1
|
Li Y, Hirayasu K, Hasegawa G, Tomita Y, Hashikawa Y, Hiwa R, Arase H, Hanayama R. Fibrinogen induces inflammatory responses via the immune activating receptor LILRA2. Front Immunol 2024; 15:1435236. [PMID: 39376567 PMCID: PMC11456740 DOI: 10.3389/fimmu.2024.1435236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family, a group of primate-specific immunoreceptors, is widely expressed on most immune cells and regulates immune responses through interactions with various ligands. The inhibitory type, LILRB, has been extensively studied, and many ligands, such as HLA class I, have been identified. However, the activating type, LILRA, is less understood. We have previously identified microbially cleaved immunoglobulin as a non-self-ligand for LILRA2. In this study, we identified fibrinogen as an endogenous ligand for LILRA2 using mass spectrometry. Although human plasma contains fibrinogen in abundance in its soluble form, LILRA2 only recognizes solid-phase fibrinogen. In addition to the activating LILRA2, fibrinogen was also recognized by the inhibitory LILRB2 and by soluble LILRA3. In contrast, fibrin was recognized by LILRB2 and LILRA3, but not by LILRA2. Moreover, LILRA3 bound more strongly to fibrin than to fibrinogen and blocked the LILRB2-fibrinogen/fibrin interaction. These results suggest that morphological changes in fibrinogen determine whether activating or inhibitory immune responses are induced. Upon recognizing solid-phase fibrinogen, LILRA2 activated human primary monocytes and promoted the expression of various inflammation-related genes, such as chemokines, as revealed by RNA-seq analysis. A blocking antibody against LILRA2 inhibited the fibrinogen-induced inflammatory responses, indicating that LILRA2 is the primary receptor of fibrinogen. Taken together, our findings suggest that solid-phase fibrinogen is an inflammation-inducing endogenous ligand for LILRA2, and this interaction may represent a novel therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yifan Li
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kouyuki Hirayasu
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Gen Hasegawa
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosei Tomita
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuko Hashikawa
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ryosuke Hiwa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
2
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol 2021; 12:716289. [PMID: 34737739 PMCID: PMC8562567 DOI: 10.3389/fimmu.2021.716289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genes of the leukocyte immunoglobulin-like receptor (LILR) family map to the leukocyte receptor complex (LRC) on chromosome 19, and consist of both activating and inhibiting entities. These receptors are often involved in regulating immune responses, and are considered to play a role in health and disease. The human LILR region and evolutionary equivalents in some rodent and bird species have been thoroughly characterized. In non-human primates, the LILR region is annotated, but a thorough comparison between humans and non-human primates has not yet been documented. Therefore, it was decided to undertake a comprehensive comparison of the human and non-human primate LILR region at the genomic level. During primate evolution the organization of the LILR region remained largely conserved. One major exception, however, is provided by the common marmoset, a New World monkey species, which seems to feature a substantial contraction of the number of LILR genes in both the centromeric and the telomeric region. Furthermore, genomic analysis revealed that the killer-cell immunoglobulin-like receptor gene KIR3DX1, which maps in the LILR region, features one copy in humans and great ape species. A second copy, which might have been introduced by a duplication event, was observed in the lesser apes, and in Old and New World monkey species. The highly conserved gene organization allowed us to standardize the LILR gene nomenclature for non-human primate species, and implies that most of the receptors encoded by these genes likely fulfill highly preserved functions.
Collapse
Affiliation(s)
- Lisanne Storm
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Lan X, Liu F, Ma J, Chang Y, Lan X, Xiang L, Shen X, Zhou F, Zhao Q. Leukocyte immunoglobulin-like receptor A3 is increased in IBD patients and functions as an anti-inflammatory modulator. Clin Exp Immunol 2020; 203:286-303. [PMID: 33006756 PMCID: PMC7806419 DOI: 10.1111/cei.13529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence shows that a homozygous 6·7-kb deletion of the novel anti-inflammatory molecule leukocyte immunoglobulin-like receptor A3 (LILRA3) is associated with many autoimmune disorders. However, its effects on pathogenesis of inflammatory bowel disease (IBD) have yet not been clarified. LILRA3 is mainly expressed in monocytes, whereas its effects on biological behaviors of monocytes have not been systematically reported. In our study, to investigate the association between LILRA3 polymorphism and IBD susceptibility, LILRA3 polymorphism was assessed in 378 IBD patients and 509 healthy controls. Quantitative real time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC) were employed to detect the LILRA3 expression in IBD patient blood and intestinal samples. The human U937 monocyte cell line was employed to establish LILRA3 over-expressing cells and the effects of LILRA3 on the biological behaviors of U937 cells were systematically explored. Although no association of the polymorphism with IBD development was found, LILRA3 expression was markedly increased in IBD patients compared with healthy controls. Over-expression of LILRA3 in monocytes led to significant decreases in secretion of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-6. Additionally, LILRA3 abated monocyte migration by reducing the expression of several chemokines and enhanced monocyte phagocytosis by increasing CD36 expression. Furthermore, LILRA3 promoted monocyte proliferation through a combination of Akt and extracellular receptor kinase/mitogen-activated protein kinase (Erk/MEK) signaling pathways. We report for the first time, to our knowledge, that LILRA3 is related to IBD and functions as an anti-inflammatory modulator in U937 cells.
