1
|
Leigh Syndrome: Spectrum of Molecular Defects and Clinical Features in Russia. Int J Mol Sci 2023; 24:ijms24021597. [PMID: 36675121 PMCID: PMC9865855 DOI: 10.3390/ijms24021597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes-MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.
Collapse
|
2
|
A case of chronic progressive external ophthalmoplegia presenting with central neurogenic hyperventilation. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
3
|
Mazzaccara C, Mirra B, Barretta F, Caiazza M, Lombardo B, Scudiero O, Tinto N, Limongelli G, Frisso G. Molecular Epidemiology of Mitochondrial Cardiomyopathy: A Search Among Mitochondrial and Nuclear Genes. Int J Mol Sci 2021; 22:ijms22115742. [PMID: 34072184 PMCID: PMC8197938 DOI: 10.3390/ijms22115742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial Cardiomyopathy (MCM) is a common manifestation of multi-organ Mitochondrial Diseases (MDs), occasionally present in non-syndromic cases. Diagnosis of MCM is complex because of wide clinical and genetic heterogeneity and requires medical, laboratory, and neuroimaging investigations. Currently, the molecular screening for MCM is fundamental part of MDs management and allows achieving the definitive diagnosis. In this article, we review the current genetic knowledge associated with MDs, focusing on diagnosis of MCM and MDs showing cardiac involvement. We searched for publications on mitochondrial and nuclear genes involved in MCM, mainly focusing on genetic screening based on targeted gene panels for the molecular diagnosis of the MCM, by using Next Generation Sequencing. Here we report twelve case reports, four case-control studies, eleven retrospective studies, and two prospective studies, for a total of twenty-nine papers concerning the evaluation of cardiac manifestations in mitochondrial diseases. From the analysis of published causal mutations, we identified 130 genes to be associated with mitochondrial heart diseases. A large proportion of these genes (34.3%) encode for key proteins involved in the oxidative phosphorylation system (OXPHOS), either as directly OXPHOS subunits (22.8%), and as OXPHOS assembly factors (11.5%). Mutations in several mitochondrial tRNA genes have been also reported in multi-organ or isolated MCM (15.3%). This review highlights the main disease-genes, identified by extensive genetic analysis, which could be included as target genes in next generation panels for the molecular diagnosis of patients with clinical suspect of mitochondrial cardiomyopathies.
Collapse
Affiliation(s)
- Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
- Correspondence: ; Tel.: +39-0817-462-422
| | - Bruno Mirra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Martina Caiazza
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Giuseppe Limongelli
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| |
Collapse
|
4
|
Wieckowski MR, Pronicki M, Karkucinska-Wieckowska A. Update on the Histoenzymatic Methods for Visualization of the Activity of Individual Mitochondrial Respiratory Chain Complexes in the Human Frozen Sections. Methods Mol Biol 2021; 2310:69-77. [PMID: 34095999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Investigation of mitochondrial metabolism perturbations and successful diagnosis of patients with mitochondrial abnormalities often requires assessment of human samples like muscle or liver biopsy as well as autopsy material. Immunohistochemical and histochemical examination is an important technique to investigate mitochondrial dysfunction that combined with spectrophotometric and Blue Native electrophoresis techniques can be an important tool to provide diagnosis of mitochondrial disorders. In this chapter, we focus on technical description of the methods that are suitable to detect the activity of complex I, II, and IV of mitochondrial respiratory chain in frozen sections of brain, heart, muscle, and liver biopsies/autopsy. The protocols provided can be useful not only for general assessment of mitochondrial activity in studied material, but they are also successfully used in the diagnostic procedures in case of suspicion of mitochondrial disorders. In the age of high-performance NGS sequencing, these methods can be used to confirm whether mutations are pathogenic by proving their impact on the activity of individual respiratory chain complexes.
