristic Medical Center, Beijing 100142, China
| | - Yu-Liang Jiang
- Department of Gastroenterology, Chinese People's Liberation Army Air Force Characteristic Medical Center, Beijing 100142, China
| | - Shou-Bin Ning
- Department of Gastroenterology, Chinese People's Liberation Army Air Force Characteristic Medical Center, Beijing 100142, China
| |
Collapse
|
15
|
Duan FX, Gu GL, Yang HR, Yu PF, Zhang Z. Must Peutz-Jeghers syndrome patients have the LKB1/STK11 gene mutation? A case report and review of the literature. World J Clin Cases 2018; 6:224-232. [PMID: 30148152 PMCID: PMC6107527 DOI: 10.12998/wjcc.v6.i8.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/05/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant inherited disease, which is characterized by mucocutaneous pigmentation and multiple gastrointestinal hamartoma polyps. The germline mutation of LKB1/STK11 gene on chromosome 19p13.3 is considered to be the hereditary cause of PJS. However, must a patient with PJS have the LKB1/STK11 gene mutation? We here report a case of a male patient who had typical manifestations of PJS and a definite family history, but did not have LKB1/STK11 gene mutation. By means of high-throughput sequencing technology, only mutations in APC gene (c.6662T > C: p.Met2221Thr) and MSH6 gene (c.3488A > T: p.Glu1163Val) were detected. The missense mutations in APC and MSH6 gene may lead to abnormalities in structure and function of their expression products, and may result in the occurrence of PJS. This study suggests that some other genetic disorders may cause PJS besides LKB1/STK11 gene mutation.
Collapse
Affiliation(s)
- Fu-Xiao Duan
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Guo-Li Gu
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Hai-Rui Yang
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| | - Zhi Zhang
- Department of General Surgery, Air Force General Hospital of Chinese PLA, Beijing 100142, China
| |
Collapse
|
16
|
Kadekar P, Chaouni R, Clark E, Kazanets A, Roy R. Genome-wide surveys reveal polarity and cytoskeletal regulators mediate LKB1-associated germline stem cell quiescence. BMC Genomics 2018; 19:462. [PMID: 29907081 PMCID: PMC6003023 DOI: 10.1186/s12864-018-4847-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Background Caenorhabditis elegans can endure long periods of environmental stress by altering their development to execute a quiescent state called “dauer”. Previous work has implicated LKB1 - the causative gene in the autosomal dominant, cancer pre-disposing disease called Peutz-Jeghers Syndrome (PJS), and its downstream target AMPK, in the establishment of germline stem cell (GSC) quiescence during the dauer stage. Loss of function mutations in both LKB1/par-4 and AMPK/aak(0) result in untimely GSC proliferation during the onset of the dauer stage, although the molecular mechanism through which these factors regulate quiescence remains unclear. Curiously, the hyperplasia observed in par-4 mutants is more severe than AMPK-compromised dauer larvae, suggesting that par-4 has alternative downstream targets in addition to AMPK to regulate germline quiescence. Results We conducted three genome-wide RNAi screens to identify potential downstream targets of the protein kinases PAR-4 and AMPK that mediate dauer-dependent GSC quiescence. First, we screened to identify genes that phenocopy the par-4-dependent hyperplasia when compromised by RNAi. Two additional RNAi screens were performed to identify genes that suppressed the germline hyperplasia in par-4 and aak(0) dauer larvae, respectively. Interestingly, a subset of the candidates we identified are involved in the regulation of cell polarity and cytoskeletal function downstream of par-4, in an AMPK-independent manner. Moreover, we show that par-4 temporally regulates actin cytoskeletal organization within the dauer germ line at the rachis-adjacent membrane, in an AMPK-independent manner. Conclusion Our data suggest that the regulation of the cytoskeleton and cell polarity may contribute significantly to the tumour suppressor function of LKB1/par-4. Electronic supplementary material The online version of this article (10.1186/s12864-018-4847-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Rita Chaouni
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Emily Clark
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Anna Kazanets
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
17
|
Korsse SE, van Leerdam ME, Dekker E. Gastrointestinal diseases and their oro-dental manifestations: Part 4: Peutz-Jeghers syndrome. Br Dent J 2017; 222:214-217. [DOI: 10.1038/sj.bdj.2017.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
|
18
|
Abstract
Although the pancreas is affected by only a small fraction of known inherited disorders, several of these syndromes predispose patients to pancreatic adenocarcinoma, a cancer that has a consistently dismal prognosis. Still other syndromes are associated with neuroendocrine tumors, benign cysts, or recurrent pancreatitis. Because of the variability of pancreatic manifestations and outcomes, it is important for clinicians to be familiar with several well-described genetic disorders to ensure that patients are followed appropriately. The purpose of this review was to briefly describe the hereditary syndromes that are associated with pancreatic disorders and neoplasia.