Collapse
Affiliation(s)
- X Lan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Liu
- Department of Gastroenterology, Xuhui District Central Hospital, Shanghai, China
| | - J Ma
- Department of Health Related Product Evaluation, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Y Chang
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - X Lan
- Pathology department, National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, China
| | - L Xiang
- Department of Infectious Disease, Xiangxi Autonomous Prefecture People's Hospital, Xiangxi, China
| | - X Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - F Zhou
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Q Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Truong AD, Hong Y, Tran HTT, Dang HV, Nguyen VK, Pham TT, Lillehoj HS, Hong YH. Characterization and functional analyses of novel chicken leukocyte immunoglobulin-like receptor subfamily B members 4 and 5. Poult Sci 2020; 98:6989-7002. [PMID: 31376355 PMCID: PMC8913971 DOI: 10.3382/ps/pez442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
The inhibitory leukocyte immuno-globulin-like receptors (LILRBs) play an important role in innate immunity. Currently, no data exist regarding the role of LILRB4 and LILRB5 in the activation of immune signaling pathways in mammalian and avian species. Here, we report for the first time, the cloning and structural and functional analyses of chicken LILRB4–5 genes identified from 2 genetically disparate chicken lines. Comparison of LILRB4–5 amino acid sequences from lines 6.3 and 7.2 with those of mammalian proteins revealed 17 to 62% and 19 to 29% similarity, respectively. Phylogenetic analysis indicated that the chicken LILRB4–5 genes were closely associated with those of other species. LILRB4–5 could be subdivided into 2 groups having distinct immunoreceptor tyrosine-based inhibitory motifs, which bind to Src homology 2-containing tyrosine phosphatase 2 (SHP-2). Importantly, LILRB4–5 also upregulated the major histocompatibility complex (MHC) class I and β2-microglobulin gene expression as well as the expression of transporter associated with antigen processing 1–2, which play an important role in MHC class I activation. Our results indicate that LILRB4–5 are transcriptional regulators of the MHC class I pathway components and regulate innate immune responses. Furthermore, LILRB4–5 could activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway genes in macrophages and induce the expression of chemokines and T helper (Th)1, Th2, and Th17 cytokines. Our data suggest that LILRB4–5 are innate immune receptors associated with SHP-2, MHC class I, and β2-microglobulin. Additionally, they activate the JAK/STAT signaling pathway and control the expression of cytokines in macrophages.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
6
|
Kane BA, An H, Rajasekariah P, McNeil HP, Bryant K, Tedla N. Differential expression and regulation of the non-integrin 37/67-kDa laminin receptor on peripheral blood leukocytes of healthy individuals and patients with rheumatoid arthritis. Sci Rep 2019; 9:1149. [PMID: 30718719 PMCID: PMC6362087 DOI: 10.1038/s41598-018-37907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023] Open
Abstract
The non-integrin 37/67-kDa laminin receptor (LAMR1) is a complex protein with diverse functions. LAMR1 is widely expressed in epithelial cells and recently it was reported on neutrophils and a subset of activated T cells. Ligation of LAMR1 on peripheral blood mononuclear cells (PBMC) downregulated LPS-induced TNFα production, suggesting immune functions. However, its expression on primary monocytes remain unknown. Interestingly, LAMR1 mRNA is downregulated in PBMC of patients with early rheumatoid arthritis (RA), and low gene expression is an independent predictor of poor response to anti-TNFα treatment, suggesting a role in RA pathogenesis. We found LAMR1 was constitutively expressed on all peripheral blood monocytes and a subset of B cells from healthy individuals and patients with RA and it was abundantly present in synovial tissue of patients with RA. On monocytes and synovial tissue lower levels of LAMR1 expression tended to correlate with increased disease activity scores. In vitro treatment of monocytes with IFNγ or IL-10 up-regulated surface LAMR1 in healthy individuals and patients with RA with greater effects observed in healthy individuals. Importantly, treatment with IFNγ significantly increased specific binding of monocytes to laminin-1. TNFα and IL-1β caused marginal downregulation of LAMR1 in patients but effects in controls were variable. Taken together, constitutively expressed LAMR1 on monocytes is differentially regulated by pro-inflammatory and immune-regulatory cytokines suggesting LAMR1 may regulate the threshold and amplitude of their activation and migration. Decreased levels in patients with RA may indicate loss of this potentially critical homeostatic regulation thereby contributing to the excessive inflammation.