Collapse
Affiliation(s)
- Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathomorphology, The Children's Memorial Health Institute, Warsaw, Poland
| | | |
Collapse
|
5
|
Kose M, Canda E, Kagnici M, Aykut A, Adebali O, Durmaz A, Bircan A, Diniz G, Eraslan C, Kose E, Ünalp A, Yılmaz Ü, Ozyilmaz B, Özdemir TR, Atik T, Uçar SK, McFarland R, Taylor RW, Brown GK, Çoker M, Özkınay F. SURF1 related Leigh syndrome: Clinical and molecular findings of 16 patients from Turkey. Mol Genet Metab Rep 2020; 25:100657. [PMID: 33134083 PMCID: PMC7586243 DOI: 10.1016/j.ymgmr.2020.100657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Pathogenic variants in SURF1, a nuclear-encoded gene encoding a mitochondrial chaperone involved in COX assembly, are one of the most common causes of Leigh syndrome (LS). Material-methods Sixteen patients diagnosed to have SURF1-related LS between 2012 and 2020 were included in the study. Their clinical, biochemical and molecular findings were recorded. 10/16 patients were diagnosed using whole-exome sequencing (WES), 4/16 by Sanger sequencing of SURF1, 1/16 via targeted exome sequencing and 1/16 patient with whole-genome sequencing (WGS). The pathogenicity of SURF1 variants was evaluated by phylogenetic studies and modelling on the 3D structure of the SURF1 protein. Results We identified 16 patients from 14 unrelated families who were either homozygous or compound heterozygous for SURF1 pathogenic variants. Nine different SURF1 variants were detected The c.769G > A was the most common variant with an allelic frequency of 42.8% (12/28), c.870dupT [(p.Lys291*); (8/28 28.5%)], c.169delG [(p.Glu57Lysfs*15), (2/24; 7.1%)], c.532 T > A [(p.Tyr178Asn); (2/28, 7.1%)], c.653_654delCT [(p.Pro218Argfs*29); (4/28, 14.2%)] c.595_597delGGA [(p.Gly199del); (1/28, 3.5%)], c.751 + 1G > A (2/28, 4.1%), c.356C > T [(p.Pro119Leu); (2/28, 3.5%)] were the other detected variants. Two pathogenic variants, C.595_597delGGA and c.356C > T, were detected for the first time. The c.769 G > A variant detected in 6 patients from 5 families was evaluated in terms of phenotype-genotype correlation. There was no definite genotype – phenotype correlation. Conclusions To date, more than 120 patients of LS with SURF1 pathogenic variants have been reported. We shared the clinical, molecular data and natural course of 16 new SURF1 defect patients from our country. This study is the first comprehensive research from Turkey that provides information about disease-causing variants in the SURF1 gene. The identification of common variants and phenotype of the SURF1 gene is important for understanding SURF1 related LS. Synopsis SURF1 gene defects are one of the most important causes of LS; patients have a homogeneous clinical and biochemical phenotype.
Collapse
Affiliation(s)
- Melis Kose
- Izmir Katip Çelebi University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Izmir, Turkey.,Ege University Faculty of Medicine, Department of Pediatrics, Division of Nutrition and Metabolism, Izmir, Turkey.,Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford Medical Genetics Laboratories, Oxford, UK
| | - Ebru Canda
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Nutrition and Metabolism, Izmir, Turkey
| | - Mehtap Kagnici
- University of Health Sciences, Antalya Training and Research Hospital, Department of Pediatrics, Division of Metabolism and Nutrition, Antalya, Turkey
| | - Ayça Aykut
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ogün Adebali
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Adebali Lab, Istanbul, Turkey
| | - Asude Durmaz
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Aylin Bircan
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Adebali Lab, Istanbul, Turkey
| | - Gulden Diniz
- Izmir Democracy University, Faculty of Medicine, Department of Pathology, İzmir, Turkey
| | - Cenk Eraslan
- Ege University Faculty of Medicine, Department of Radiology, Division of Neuroradiology, Izmir, Turkey
| | - Engin Kose
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Metabolism and Nutrition, Ankara, Turkey
| | - Aycan Ünalp
- University of Health Sciences, Behçet Uz Children Training and Research Hospital, Department of Pediatrics, Division of Neurology, Izmir, Turkey
| | - Ünsal Yılmaz
- University of Health Sciences, Behçet Uz Children Training and Research Hospital, Department of Pediatrics, Division of Neurology, Izmir, Turkey
| | - Berk Ozyilmaz
- University of Health Sciences Tepecik Training and Research Hospital, Department of Medical Genetics, Izmir, Turkey
| | - Taha Reşid Özdemir
- University of Health Sciences Tepecik Training and Research Hospital, Department of Medical Genetics, Izmir, Turkey