Collapse
Affiliation(s)
- Meredith E Pittman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Starr 1031A, 525 East 68th Street, New York, NY 10065, USA
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, CRB2 Room 345, 1550 Orleans Street, Baltimore, MD 21231, USA.
| |
Collapse
|
19
|
First report of somatic mosaicism for mutations in STK11 in four patients with Peutz-Jeghers syndrome. Fam Cancer 2016; 15:57-61. [PMID: 26386697 DOI: 10.1007/s10689-015-9839-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant cancer predisposition syndrome characterised by gastrointestinal polyposis and mucocutaneous pigmentation. Mutations in STK11, a serine-threonine protein kinase, have been associated with PJS in up to 100 % of published series. The hypothesis that a further genetic locus for PJS exists is controversial. No mutations in any other genes have been described in association with PJS. To date, no instances of somatic mosaicism for STK11 have been described. DNA extracted from peripheral lymphocytes and buccal cells was screened by sequence analysis for mutations in STK11. Dosage analysis was undertaken by multiplex ligation-dependent probe amplification (MLPA). Four patients have been shown to have mosaicism in STK11: two had mosaic deletions of specific exons (2-3 and 3-10) of the STK11 gene; one had a mosaic nonsense mutation in exon 5; and one had a mosaic frameshift mutation in exon 8. This report details the first four reported cases of somatic mosaicism for STK11 associated with PJS. This shows that techniques in addition to direct sequencing such as MLPA must be used to assess for large scale genomic deletions in patients meeting clinical diagnostic criteria for PJS. This also adds further weight to the hypothesis of a single genetic locus for PJS.
Collapse
|
20
|
De Silva WSL, Pathirana AA, Gamage BD, Manawasighe DS, Jayasundara B, Kiriwandeniya U. Extra-ampullary Peutz-Jeghers polyp causing duodenal intussusception leading to biliary obstruction: a case report. J Med Case Rep 2016; 10:196. [PMID: 27423470 PMCID: PMC4947321 DOI: 10.1186/s13256-016-0990-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background Duodenal Peutz–Jeghers polyp is a rare cause of duodenal or biliary obstruction. However, a sporadic Peutz–Jeghers polyp leading to simultaneous biliary and duodenal obstruction has not been reported. Case presentation We report a case of a 25-year-old Sri Lankan woman presenting with features of recurrent upper small intestinal obstruction and biliary obstruction. She had clinical as well as biochemical evidence of intermittent biliary obstruction. Evidence of duodenal intussusception was found in a computed tomography enterogram and a duodenal polyp was noted as the lead point. Marked elongation and distortion of her lower common bile duct with intrahepatic duct dilatation was also noted and the ampulla was found to be on the left side of the midline pulled toward the intussusceptum. Open polypectomy and reduction of intussusception were done and she became fully asymptomatic following surgery. Histology of the resected specimen was reported as a typical “Peutz–Jeghers polyp”. As there was not enough evidence to diagnose Peutz–Jeghers syndrome this was considered to be a sporadic Peutz–Jeghers polyp. Conclusion Rare benign causes such as a duodenal polyp should be considered and looked for in initial imaging, when the cause for concurrent biliary and intestinal obstruction is uncertain, particularly in young individuals.