Collapse
Affiliation(s)
- Barry A Kane
- Mechanisms of Diseases and Translational Research, School of Medical Sciences, Department of Pathology, University of New South Wales, Sydney, Australia
| | - Hongyan An
- Mechanisms of Diseases and Translational Research, School of Medical Sciences, Department of Pathology, University of New South Wales, Sydney, Australia
| | - Poornima Rajasekariah
- Mechanisms of Diseases and Translational Research, School of Medical Sciences, Department of Pathology, University of New South Wales, Sydney, Australia
| | - H Patrick McNeil
- Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - Katherine Bryant
- Mechanisms of Diseases and Translational Research, School of Medical Sciences, Department of Pathology, University of New South Wales, Sydney, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Nicodemus Tedla
- Mechanisms of Diseases and Translational Research, School of Medical Sciences, Department of Pathology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Zhang S, Ma X, Fu J. Silencing Leukocyte Immunoglobulin-Like Receptor A1 in Monocytes Inhibits Inflammation in Mice with Multiple Sclerosis. Neuroimmunomodulation 2019; 26:93-101. [PMID: 30673676 DOI: 10.1159/000495625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS), also called disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disorder in which the insulating covers of brain nerve cells and the spinal cord are impaired. Emerging evidence has highlighted leukocyte immunoglobulin-like receptor A1 (LILRA1) and its ability to suppress the secretion of various inflammatory factors. METHOD During this study, we explored cell viability, apoptosis, and levels of certain inflammatory factors when silencing LILRA1 in cultured spinal cord cells obtained from mice with MS. A mouse model of experimental autoimmune encephalomyelitis (EAE) was established. A vector system package was used to explore the function of LILRA1 in EAE. The damage of spinal cord tissues was observed by hematoxylin-eosin staining. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and flow cytometry were applied to detect cell viability, cell cycle distribution, and apoptosis. Enzyme-linked immunosorbent assay and Western blot analysis were adopted to detect the levels of interleukin (IL)-6, IL-17, and tumor necrosis factor-α (TNF-α) in the monocytes. RESULTS Mice with EAE exhibited highly expressed LILRA1, IL-6, IL-17, and TNF-α. LILRA1 silencing was shown to significantly decrease the cell viability and accelerate the cell apoptosis rate in mice with EAE. At the same time, downregulation of LILRA1 significantly decreased the mRNA and protein levels of IL-6, IL-17, and TNF-α in the mouse serum. CONCLUSION The key findings of this study collectively propose that LILRA1 suppression exerts a potent anti-inflammatory effect on MS mice. Overall, LILRA1 downregulation presents a promising therapeutic strategy for the treatment of MS.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Ma
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin Fu
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China,
| |
Collapse
|
8
|
Truong AD, Hong Y, Lee J, Lee K, Tran HTT, Dang HV, Nguyen VK, Lillehoj HS, Hong YH. Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:614-628. [PMID: 30381742 PMCID: PMC6502725 DOI: 10.5713/ajas.18.0561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Objective The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%–99%, while homologies between chicken and mammal proteins ranged between 13%–19%, and 13%–69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, β2-microglobulin, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
9
|
Hudson LE, Allen RL. Leukocyte Ig-Like Receptors - A Model for MHC Class I Disease Associations. Front Immunol 2016; 7:281. [PMID: 27504110 PMCID: PMC4959025 DOI: 10.3389/fimmu.2016.00281] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023] Open
Abstract
MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system.