| | - Tahir Atik
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Nutrition and Metabolism, Izmir, Turkey
| | - Sema Kalkan Uçar
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Nutrition and Metabolism, Izmir, Turkey
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Garry K Brown
- Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford Medical Genetics Laboratories, Oxford, UK
| | - Mahmut Çoker
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Nutrition and Metabolism, Izmir, Turkey
| | - Ferda Özkınay
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Nutrition and Metabolism, Izmir, Turkey.,University of Health Sciences, Antalya Training and Research Hospital, Department of Pediatrics, Division of Metabolism and Nutrition, Antalya, Turkey
| |
Collapse
|
6
|
Mani S, Chandak GR, Singh KK, Singh R, Rao SN. Novel p.P298L SURF1 mutation in thiamine deficient Leigh syndrome patients compromises cytochrome c oxidase activity. Mitochondrion 2020; 53:91-98. [PMID: 32380162 DOI: 10.1016/j.mito.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023]
Abstract
SURF1 is a nuclear gene and encodes for an important assembly factor for cytochrome c oxidase enzyme. A number of mutations in SURF1 gene render cytochrome c oxidase deficiency, a major causative factor for Leigh syndrome. We screened all the 9 exons and exon-intron boundaries of SURF1 gene in 165 Indian Leigh syndrome patients who were thiamine responsive too. Consequently, we identified several novel and reported nucleotide variations in this gene. The nucleotide changes were analysed by using different in-silico tools for predicting their pathogenicity. Based upon the predictions, we further validated the analyzed functional significance of p.N249D and p.P298L mutations in SURF1 protein using COS-7 cells. Though, both the mutations did not affect the localization of SURF1protein into the mitochondria. But, interestingly the novel mutation p.P298L was reported to significantly compromise the COX activity in these cells.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India; CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - G R Chandak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajender Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - S Narasimha Rao
- Government Institute of Child Health, Niloufer Hospital for Women and Children, Red Hills, Hyderabad, India
| |
Collapse
|
7
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
8
|
SURF1 mutations in Chinese patients with Leigh syndrome: Novel mutations, mutation spectrum, and the functional consequences. Gene 2018; 674:15-24. [DOI: 10.1016/j.gene.2018.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023]
|
9
|
Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 2018; 62:271-286. [PMID: 30030362 PMCID: PMC6056716 DOI: 10.1042/ebc20170099] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
The structural biogenesis and functional proficiency of the multiheteromeric complexes forming the mitochondrial oxidative phosphorylation system (OXPHOS) require the concerted action of a number of chaperones and other assembly factors, most of which are specific for each complex. Mutations in a large number of these assembly factors are responsible for mitochondrial disorders, in most cases of infantile onset, typically characterized by biochemical defects of single specific complexes. In fact, pathogenic mutations in complex-specific assembly factors outnumber, in many cases, the repertoire of mutations found in structural subunits of specific complexes. The identification of patients with specific defects in assembly factors has provided an important contribution to the nosological characterization of mitochondrial disorders, and has also been a crucial means to identify a huge number of these proteins in humans, which play an essential role in mitochondrial bioenergetics. The wide use of next generation sequencing (NGS) has led to and will allow the identifcation of additional components of the assembly machinery of individual complexes, mutations of which are responsible for human disorders. The functional studies on patients' specimens, together with the creation and characterization of in vivo models, are fundamental to better understand the mechanisms of each of them. A new chapter in this field will be, in the near future, the discovery of mechanisms and actions underlying the formation of supercomplexes, molecular structures formed by the physical, and possibly functional, interaction of some of the individual respiratory complexes, particularly complex I (CI), III (CIII), and IV (CIV).
