1
|
Kim SH, Hussain S, Pham HTT, Kadam US, Bahk S, Ramadany Z, Lee J, Song YH, Lee KO, Hong JC, Chung WS. Phosphorylation of auxin signaling repressor IAA8 by heat-responsive MPKs causes defective flower development. PLANT PHYSIOLOGY 2024; 196:2825-2840. [PMID: 39240752 PMCID: PMC11638004 DOI: 10.1093/plphys/kiae470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/08/2024]
Abstract
Heat stress is a substantial and imminent threat to plant growth and development. Understanding its adverse effects on plant development at the molecular level is crucial for sustainable agriculture. However, the molecular mechanism underlying how heat stress causes developmental defects in flowers remains poorly understood. Here, we identified Indole-3-Acetic Acid 8 (IAA8), a repressor of auxin signaling, as a substrate of mitogen-activated protein kinases (MPKs) in Arabidopsis thaliana, and found that MPK-mediated phosphorylation of IAA8 inhibits flower development. MPKs phosphorylated three residues of IAA8: S74, T77, and S135. Interestingly, transgenic plants overexpressing a phospho-mimicking mutant of IAA8 (IAA8DDD OX) exhibited defective flower development due to high IAA8 levels. Furthermore, MPK-mediated phosphorylation inhibited IAA8 polyubiquitination, thereby significantly increasing its stability. Additionally, the expression of key transcription factors involved in flower development, such as bZIP and MYB genes, was significantly perturbed in the IAA8DDD OX plants. Collectively, our study demonstrates that heat stress inhibits flower development by perturbing the expression of flower development genes through the MPK-mediated phosphorylation of IAA8, suggesting that Aux/IAA phosphorylation enables plants to fine-tune their development in response to environmental stress.
Collapse
Affiliation(s)
- Sun Ho Kim
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Shah Hussain
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Huyen Trang Thi Pham
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sunghwa Bahk
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zakiyah Ramadany
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongwoo Lee
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young Hun Song
- Depatment of Applied Biology and Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Fang Y, Guo D, Wang Y, Wang N, Fang X, Zhang Y, Li X, Chen L, Yu D, Zhang B, Qin G. Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. THE PLANT CELL 2024; 36:1697-1717. [PMID: 38299434 PMCID: PMC11062430 DOI: 10.1093/plcell/koae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.
Collapse
Affiliation(s)
- Yuxing Fang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Yi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Li
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
3
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Arya H, Singh MB, Bhalla PL. Overexpression of GmPIF4b affects morpho-physiological traits to reduce heat-induced grain loss in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108233. [PMID: 38134737 DOI: 10.1016/j.plaphy.2023.108233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Heat waves associated with climate change seriously threaten crop productivity. Crop seed yield depends on the success of reproduction. However, reproductive development is most vulnerable to heat stress conditions. Perception of heat and its conversion into cellular signals is a complex process. The basic helix loop helix (bHLH) transcription factor, Phytochrome Interacting Factor 4 (PIF4), plays a significant role in this process. However, studies on PIF4- mediated impacts on crop grain yield at a higher temperature are lacking. We investigated the overexpression of GmPIF4b in soybean to alleviate heat-induced damage and yield using a transgenic approach. Our results showed that under high-temperature conditions (38°C/28°C), overexpressing soybeans plants had higher chlorophyll a and b, and lower proline accumulation compared to WT. Further, overexpression of GmPIF4b improved pollen viability under heat stress and reduced heat-induced structural abnormalities in the male and female reproductive organs. Consequently, the transgenic plants produced higher pods and seeds per plant at high temperatures. Quantitative RT-PCR analysis showed that the overexpressing GmPIF4b soybeans had higher transcripts of heat shock factor, GmHSF-34, and heat-shock protein, GmHSP90A2. Collectively, our results suggest that GmPIF4b regulates multiple morpho-physiological traits for better yield under warmer climatic conditions.
Collapse
Affiliation(s)
- Hina Arya
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
5
|
Pramanik D, Becker A, Roessner C, Rupp O, Bogarín D, Pérez-Escobar OA, Dirks-Mulder A, Droppert K, Kocyan A, Smets E, Gravendeel B. Evolution and development of fruits of Erycina pusilla and other orchid species. PLoS One 2023; 18:e0286846. [PMID: 37815982 PMCID: PMC10564159 DOI: 10.1371/journal.pone.0286846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/24/2023] [Indexed: 10/12/2023] Open
Abstract
Fruits play a crucial role in seed dispersal. They open along dehiscence zones. Fruit dehiscence zone formation has been intensively studied in Arabidopsis thaliana. However, little is known about the mechanisms and genes involved in the formation of fruit dehiscence zones in species outside the Brassicaceae. The dehiscence zone of A. thaliana contains a lignified layer, while dehiscence zone tissues of the emerging orchid model Erycina pusilla include a lipid layer. Here we present an analysis of evolution and development of fruit dehiscence zones in orchids. We performed ancestral state reconstructions across the five orchid subfamilies to study the evolution of selected fruit traits and explored dehiscence zone developmental genes using RNA-seq and qPCR. We found that erect dehiscent fruits with non-lignified dehiscence zones and a short ripening period are ancestral characters in orchids. Lignified dehiscence zones in orchid fruits evolved multiple times from non-lignified zones. Furthermore, we carried out gene expression analysis of tissues from different developmental stages of E. pusilla fruits. We found that fruit dehiscence genes from the MADS-box gene family and other important regulators in E. pusilla differed in their expression pattern from their homologs in A. thaliana. This suggests that the current A. thaliana fruit dehiscence model requires adjustment for orchids. Additionally, we discovered that homologs of A. thaliana genes involved in the development of carpel, gynoecium and ovules, and genes involved in lipid biosynthesis were expressed in the fruit valves of E. pusilla, implying that these genes may play a novel role in formation of dehiscence zone tissues in orchids. Future functional analysis of developmental regulators, lipid identification and quantification can shed more light on lipid-layer based dehiscence of orchid fruits.