Collapse
Affiliation(s)
- Laura Emily Hudson
- Institute for Infection and Immunity, St George's, University of London , London , UK
| | - Rachel Louise Allen
- Institute for Infection and Immunity, St George's, University of London , London , UK
| |
Collapse
|
10
|
Yan W, Song H, Jiang J, Xu W, Gong Z, Duan Q, Li C, Xie Y, Wang L. Characteristics of B cell‑associated gene expression in patients with coronary artery disease. Mol Med Rep 2016; 13:4113-21. [PMID: 27035867 DOI: 10.3892/mmr.2016.5029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/12/2016] [Indexed: 11/05/2022] Open
Abstract
The current study aimed to identify differentially expressed B cell‑associated genes in peripheral blood mononuclear cells and observe the changes in B cell activation at different stages of coronary artery disease. Groups of patients with acute myocardial infarction (AMI) and stable angina (SA), as well as healthy volunteers, were recruited into the study (n=20 per group). Whole human genome microarray analysis was performed to examine the expression of B cell‑associated genes among these three groups. The mRNA expression levels of 60 genes associated with B cell activity and regulation were measured using reverse transcription‑quantitative polymerase chain reaction. The mRNA expression of the B cell antigen receptor (BCR)‑associated genes, CD45, NFAM, SYK and LYN, were significantly upregulated in patients with AMI; however, FCRL3, CD79B, CD19, CD81, FYN, BLK, CD22 and CD5 mRNA expression levels were significantly downregulated, compared with patients in the SA and control group. The mRNA levels of the T‑independent B cell‑associated genes, CD16, CD32, LILRA1 and TLR9, were significantly increased in AMI patients compared with SA and control patients. The mRNA expression of genes associated with T‑dependent B cells were also measured: EMR2 and CD97 were statistically upregulated, whereas SLAMF1, LY9, CD28, CD43, CD72, ICOSL, PD1, CD40 and CD20 mRNAs were significantly downregulated in AMI group patients compared with the two other groups. Additionally the gene expression levels of B cell regulatory genes were measured. In patients with AMI, CR1, LILRB2, LILRB3 and VAV1 mRNA expression levels were statistically increased, whereas, CS1 and IL4I1 mRNAs were significantly reduced compared with the SA and control groups. There was no statistically significant difference in B cell‑associated gene expression levels between patients with SA and the control group. The present study identified the downregulation of genes associated with BCRs, B2 cells and B cell regulators in patients with AMI, indicating a weakened T cell‑B cell interaction and reduced B2 cell activation during AMI. Thus, improving B2 cell‑mediated humoral immunity may be a potential target for medical intervention in patients with AMI.
Collapse
Affiliation(s)
- Wenwen Yan
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Haoming Song
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jinfa Jiang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wenjun Xu
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhu Gong
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Qianglin Duan
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Chuangrong Li
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yuan Xie
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Lemin Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
11
|
An H, Brettle M, Lee T, Heng B, Lim CK, Guillemin GJ, Lord MS, Klotzsch E, Geczy CL, Bryant K, Fath T, Tedla N. Soluble LILRA3 promotes neurite outgrowth and synapses formation through high affinity interaction with Nogo 66. J Cell Sci 2016; 129:1198-209. [DOI: 10.1242/jcs.182006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023] Open
Abstract
Inhibitory proteins, particularly Nogo 66, a highly conserved 66 amino acid loop of Nogo A, play key roles in limiting the intrinsic capacity of the central nervous system to regenerate after injury. Ligation of surface Nogo receptors (NgRs) and/or leukocyte immunoglobulin like receptor B2 (LILRB2) and its mouse orthologue the paired-immunoglobulin-like receptor B (PIRB) by Nogo 66 transduces inhibitory signals that potently inhibit neurite outgrowth. Here we show that soluble leukocyte immunoglobulin-like receptor A3 (LILRA3) is a high affinity receptor for Nogo 66, suggesting that LILRA3 might be a competitive antagonist to these cell surface inhibitory receptors. Consistent with this, LILRA3 significantly reversed Nogo 66-mediated inhibition of neurite outgrowth and promoted synapse formation in primary cortical neurons via regulation of the MEK/ERK pathway. LILRA3 represents a new antagonist to Nogo 66-mediated inhibition of neurite outgrowth in the CNS, a function distinct from its immune-regulatory role in leukocytes. This report is also the first to demonstrate that a member of LILR family normally not expressed in rodents exerts functions on mouse neurons through the highly homologous Nogo 66 ligand.