Collapse
|
10
|
Ribeiro C, do Carmo Macário M, Viegas AT, Pratas J, Santos MJ, Simões M, Mendes C, Bacalhau M, Garcia P, Diogo L, Grazina M. Identification of a novel deletion in SURF1 gene: Heterogeneity in Leigh syndrome with COX deficiency. Mitochondrion 2016; 31:84-88. [DOI: 10.1016/j.mito.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/21/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
11
|
Swenson S, Cannon A, Harris NJ, Taylor NG, Fox JL, Khalimonchuk O. Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes. J Biol Chem 2016; 291:10411-25. [PMID: 26940873 DOI: 10.1074/jbc.m115.707539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Heme a is an essential cofactor for function of cytochrome c oxidase in the mitochondrial electron transport chain. Several evolutionarily conserved enzymes have been implicated in the biosynthesis of heme a, including the heme a synthase Cox15. However, the structure of Cox15 is unknown, its enzymatic mechanism and the role of active site residues remain debated, and recent discoveries suggest additional chaperone-like roles for this enzyme. Here, we investigated Cox15 in the model eukaryote Saccharomyces cerevisiae via several approaches to examine its oligomeric states and determine the effects of active site and human pathogenic mutations. Our results indicate that Cox15 exhibits homotypic interactions, forming highly stable complexes dependent upon hydrophobic interactions. This multimerization is evolutionarily conserved and independent of heme levels and heme a synthase catalytic activity. Four conserved histidine residues are demonstrated to be critical for eukaryotic heme a synthase activity and cannot be substituted with other heme-ligating amino acids. The 20-residue linker region connecting the two conserved domains of Cox15 is also important; removal of this linker impairs both Cox15 multimerization and enzymatic activity. Mutations of COX15 causing single amino acid conversions associated with fatal infantile hypertrophic cardiomyopathy and the neurological disorder Leigh syndrome result in impaired stability (S344P) or catalytic function (R217W), and the latter mutation affects oligomeric properties of the enzyme. Structural modeling of Cox15 suggests these two mutations affect protein folding and heme binding, respectively. We conclude that Cox15 multimerization is important for heme a biosynthesis and/or transfer to maturing cytochrome c oxidase.
Collapse
Affiliation(s)
- Samantha Swenson
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Andrew Cannon
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| | - Nicholas J Harris
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Nicholas G Taylor
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Jennifer L Fox
- the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424
| | - Oleh Khalimonchuk
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and
| |
Collapse
|
12
|
Gerards M, Sallevelt SCEH, Smeets HJM. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab 2016; 117:300-12. [PMID: 26725255 DOI: 10.1016/j.ymgme.2015.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, affecting 1 in 40,000 live births. Most patients present with symptoms between the ages of three and twelve months, but adult onset Leigh syndrome has also been described. The disease course is characterized by a rapid deterioration of cognitive and motor functions, in most cases resulting in death due to respiratory failure. Despite the high genetic heterogeneity of Leigh syndrome, patients present with identical, symmetrical lesions in the basal ganglia or brainstem on MRI, while additional clinical manifestations and age of onset varies from case to case. To date, mutations in over 60 genes, both nuclear and mitochondrial DNA encoded, have been shown to cause Leigh syndrome, still explaining only half of all cases. In most patients, these mutations directly or indirectly affect the activity of the mitochondrial respiratory chain or pyruvate dehydrogenase complex. Exome sequencing has accelerated the discovery of new genes and pathways involved in Leigh syndrome, providing novel insights into the pathophysiological mechanisms. This is particularly important as no general curative treatment is available for this devastating disorder, although several recent studies imply that early treatment might be beneficial for some patients depending on the gene or process affected. Timely, gene-based personalized treatment may become an important strategy in rare, genetically heterogeneous disorders like Leigh syndrome, stressing the importance of early genetic diagnosis and identification of new genes/pathways. In this review, we provide a comprehensive overview of the most important clinical manifestations and genes/pathways involved in Leigh syndrome, and discuss the current state of therapeutic interventions in patients.
Collapse
Affiliation(s)
- Mike Gerards
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands; Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
13
|
Kovářová N, Pecina P, Nůsková H, Vrbacký M, Zeviani M, Mráček T, Viscomi C, Houštěk J. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochim Biophys Acta Mol Basis Dis 2016; 1862:705-715. [PMID: 26804654 PMCID: PMC4793088 DOI: 10.1016/j.bbadis.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1−/− knockout leads only to a mild COX defect. We used SURF1−/− mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1−/− mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I–III2–IVn SCs in SURF1 patient fibroblasts, whereas SURF1−/− mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1−/− mouse liver and brain. Both the control and SURF1−/− mice revealed only negligible formation of the I–III2–IVn SCs and marked tissue differences in the contents of COX dimer and III2–IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I–III2–IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis. In SURF1 −/− mouse the decrease of COX amount and activity was tissue/cell specific. Assembly kinetics proceeded to the level of stable COX monomer in SURF1 −/− mouse. COX assembly intermediates were faster degraded/depleted in time in SURF1 −/− mouse. COX was preferentially recruited in supercomplex I–III2–IV1 in SURF1 patient cells. Newly synthesized COX monomer was unstable and rapidly degraded in SURF1 patient.