Collapse
Affiliation(s)
- W S L De Silva
- Post-Graduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - A A Pathirana
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Colombo, Sri Lanka
| | - B D Gamage
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Colombo, Sri Lanka
| | - D S Manawasighe
- Post-Graduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka
| | - B Jayasundara
- Post-Graduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Kiriwandeniya
- Department of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Colombo, Sri Lanka
| |
Collapse
|
21
|
Specific Alu elements involved in a significant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Fam Cancer 2016; 14:455-61. [PMID: 25841653 PMCID: PMC4559094 DOI: 10.1007/s10689-015-9800-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peutz–Jeghers syndrome (PJS) is a rare hereditary syndrome characterized by the occurrence of hamartomatous polyps in the gastrointestinal tract, mucocutaneous pigmentation and increased risk of cancer in multiple internal organs. PJS is preconditioned by the manifestation of mutations in the STK11 gene. The majority of detected STK11 changes are small scale mutations, however recent studies showed the significant contribution of medium-sized changes commonly known as copy number variations (CNVs). Here we present a novel 7001 bps deletion of STK11 gene fragment, in which we identified the presence of breakpoints (BPs) within the Alu elements. Comparative meta-analysis with the 80 other CNV cases from 12 publications describing STK11 mutations in patients with PJS revealed the participation of specific Alu elements in all deletions of exons 2–3 so far described. Moreover, we have shown their involvement in the two other CNVs, deletion of exon 2 and deletion of exon 1–3 respectively. Deletion of exons 2–3 of the STK11 gene may prove to be the most recurrent large rearrangement causing PJS. In addition, the sequences present in its BPs may be involved in a formation of a significant percentage of the remaining gene CNVs. This gives a new insight into the conditioning of this rare disease and enables improvements in PJS genetic diagnostics.
Collapse
|
22
|
Shorning BY, Clarke AR. Energy sensing and cancer: LKB1 function and lessons learnt from Peutz-Jeghers syndrome. Semin Cell Dev Biol 2016; 52:21-9. [PMID: 26877140 DOI: 10.1016/j.semcdb.2016.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
We describe in this review increasing evidence that loss of LKB1 kinase in Peutz-Jeghers syndrome (PJS) derails the existing natural balance between cell survival and tumour growth suppression. LKB1 deletion can plunge cells into an energy/oxidative stress-induced crisis which leads to the activation of alternative and often carcinogenic pathways to maintain cellular energy levels. It therefore appears that although LKB1 deficiency can suppress oncogenic transformation in the short term, it can ultimately lead to more progressed and malignant phenotypes by driving abnormal cell differentiation, genomic instability and increased tumour heterogeneity.
Collapse
Affiliation(s)
- Boris Y Shorning
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
23
|
[Hereditary predisposition to cancers of the digestive tract, breast, gynecological and gonadal: focus on the Peutz-Jeghers]. Bull Cancer 2015; 101:813-22. [PMID: 25036236 DOI: 10.1684/bdc.2014.1942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant disease due to mutations in the tumor suppressor gene STK11. PJS is characterized by periorificial hyperpigmented macules (lentiginosis) and hamartomatous polyposis. Polyps can be located anywhere in the gastrointestinal tract, but are preferably observed in the small bowel (70-90%), the colon (50%) and the stomach (25%). They tend to be cancerous in a particular sequence hamartoma-dysplasia-cancer. The diagnosis is often made in the first or second decade following the appearance of lentigines or upon the occurrence of complications due to polyps (obstruction, intussusception, occult bleeding responsible for anemia). Furthermore PJS is associated with a significant increase in cancer risk (relative risk of 89% over the life according to the most recent series). Digestive cancers are the more frequent with cumulative incidences of 55% for gastro-intestinal cancer (39% for colorectal cancer, 13% for small bowel cancer and between 11 and 36% for pancreatic cancer, respectively). There is also an increased risk of non digestive cancers. In particular the risk of breast cancer is similar to that of patients carrying deleterious BRCA1 or BRCA2 mutations (cumulative incidence of 45%). Gynecological and gonadal tumors are frequent as well and can be more (adenoma malignum) or less aggressive (ovarian sex cord tumors with annular tubules and testicular tumors with calcified Sertoli cells). Finally the frequency of lung cancer is moderately increased. Recommendations for screening and management based on retrospective series in the literature have led to various strategies. The aim of this paper is to summarize the clinical and molecular diagnostic criteria of PJS as well as recommendations on screening strategies, management and monitoring.