Collapse
Affiliation(s)
- Hongyan An
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Terry Lee
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Chai K. Lim
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Macquarie University, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Katherine Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, Department of Anatomy, UNSW, Sydney, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, Department of Pathology, UNSW, Sydney, Australia
| |
Collapse
|
12
|
Hirayasu K, Arase H. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J Hum Genet 2015; 60:703-8. [PMID: 26040207 DOI: 10.1038/jhg.2015.64] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/03/2023]
Abstract
Human leukocyte immunoglobulin-like receptors (LILR) are a family of 11 functional genes encoding five activating (LILRA1, 2, 4-6), five inhibitory (LILRB1-5) and one soluble (LILRA3) form. The number of LILR genes is conserved among individuals, except for LILRA3 and LILRA6, which exhibit copy-number variations. The LILR genes are rapidly evolving and showing large interspecies differences, making it difficult to analyze the functions of LILR using an animal model. LILRs are expressed on various cells such as lymphoid and myeloid cells and the expression patterns are different from gene to gene. The LILR gene expression and polymorphisms have been reported to be associated with autoimmune and infectious diseases such as rheumatoid arthritis and cytomegalovirus infection. Although human leukocyte antigen (HLA) class I is a well-characterized ligand for some LILRs, non-HLA ligands have been increasingly identified in recent years. LILRs have diverse functions, including the regulation of inflammation, immune tolerance, cell differentiation and nervous system plasticity. This review focuses on the genetic and functional diversity of the LILR family.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisashi Arase
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Expression of phosphocitrate-targeted genes in osteoarthritis menisci. BIOMED RESEARCH INTERNATIONAL 2014; 2014:210469. [PMID: 25525593 PMCID: PMC4265372 DOI: 10.1155/2014/210469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/19/2023]
Abstract
Phosphocitrate (PC) inhibited calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the molecular mechanisms remain elusive. This study sought to determine PC targeted genes and the expression of select PC targeted genes in OA menisci to test hypothesis that PC exerts its disease modifying activity in part by reversing abnormal expressions of genes involved in OA. We found that PC downregulated the expression of numerous genes classified in immune response, inflammatory response, and angiogenesis, including chemokine (C-C motif) ligand 5, Fc fragment of IgG, low affinity IIIb receptor (FCGR3B), and leukocyte immunoglobulin-like receptor, subfamily B member 3 (LILRB3). In contrast, PC upregulated the expression of many genes classified in skeletal development, including collagen type II alpha1, fibroblast growth factor receptor 3 (FGFR3), and SRY- (sex determining region Y-) box 9 (SOX-9). Immunohistochemical examinations revealed higher levels of FCGR3B and LILRB3 and lower level of SOX-9 in OA menisci. These findings indicate that OA is a disease associated with immune system activation and decreased expression of SOX-9 gene in OA menisci. PC exerts its disease modifying activity on OA, at least in part, by targeting immune system activation and the production of extracellular matrix and selecting chondroprotective proteins.
Collapse
|
14
|
Kane BA, Bryant KJ, McNeil HP, Tedla NT. Termination of immune activation: an essential component of healthy host immune responses. J Innate Immun 2014; 6:727-38. [PMID: 25033984 PMCID: PMC6741560 DOI: 10.1159/000363449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
The ideal immune response is rapid, proportionate and effective. Crucially, it must also be finite. An inflammatory response which is disproportionate or lasts too long risks injury to the host; chronic un-regulated inflammation in autoimmune diseases is one example of this. Thus, mechanisms to regulate and ultimately terminate immune responses are central to a healthy immune system. Despite extensive knowledge of what drives immune responses, our understanding of mechanisms of immune termination remains relatively sparse. It is clear that such processes are more complex than a one-dimensional homeostatic balance. Recent discoveries have revealed ever more nuanced mechanisms of signal termination, such as intrinsically self-limiting signals, multiple inhibitory mechanisms acting in tandem and activating proteins behaving differently in a variety of contexts. This review will summarise some important mechanisms, including termination by immunoreceptor tyrosine-based inhibitory motifs (ITIM), inhibition by soluble antagonists, receptor endocytosis or ubiquitination, and auto-inhibition by newly synthesised intracellular inhibitory molecules. Several recent discoveries showing immunoreceptor tyrosine-based activation motifs transducing inhibitory signals, ITIM mediating activating responses and the possible roles of immunoreceptor tyrosine-based switch motifs will also be explored.