Collapse
Affiliation(s)
- Nikola Kovářová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Petr Pecina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Hana Nůsková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Marek Vrbacký
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Instituto Neurologico "C. Besta", via Temolo 4, 20126 Milan, Italy; MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Tomáš Mráček
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Carlo Viscomi
- MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Josef Houštěk
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic.
| |
Collapse
|
14
|
Baertling F, Rodenburg RJ, Schaper J, Smeitink JA, Koopman WJH, Mayatepek E, Morava E, Distelmaier F. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry 2014; 85:257-65. [PMID: 23772060 DOI: 10.1136/jnnp-2012-304426] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Leigh syndrome is a devastating neurodegenerative disease, typically manifesting in infancy or early childhood. However, also late-onset cases have been reported. Since its first description by Denis Archibald Leigh in 1951, it has evolved from a postmortem diagnosis, strictly defined by histopathological observations, to a clinical entity with indicative laboratory and radiological findings. Hallmarks of the disease are symmetrical lesions in the basal ganglia or brain stem on MRI, and a clinical course with rapid deterioration of cognitive and motor functions. Examinations of fresh muscle tissue or cultured fibroblasts are important tools to establish a biochemical and genetic diagnosis. Numerous causative mutations in mitochondrial and nuclear genes, encoding components of the oxidative phosphorylation system have been described in the past years. Moreover, dysfunctions in pyruvate dehydrogenase complex or coenzyme Q10 metabolism may be associated with Leigh syndrome. To date, there is no cure for affected patients, and treatment options are mostly unsatisfactory. Here, we review the most important clinical aspects of Leigh syndrome, and discuss diagnostic steps as well as treatment options.
Collapse
Affiliation(s)
- Fabian Baertling
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, , Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rodinová M, Trefilová E, Honzík T, Tesařová M, Zeman J, Hansíková H. Non-invasive screening of cytochrome c oxidase deficiency in children using a dipstick immunocapture assay. Folia Biol (Praha) 2014; 60:268-74. [PMID: 25629267 DOI: 10.14712/fb2014060060268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cytochrome c oxidase (CIV) deficiency is among the most common childhood mitochondrial disorders. The diagnosis of this deficiency is complex, and muscle biopsy is used as the gold standard of diagnosis. Our aim was to minimize the patient burden and to test the use of a dipstick immunocapture assay (DIA) to determine the amount of CIV in non-invasively obtained buccal epithelial cells. Buccal smears were obtained from five children with Leigh syndrome including three children exhibiting a previously confirmed CIV deficiency in muscle and fibroblasts and two children who were clinical suspects for CIV deficiency; the smear samples were analysed using CI and CIV human protein quantity dipstick assay kits. Samples from five children of similar age and five adults were used as controls. Analysis of the controls demonstrated that only samples of buccal cells that were frozen for a maximum of 4 h after collection provide accurate results. All three patients with confirmed CIV deficiency due to mutations in the SURF1 gene exhibited significantly lower amounts of CIV than the similarly aged controls; significantly lower amounts were also observed in two new patients, for whom later molecular analysis also confirmed pathologic mutations in the SURF1 gene. We conclude that DIA is a simple, fast and sensitive method for the determination of CIV in buccal cells and is suitable for the screening of CIV deficiency in non-invasively obtained material from children who are suspected of having mitochondrial disease.
Collapse
Affiliation(s)
- M Rodinová
- Laboratory for the Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - E Trefilová
- Laboratory for the Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - T Honzík
- Laboratory for the Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - M Tesařová
- Laboratory for the Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - J Zeman
- Laboratory for the Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - H Hansíková
- Laboratory for the Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
16
|
Pronicka E, Piekutowska-Abramczuk D, Szymańska-Dębińska T, Bielecka L, Kowalski P, Łuczak S, Karkucińska-Więckowska A, Migdał M, Kubalska J, Zimowski J, Jamroz E, Wierzba J, Sykut-Cegielska J, Pronicki M, Zaremba J, Krajewska-Walasek M. The natural history of SCO2 deficiency in 36 Polish children confirmed the genotype–phenotype correlation. Mitochondrion 2013; 13:810-6. [DOI: 10.1016/j.mito.2013.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
17
|
High molecular weight forms of mammalian respiratory chain complex II. PLoS One 2013; 8:e71869. [PMID: 23967256 PMCID: PMC3742469 DOI: 10.1371/journal.pone.0071869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase.