Collapse
|
24
|
Wang HH, Xie NN, Li QY, Hu YQ, Ren JL, Guleng B. Exome sequencing revealed novel germline mutations in Chinese Peutz-Jeghers syndrome patients. Dig Dis Sci 2014; 59:64-71. [PMID: 24154639 DOI: 10.1007/s10620-013-2875-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Peutz-Jeghers Syndrome (PJS) is an autosomal dominant disorder which predisposes to the development of various cancers. Germline mutation in the serine/threonine kinase 11 gene (STK11) is known as one of the major causes of PJS. However, a notable proportion of PJS samples do not carry any mutation in STK11, suggesting possible genetic heterogeneity in the disease and the existence of other causative variants. METHODS AND RESULTS In order to identify other germline variants in the coding regions of the genome that are associated with PJS, we performed exome sequencing in three Chinese individuals with PJS and identified 16 common germline variants (12 protein-coding including STK11, 4 in pre-microRNAs). We further validated protein-coding variants in six PJS individuals (three with wild-type STK11) and predicted the functional impact. As result, we found that 7 coding variants are likely to have functional impacts. Especially, we identified 2 new germline variants which are represented in all six PJS samples and are independent of STK11 mutation. CONCLUSIONS Our study provided an exomic view of PJS. The germline variants identified in our analysis may help to resolve the complex genetic background of the disease and thus lead to the discovery of novel causative variants of PJS.
Collapse
Affiliation(s)
- Huan-Huan Wang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, 201 Hubin South Road, Xiamen, 361004, Fujian, China
| | | | | | | | | | | |
Collapse
|
25
|
Yajima H, Isomoto H, Nishioka H, Yamaguchi N, Ohnita K, Ichikawa T, Takeshima F, Shikuwa S, Ito M, Nakao K, Tsukamoto K, Kohno S. Novel serine/threonine kinase 11 gene mutations in Peutz-Jeghers syndrome patients and endoscopic management. World J Gastrointest Endosc 2013; 5:102-110. [PMID: 23515270 PMCID: PMC3600545 DOI: 10.4253/wjge.v5.i3.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/15/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To explore mutations in serine/threonine kinase 11 (STK11) gene in Peutz-Jeghers syndrome (PJS) with gastrointestinal (GI) hamartomatous polyps.
METHODS: Six Japanese PJS patients in 3 families were enrolled in this study. Each of the cases had hamartomatous polyposis in the gastrointestinal tract, including the small intestine, along with mucocutaneous hyperpigmentation. Narrow-band imaging (NBI)-magnification endoscopy was employed to detect microvascular and microsurface irregularities in the GI lesions. NBI magnification findings could be classified into three groups (type A, type B, or type C). Endoscopic polypectomy was performed using double-balloon enteroscopy or colonoscopy. Genomic DNA was extracted from a whole blood sample from each subject. All of the coding exons of STK11 gene, its boundary regions, and the promoter region containing the polymorphic regions were amplified by polymerase chain reaction, and direct sequencing was performed to assess the germline mutations.
RESULTS: NBI-magnification endoscopic observation could detect the abnormalities in microvessels and microsurface structures of GI polyps. Overall, we found 5 cases of type A and one case without the examination for the gastric polyps, while there were 4 cases of type B and 2 case of type A for the colorectal polyps. Seventy-nine small-bowel and 115 colorectal polyps over 27 sessions for each were resected endoscopically without significant complications. The only delayed complication included the occurrence of bleeding in a case, and this was successfully managed with hemoclips. Resected polyps contained no malignant components. Based on mutation analysis, all 3 cases in Family I exhibited the +658C>T nonsense mutation in exon 5, which resulted in the production of a truncated protein (Q220X). In Family II, a case had -252C>A and -193C>A in the promoter region. In Family III, a case was found to have the +1062C>G (F342L) mutation in exon 8.
CONCLUSION: We found two novel mutations of STK11 in association with PJS. Endoscopic polypectomy of GI polyps in PJS patients appears to be useful to prevent emergency laparotomies and reduce the cancer risk.