Collapse
Affiliation(s)
- Barry A. Kane
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| | - Katherine J. Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, N.S.W., Australia
| | - H. Patrick McNeil
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, N.S.W., Australia
| | - Nicodemus T. Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| |
Collapse
|
15
|
Montero-Meléndez T, Llor X, García-Planella E, Perretti M, Suárez A. Identification of novel predictor classifiers for inflammatory bowel disease by gene expression profiling. PLoS One 2013; 8:e76235. [PMID: 24155895 PMCID: PMC3796518 DOI: 10.1371/journal.pone.0076235] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022] Open
Abstract
Background Improvement of patient quality of life is the ultimate goal of biomedical research, particularly when dealing with complex, chronic and debilitating conditions such as inflammatory bowel disease (IBD). This is largely dependent on receiving an accurate and rapid diagnose, an effective treatment and in the prediction and prevention of side effects and complications. The low sensitivity and specificity of current markers burden their general use in the clinical practice. New biomarkers with accurate predictive ability are needed to achieve a personalized approach that take the inter-individual differences into consideration. Methods We performed a high throughput approach using microarray gene expression profiling of colon pinch biopsies from IBD patients to identify predictive transcriptional signatures associated with intestinal inflammation, differential diagnosis (Crohn’s disease or ulcerative colitis), response to glucocorticoids (resistance and dependence) or prognosis (need for surgery). Class prediction was performed with self-validating Prophet software package. Results Transcriptional profiling divided patients in two subgroups that associated with degree of inflammation. Class predictors were identified with predictive accuracy ranging from 67 to 100%. The expression accuracy was confirmed by real time-PCR quantification. Functional analysis of the predictor genes showed that they play a role in immune responses to bacteria (PTN, OLFM4 and LILRA2), autophagy and endocytocis processes (ATG16L1, DNAJC6, VPS26B, RABGEF1, ITSN1 and TMEM127) and glucocorticoid receptor degradation (STS and MMD2). Conclusions We conclude that using analytical algorithms for class prediction discovery can be useful to uncover gene expression profiles and identify classifier genes with potential stratification utility of IBD patients, a major step towards personalized therapy.
Collapse
Affiliation(s)
- Trinidad Montero-Meléndez
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Xavier Llor
- Digestive Diseases and Nutrition Section, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, United States of America
| | | | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Antonio Suárez
- Centro de Investigación Biomédica, Universidad de Granada, Armilla, Spain
- * E-mail:
| |
Collapse
|
16
|
Lee THY, Mitchell A, Liu Lau S, An H, Rajeaskariah P, Wasinger V, Raftery M, Bryant K, Tedla N. Glycosylation in a mammalian expression system is critical for the production of functionally active leukocyte immunoglobulin-like receptor A3 protein. J Biol Chem 2013; 288:32873-85. [PMID: 24085305 DOI: 10.1074/jbc.m113.478578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The leukocyte immunoglobulin-like receptor (LILR) A3 is a member of the highly homologous activating and inhibitory receptors expressed on leukocytes. LILRA3 is a soluble receptor of unknown functions but is predicted to act as a broad antagonist to other membrane-bound LILRs. Functions of LILRA3 are unclear primarily because of the lack of high quality functional recombinant protein and insufficient knowledge regarding its ligand(s). Here, we expressed and characterized recombinant LILRA3 (rLILRA3) proteins produced in 293T cells, Escherichia coli, and Pichia pastoris. We found that the purified rLILRA3 produced in the mammalian system was the same size as a 70-kDa native macrophage LILRA3. This is 20 kDa larger than the calculated size, suggesting significant post-translational modifications. In contrast, rLILRA3 produced in E. coli was similar in size to the unprocessed protein, but yeast-produced protein was 2-4 times larger than the unprocessed protein. Treatment with peptide-N-glycosidase F reduced the size of the mammalian cell- and yeast-produced rLILRA3 to 50 kDa, suggesting that most modifications are due to glycosylation. Consistent with this, mass spectrometric analysis of the mammalian rLILRA3 revealed canonical N-glycosylation at the predicted Asn(140), Asn(281), Asn(302), Asn(341), and Asn(431) sites. Functionally, only mammalian cell-expressed rLILRA3 bound onto the surface of monocytes with high affinity, and importantly, only this significantly abrogated LPS-induced TNFα production by monocytes. Binding to monocytes was partially blocked by β-lactose, indicating that optimally glycosylated LILRA3 might be critical for ligand binding and function. Overall, our data demonstrated for the first time that LILRA3 is a potential new anti-inflammatory protein, and optimal glycosylation is required for its functions.
Collapse
Affiliation(s)
- Terry H Y Lee
- From the Inflammation and Infection Research Centre, School of Medical Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|