Collapse
|
18
|
Wedatilake Y, Brown RM, McFarland R, Yaplito-Lee J, Morris AAM, Champion M, Jardine PE, Clarke A, Thorburn DR, Taylor RW, Land JM, Forrest K, Dobbie A, Simmons L, Aasheim ET, Ketteridge D, Hanrahan D, Chakrapani A, Brown GK, Rahman S. SURF1 deficiency: a multi-centre natural history study. Orphanet J Rare Dis 2013; 8:96. [PMID: 23829769 PMCID: PMC3706230 DOI: 10.1186/1750-1172-8-96] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022] Open
Abstract
Background SURF1 deficiency, a monogenic mitochondrial disorder, is the most frequent cause of cytochrome c oxidase (COX) deficient Leigh syndrome (LS). We report the first natural history study of SURF1 deficiency. Methods We conducted a multi-centre case notes review of 44 SURF1-deficient patients from ten different UK centres and two Australian centres. Survival data for LRPPRC-deficient LS and nuclear-encoded complex I-deficient LS patients were obtained from previous publications. The survival of SURF1-deficient patients was compared with these two groups using Kaplan-Meier survival analysis and logrank test. Results The majority of patients (32/44, 73%) presented in infancy (median 9.5 months). Frequent symptoms were poor weight gain (95%, median age 10 months), hypotonia (93%, median age 14 months), poor feeding/vomiting (89%, median age 10 months), developmental delay (88%, median age 14 months), developmental regression (71%, median age 19 months), movement disorder (52%, median age 24 months), oculomotor involvement (52%, median age 29 months) and central respiratory failure (78%, median age 31 months). Hypertrichosis (41%), optic atrophy (23%), encephalopathy (20%), seizures (14%) and cardiomyopathy (2%) were observed less frequently. Lactate was elevated in CSF (mean 4.3 mmol/L) in all patients (30/30) and in blood (mean 4.4 mmol/L) in 31/38 (81%). Fibroblast COX activity was universally decreased (25/25). Normal COX histochemistry was noted in 30% of biopsies, whereas muscle COX activity was reduced in 96% (25/26). Neuroimaging demonstrated lesions characteristic of LS in 28/33 (85%) and atypical findings in 3/33 (9%). Peripheral neuropathy was present in 13/16 (81%) (demyelinating 7/16, axonal 2/16). Kaplan-Meier analysis demonstrated that SURF1-deficient patients experience longer survival (median 5.4 years, p < 0.001) compared to LRPPRC deficiency (median 1.8 years) and nuclear-encoded complex I-deficient LS (median 1.6 years). Survival >10 years was observed in 7 patients, 6 of these patients did not experience neurological regression. The most frequent mutation was c.312_320del10insAT. Five novel mutations (c.468_469delTC, c.799_800delCT, c.575G>A (p.Arg192Gln), c.751+5G>A and c.752-2A>G) were identified. Conclusions SURF1-deficient patients have a homogeneous clinical and biochemical phenotype. Early recognition is essential to expedite diagnosis and enable prenatal diagnosis.
Collapse
|
19
|
Goldschmidt R, Arce PM, Khdour OM, Collin VC, Dey S, Jaruvangsanti J, Fash DM, Hecht SM. Effects of cytoprotective antioxidants on lymphocytes from representative mitochondrial neurodegenerative diseases. Bioorg Med Chem 2012; 21:969-78. [PMID: 23313093 DOI: 10.1016/j.bmc.2012.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 01/03/2023]
Abstract
Two new aza analogues of the neuroprotective agent idebenone have been synthesized and characterized. Their antioxidant activity, and ability to augment ATP levels have been evaluated in several different cell lines having suboptimal mitochondrial function. Both compounds were found to be good ROS scavengers, and to protect the cells from oxidative stress induced by glutathione depletion. The compounds were more effective than idebenone in neurodegenerative disease cells. These novel pyrimidinol derivatives were also shown to augment ATP levels in coenzyme Q(10)-deficient human lymphocytes. The more lipophilic side chains attached to the pyrimidinol redox core in these compounds resulted in less inhibition of the electron transport chain and improved antioxidant activity.