Collapse
|
26
|
Naz F, Anjum F, Islam A, Ahmad F, Hassan MI. Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation. Cell Biochem Biophys 2013; 67:485-99. [DOI: 10.1007/s12013-013-9550-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Korsse SE, Biermann K, Offerhaus GA, Wagner A, Dekker E, Mathus-Vliegen EM, Kuipers EJ, van Leerdam ME, van Veelen W. Identification of molecular alterations in gastrointestinal carcinomas and dysplastic hamartomas in Peutz-Jeghers syndrome. Carcinogenesis 2013; 34:1611-9. [DOI: 10.1093/carcin/bgt068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
28
|
Orellana P, López-Köstner F, Heine C, Suazo C, Pinto E, Church J, Carvallo P, Alvarez K. Large deletions and splicing-site mutations in the STK11 gene in Peutz-Jeghers Chilean families. Clin Genet 2012; 83:365-9. [PMID: 22775437 DOI: 10.1111/j.1399-0004.2012.01928.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/19/2022]
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder characterized by mucocutaneous melanocytic macules, gastrointestinal hamartomatous polyposis and an increased risk of various neoplasms. Germline mutations in the serine/threonine kinase 11 (STK11) gene have been identified as a cause for PJS. The aim of this study was to characterize the genotype of Chilean PJS patients. Mutation screening of 13 patients from eight PJS families was performed using a single strand conformation polymorphism analysis, DNA sequencing and multiplex ligation-dependent probe amplification assay. The breakpoints of the genomic rearrangements were assessed by a long-range polymerase chain reaction and sequencing. The results revealed the existence of seven different pathogenic mutations in STK11 gene in seven unrelated families, including three point mutations and four large genomic deletions. Three of these point mutations (43%, 3/7) may be considered as novel. Our results showed that a germline mutation is present in STK11 in 88% of probands fulfilling the diagnostic criteria of PJS. In this study, the combination of two different experimental approaches in the screening of the STK11 in PJS, led to a higher percentage of mutation detection.
Collapse
Affiliation(s)
- P Orellana
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
29
|
de Wilde RF, Ottenhof NA, Jansen M, Morsink FHM, de Leng WWJ, Offerhaus GJA, Brosens LAA. Analysis of LKB1 mutations and other molecular alterations in pancreatic acinar cell carcinoma. Mod Pathol 2011; 24:1229-36. [PMID: 21572398 DOI: 10.1038/modpathol.2011.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinar cell carcinoma is a rare non-ductal neoplasm of the pancreas with poorly defined molecular genetic features. Recently, biallelic inactivation of LKB1 was described in an acinar cell carcinoma of a Peutz-Jeghers patient carrying a heterozygous germline LKB1 mutation, and inhibition of mTOR signaling resulted in partial remission of the tumor. To explore the potential of mTOR inhibitors in sporadic acinar cell carcinoma, the LKB1 gene was investigated in five sporadic acinar cell carcinomas by sequence analysis, methylation analysis and mRNA expression. In addition, microsatellite instability and methylation of a number of tumor suppressor genes were investigated and KRAS, TP53, CDKN1A, SMAD4 and CTNNB1 were studied by mutation analysis and immunohistochemistry. No mutations, deletions or promoter hypermethylation of LKB1 were found in any of the sporadic acinar cell carcinomas, and mRNA expression of LKB1 was not altered. Amplifications at chromosome 20q and 19p were found in 100 and 80% of the cases, respectively. In addition, hypermethylation of one or more tumor suppressor genes was found in 80% of cases. One case harbored a TP53 mutation, and expression of SMAD4 and CTNNB1 was altered in one case each. No KRAS mutations or microsatellite instability were found. To conclude, no evidence for a role for LKB1 in tumorigenesis of sporadic pancreatic acinar cell carcinoma was found. However, copy number variations and hypermethylation were found in a majority of cases. Molecular pathways involved in acinar cell carcinoma-tumorigenesis differ from those involved in ductal pancreatic neoplasms. Further studies are needed to increase our understanding of molecular pathogenesis of acinar cell carcinoma, which may eventually result in development of new therapeutic targets.