Collapse
Affiliation(s)
- Ruth Goldschmidt
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Marina AD, Schara U, Pyle A, Möller-Hartmann C, Holinski-Feder E, Abicht A, Czermin B, Lochmüller H, Griffin H, Santibanez-Koref M, Chinnery PF, Horvath R. NDUFS8-related Complex I Deficiency Extends Phenotype from "PEO Plus" to Leigh Syndrome. JIMD Rep 2012; 10:17-22. [PMID: 23430795 PMCID: PMC3755572 DOI: 10.1007/8904_2012_195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/29/2012] [Accepted: 10/22/2012] [Indexed: 12/14/2022] Open
Abstract
With over 1,000 nuclear genes that could potentially cause a mitochondrial disorder, the current diagnostic approach requires targeted molecular analysis, guided by a combination of clinical and biochemical features. However, the expanding molecular and clinical spectrum means that this approach does not always yield a result. Here we report the unusual clinical presentation of "Progressive External Ophthalmoplegia (PEO) plus" Leigh syndrome in three children from a consanguineous family where exome sequencing identified mutations in NDUFS8. NDUFS8 is a nuclear-encoded structural core protein of complex I, and mutations are expected to cause infantile onset and severe disease. Our patients had a later onset, milder and a clinically distinct phenotype, and this gene would not normally be considered in this context. Being untargeted to specific genes, whole exome analysis has the potential to re-write the phenotype and reveal an unexpected molecular aetiology, as illustrated by this family.
Collapse
Affiliation(s)
| | - Ulrike Schara
- />Pediatric Neurology, University of Essen, Essen, Germany
| | - Angela Pyle
- />Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Claudia Möller-Hartmann
- />Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Essen, Essen, Germany
| | | | | | | | - Hanns Lochmüller
- />Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Helen Griffin
- />Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | | | - Patrick F. Chinnery
- />Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Rita Horvath
- />Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Lee IC, El-Hattab AW, Wang J, Li FY, Weng SW, Craigen WJ, Wong LJC. SURF1-associated leigh syndrome: A case series and novel mutations. Hum Mutat 2012; 33:1192-200. [DOI: 10.1002/humu.22095] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 03/15/2012] [Indexed: 11/11/2022]
|
22
|
Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1114-24. [PMID: 22465034 DOI: 10.1016/j.bbadis.2012.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 01/26/2023]
Abstract
The loss of Surf1 protein leads to a severe COX deficiency manifested as a fatal neurodegenerative disorder, the Leigh syndrome (LS(COX)). Surf1 appears to be involved in the early step of COX assembly but its function remains unknown. The aim of the study was to find out how SURF1 gene mutations influence expression of OXPHOS and other pro-mitochondrial genes and to further characterize the altered COX assembly. Analysis of fibroblast cell lines from 9 patients with SURF1 mutations revealed a 70% decrease of the COX complex content to be associated with 32-54% upregulation of respiratory chain complexes I, III and V and accumulation of Cox5a subunit. Whole genome expression profiling showed a general decrease of transcriptional activity in LS(COX) cells and indicated that the adaptive changes in OXPHOS complexes are due to a posttranscriptional compensatory mechanism. Electrophoretic and WB analysis showed that in mitochondria of LS(COX) cells compared to controls, the assembled COX is present entirely in a supercomplex form, as I-III₂-IV supercomplex but not as larger supercomplexes. The lack of COX also caused an accumulation of I-III₂ supercomplex. The accumulated Cox5a was mainly present as a free subunit. We have found out that the major COX assembly subcomplexes accumulated due to SURF1 mutations range in size between approximately 85-140kDa. In addition to the originally proposed S2 intermediate they might also represent Cox1-containing complexes lacking other COX subunits. Unlike the assembled COX, subcomplexes are unable to associate with complexes I and III.