Collapse
Affiliation(s)
- Roeland F de Wilde
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu L, Du X, Nie J. A novel de novo mutation in LKB1 gene in a Chinese Peutz Jeghers syndrome patient significantly diminished p53 activity. Clin Res Hepatol Gastroenterol 2011; 35:221-6. [PMID: 21411391 DOI: 10.1016/j.clinre.2010.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/11/2010] [Accepted: 11/23/2010] [Indexed: 02/04/2023]
Abstract
Peutz Jeghers syndrome (PJS) is an autosomal dominant disease caused by mutations in the LKB1 gene. We screened for the LKB1 gene mutation in a Chinese PJS patient. Sequence analysis of LKB1 exons showed that there was a novel de novo mis-sense mutation of codon 16 (GAG to GGG) in exon 1 in LKB1 gene in the Chinese PJS patient. Furthermore, we observed that wild type LKB1 expression increased p53 activity, while LKB1 A47G mutation had no such effect on p53 activity, indicating that the mis-sense variant of LKB1 influenced the p53 activation function of LKB1 protein. In addition, real-time RT-PCR analysis revealed that the expression levels of p53 downstream targets were significantly diminished in affected PJS patient compared with those in unaffected parents, further confirming the roles of LKB1 and p53 in PJS pathogenesis. Therefore, a novel PJS associated LKB1 gene mutation is provided, and the roles of LKB1 and p53 in PJS pathogenesis is validated in this research.
Collapse
Affiliation(s)
- Lin Liu
- Department of General Surgery, PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
31
|
Lennerz JK, Hurov JB, White LS, Lewandowski KT, Prior JL, Planer GJ, Gereau RW, Piwnica-Worms D, Schmidt RE, Piwnica-Worms H. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol 2010; 30:5043-56. [PMID: 20733003 PMCID: PMC2953066 DOI: 10.1128/mcb.01472-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/22/2009] [Accepted: 07/29/2010] [Indexed: 12/11/2022] Open
Abstract
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
Collapse
Affiliation(s)
- Jochen K. Lennerz
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Jonathan B. Hurov
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Lynn S. White
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Katherine T. Lewandowski
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julie L. Prior
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - G. James Planer
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert W. Gereau
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - David Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Helen Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
32
|
Howell L, Bader A, Mullassery D, Losty P, Auth M, Kokai G. Sertoli Leydig cell ovarian tumour and gastric polyps as presenting features of Peutz-Jeghers syndrome. Pediatr Blood Cancer 2010; 55:206-7. [PMID: 20310004 DOI: 10.1002/pbc.22433] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a case of Peutz-Jeghers syndrome (PJS) in a 2-year old with precocious puberty secondary to a Sertoli-Leydig cell tumour. Family history of PJS and other neoplasms were discovered. The tumour was excised and the STK11 gene deletion identified in both patient and father. Screening revealed hamartomatous gastric polyps, which were removed. Current recommendations for screening of children with PJS begin at age 8 years, based on reported occurrence of complications 1. This report illustrates the importance of considering early screening, along with close clinical review and patient/parent education, for detection of life threatening neoplasms and complications.
Collapse
Affiliation(s)
- Lisa Howell
- Department of Oncology. Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Harbaum L, Geigl JB, Volkholz H, Schwarzbraun T, Oschmautz H, Vieth M, Langner C. Sporadic gastric Peutz-Jeghers polyp with intraepithelial neoplasia. APMIS 2010; 117:941-3. [PMID: 20078560 DOI: 10.1111/j.1600-0463.2009.02549.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Kopacova M, Tacheci I, Rejchrt S, Bures J. Peutz-Jeghers syndrome: Diagnostic and therapeutic approach. World J Gastroenterol 2009; 15:5397-408. [PMID: 19916169 PMCID: PMC2778095 DOI: 10.3748/wjg.15.5397] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS) is an inherited, autosomal dominant disorder distinguished by hamartomatous polyps in the gastrointestinal tract and pigmented mucocutaneous lesions. Prevalence of PJS is estimated from 1 in 8300 to 1 in 280 000 individuals. PJS predisposes sufferers to various malignancies (gastrointestinal, pancreatic, lung, breast, uterine, ovarian and testicular tumors). Bleeding, obstruction and intussusception are common complications in patients with PJS. Double balloon enteroscopy (DBE) allows examination and treatment of the small bowel. Polypectomy using DBE may obviate the need for repeated urgent operations and small bowel resection that leads to short bowel syndrome. Prophylaxis and polypectomy of the entire small bowel is the gold standard in PJS patients. Intraoperative enteroscopy (IOE) was the only possibility for endoscopic treatment of patients with PJS before the DBE era. Both DBE and IOE facilitate exploration and treatment of the small intestine. DBE is less invasive and more convenient for the patient. Both procedures are generally safe and useful. An overall recommendation for PJS patients includes not only gastrointestinal multiple polyp resolution, but also regular lifelong cancer screening (colonoscopy, upper endoscopy, computed tomography, magnetic resonance imaging or ultrasound of the pancreas, chest X-ray, mammography and pelvic examination with ultrasound in women, and testicular examination in men). Although the incidence of PJS is low, it is important for clinicians to recognize these disorders to prevent morbidity and mortality in these patients, and to perform presymptomatic testing in the first-degree relatives of PJS patients.