Collapse
|
23
|
Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:65-106. [DOI: 10.1007/978-1-4614-3573-0_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Kirkham FJ, Haywood P, Kashyape P, Borbone J, Lording A, Pryde K, Cox M, Keslake J, Smith M, Cuthbertson L, Murugan V, Mackie S, Thomas NH, Whitney A, Forrest KM, Parker A, Forsyth R, Kipps CM. Movement disorder emergencies in childhood. Eur J Paediatr Neurol 2011; 15:390-404. [PMID: 21835657 DOI: 10.1016/j.ejpn.2011.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 04/17/2011] [Indexed: 12/27/2022]
Abstract
The literature on paediatric acute-onset movement disorders is scattered. In a prospective cohort of 52 children (21 male; age range 2mo-15y), the commonest were chorea, dystonia, tremor, myoclonus, and Parkinsonism in descending order of frequency. In this series of mainly previously well children with cryptogenic acute movement disorders, three groups were recognised: (1) Psychogenic disorders (n = 12), typically >10 years of age, more likely to be female and to have tremor and myoclonus (2) Inflammatory or autoimmune disorders (n = 22), including N-methyl-d-aspartate receptor encephalitis, opsoclonus-myoclonus, Sydenham chorea, systemic lupus erythematosus, acute necrotizing encephalopathy (which may be autosomal dominant), and other encephalitides and (3) Non-inflammatory disorders (n = 18), including drug-induced movement disorder, post-pump chorea, metabolic, e.g. glutaric aciduria, and vascular disease, e.g. moyamoya. Other important non-inflammatory movement disorders, typically seen in symptomatic children with underlying aetiologies such as trauma, severe cerebral palsy, epileptic encephalopathy, Down syndrome and Rett syndrome, include dystonic posturing secondary to gastro-oesophageal reflux (Sandifer syndrome) and Paroxysmal Autonomic Instability with Dystonia (PAID) or autonomic 'storming'. Status dystonicus may present in children with known extrapyramidal disorders, such as cerebral palsy or during changes in management e.g. introduction or withdrawal of neuroleptic drugs or failure of intrathecal baclofen infusion; the main risk in terms of mortality is renal failure from rhabdomyolysis. Although the evidence base is weak, as many of the inflammatory/autoimmune conditions are treatable with steroids, immunoglobulin, plasmapheresis, or cyclophosphamide, it is important to make an early diagnosis where possible. Outcome in survivors is variable. Using illustrative case histories, this review draws attention to the practical difficulties in diagnosis and management of this important group of patients.
Collapse
Affiliation(s)
- F J Kirkham
- Southampton University Hospitals NHS Trust, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Mitochondrial diseases involve the dysfunction of the oxidative phosphorylation (OXPHOS) system. This group of diseases presents with heterogeneous clinical symptoms affecting mainly organs with high energy demands. Defects in the multimeric complexes comprising the OXPHOS system have a dual genetic origin, mitochondrial or nuclear DNA. Although many nuclear DNA mutations involve genes coding for subunits of the respiratory complexes, the majority of mutations found to date affect factors that do not form part of the final complexes. These assembly factors or chaperones have multiple functions ranging from cofactor insertion to proper assembly/stability of the complexes. Although significant progress has been made in the last few years in the discovery of new assembly factors, the function of many remains elusive. Here, we describe assembly factors or chaperones that are required for respiratory chain complex assembly and their clinical relevance.
Collapse
|
26
|
Hypoxic and hypercapnic challenges unveil respiratory vulnerability of Surf1 knockout mice, an animal model of Leigh syndrome. Mitochondrion 2011; 11:413-20. [DOI: 10.1016/j.mito.2010.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/18/2010] [Accepted: 12/08/2010] [Indexed: 12/23/2022]
|
27
|
Hannappel A, Bundschuh FA, Ludwig B. Characterization of heme-binding properties of Paracoccus denitrificans Surf1 proteins. FEBS J 2011; 278:1769-78. [DOI: 10.1111/j.1742-4658.2011.08101.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family. Mol Cell Biol 2010; 30:4480-91. [PMID: 20624914 DOI: 10.1128/mcb.00228-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three missense SURF1 mutations identified in patients with Leigh syndrome (LS) were evaluated in the yeast homolog Shy1 protein. Introduction of two of the Leigh mutations, F(249)T and Y(344)D, in Shy1 failed to significantly attenuate the function of Shy1 in cytochrome c oxidase (CcO) biogenesis as seen with the human mutations. In contrast, a G(137)E substitution in Shy1 results in a nonfunctional protein conferring a CcO deficiency. The G(137)E Shy1 mutant phenocopied shy1Delta cells in impaired Cox1 hemylation and low mitochondrial copper. A genetic screen for allele-specific suppressors of the G(137)E Shy1 mutant revealed Coa2, Cox10, and a novel factor designated Coa4. Coa2 and Cox10 are previously characterized CcO assembly factors. Coa4 is a twin CX(9)C motif mitochondrial protein localized in the intermembrane space and associated with the inner membrane. Cells lacking Coa4 are depressed in CcO activity but show no impairment in Cox1 maturation or formation of the Shy1-stabilized Cox1 assembly intermediate. To glean insights into the functional role of Coa4 in CcO biogenesis, an unbiased suppressor screen of coa4Delta cells was conducted. Respiratory function of coa4Delta cells was restored by the overexpression of CYC1 encoding cytochrome c. Cyc1 is known to be important at an ill-defined step in the assembly and/or stability of CcO. This new link to Coa4 may begin to further elucidate the role of Cyc1 in CcO biogenesis.
Collapse
|