Collapse
|
35
|
Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009; 89:777-98. [PMID: 19584313 DOI: 10.1152/physrev.00026.2008] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers patients has continued at a feverish pace following exciting developments linking energy metabolism and cancer development. This review summarizes the current state of research on the LKB1 tumor suppressor. The weight of the evidence currently indicates an evolutionary conserved role for the protein in the regulation of various aspects of cellular polarity and energy metabolism. We focus on studies examining the concept that both cellular polarity and energy metabolism are regulated through the conserved LKB1-AMPK signal transduction pathway. Recent studies from a variety of model organisms have given new insight into the mechanism of polyp development and cancer formation in Peutz-Jeghers patients and the role of LKB1 mutation in sporadic tumorigenesis. Conditional LKB1 mouse models have outlined a tissue-dependent context for pathway activation and suggest that LKB1 may affect different AMPK isoforms independently. Elucidation of the molecular mechanism responsible for Peutz-Jeghers syndrome will undoubtedly reveal important insight into cancer development in the larger population.
Collapse
Affiliation(s)
- Marnix Jansen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Matenia D, Mandelkow EM. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 2009; 34:332-42. [PMID: 19559622 DOI: 10.1016/j.tibs.2009.03.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/12/2009] [Accepted: 03/21/2009] [Indexed: 12/21/2022]
Abstract
Microtubule-affinity regulating kinases (MARKs) were originally discovered by their ability to phosphorylate tau protein and related microtubule-associated proteins (MAPs), and thereby to regulate microtubule dynamics in neurons. Members of the MARK (also known as partition-defective [Par]-1 kinase) family were subsequently found to be highly conserved and to have key roles in cell processes such as determination of polarity, cell-cycle control, intracellular signal transduction, transport and cytoskeleton. This is important for neuronal differentiation, but is also prominent in neurodegenerative 'tauopathies' such as Alzheimer's disease. The identified functions of MARK/Par-1 are diverse and require accurate regulation. Recent discoveries including the x-ray structure of human MARKs contributed to an increased understanding of the mechanisms that control the kinase activity and, thus, the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Dorthe Matenia
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany.
| | | |
Collapse
|
37
|
Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai) 2009; 41:97-107. [PMID: 19204826 DOI: 10.1093/abbs/gmn011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) characterized by intestinal hamartomas and increased incidence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evidences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor suppressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent findings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to individuals suffering from PJS and other common disorders related to LKB1 signaling.
Collapse
Affiliation(s)
- Dahua Fan
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, China
| | | | | |
Collapse
|
38
|
Cheah PY. Recent advances in colorectal cancer genetics and diagnostics. Crit Rev Oncol Hematol 2008; 69:45-55. [PMID: 18774731 DOI: 10.1016/j.critrevonc.2008.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/11/2008] [Accepted: 08/13/2008] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and leading cause of cancer mortality worldwide. It is also one of the most curable cancers if detected early. This review classifies the diverse disease subtypes using various parameters including phenotypes of the polyps and describes how recent advances in genetics have impacted on disease diagnostics. For familial syndromes, the discovery of initiating mutations in the germline made personalized medicine a reality. A model linking the main tumorigenesis (Wnt/TGF-beta-BMP/LKB-1/PI3K-AKT) pathways and a strategy for gene testing are proposed. For sporadic CRC, high throughput technology has enabled the discovery of susceptibility loci that increased CRC risk. The ramifications of screening the population for susceptibility loci are discussed.
Collapse
Affiliation(s)
- Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Outram Road, Singapore 169608, Republic of Singapore.
| |
Collapse
|