Collapse
Affiliation(s)
- Dewi Pramanik
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- National Research and Innovation Agency Republic of Indonesia (BRIN), Central Jakarta, Indonesia
| | - Annette Becker
- Development Biology of Plants, Institute for Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Roessner
- Development Biology of Plants, Institute for Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Oliver Rupp
- Department of Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Diego Bogarín
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | | | - Anita Dirks-Mulder
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Kevin Droppert
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Alexander Kocyan
- Botanical Museum, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Erik Smets
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Heverlee, Belgium
| | - Barbara Gravendeel
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Wang J, Xue L, Zhang X, Hou Y, Zheng K, Fu D, Dong W. A New Function of MbIAA19 Identified to Modulate Malus Plants Dwarfing Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3097. [PMID: 37687343 PMCID: PMC10490418 DOI: 10.3390/plants12173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The primary determinants of apple (Malus) tree architecture include plant height and internode length, which are the significant criteria for evaluating apple dwarf rootstocks. Plant height and internode length are predominantly governed by phytohormones. In this study, we aimed to assess the mechanisms underlying dwarfism in a mutant of Malus baccata. M. baccata dwarf mutant (Dwf) was previously obtained through natural mutation. It has considerably reduced plant height and internode length. A comparative transcriptome analysis of wild-type (WT) and Dwf mutant was performed to identify and annotate the differentially expressed genes responsible for the Dwf phenotype using RNA-seq and GO and KEGG pathway enrichment analyses. Multiple DEGs involved in hormone signaling pathways, particularly auxin signaling pathways, were identified. Moreover, the levels of endogenous indole-3-acetic acid (IAA) were lower in Dwf mutant than in WT. The Aux/IAA transcription factor gene MbIAA19 was downregulated in Dwf mutant due to a single nucleotide sequence change in its promoter. Genetic transformation assay demonstrated strong association between MbIAA19 and the dwarf phenotype. RNAi-IAA19 lines clearly exhibited reduced plant height, internode length, and endogenous IAA levels. Our study revealed that MbIAA19 plays a role in the regulation of dwarfism and endogenous IAA levels in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.W.); (L.X.); (X.Z.); (Y.H.); (K.Z.); (D.F.)
| |
Collapse
|
7
|
Wang J, Wang G, Liu W, Yang H, Wang C, Chen W, Zhang X, Tian J, Yu Y, Li J, Xue Y, Kong Z. Brassinosteroid signals cooperate with katanin-mediated microtubule severing to control stamen filament elongation. EMBO J 2023; 42:e111883. [PMID: 36546550 PMCID: PMC9929639 DOI: 10.15252/embj.2022111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Feed ResearchChinese Academy of Agricultural SciencesBeijingChina
| | - Huanhuan Yang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
8
|
Negoro S, Hirabayashi T, Iwasaki R, Torii KU, Uchida N. EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil. PLANT, CELL & ENVIRONMENT 2023; 46:451-463. [PMID: 36419209 DOI: 10.1111/pce.14498] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Successful sexual reproduction of plants requires temperature-sensitive processes, and temperature stress sometimes causes developmental asynchrony between male and female reproductive tissues. In Arabidopsis thaliana, self-pollination occurs when the stamen and pistil lengths are aligned in a single flower so that pollens at the stamen tip are delivered to the stigma at the pistil tip. Although intercellular signalling acts in several reproduction steps, how signalling molecules, including secreted peptides, contribute to the synchronous growth of reproductive tissues remains limited. Here, we show that the mutant of the secreted peptide EPIDERMAL PATTERNING FACTOR LIKE 6 (EPFL6), which shows no phenotypes at a moderate temperature, fails in fruit production at a cool temperature due to insufficient elongation of stamens. EPFL6 is expressed in stamen filaments and promotes filament elongation to achieve the alignment of stamen and pistil lengths at a cool temperature. We also found that, at a moderate temperature, all EPFL6-subfamily genes are required for stamen elongation. Furthermore, we showed that ERECTA (ER), known as a common receptor for EPFL-family peptides, mediates the stamen-pistil growth coordination. Lastly, we provided evidence that modulation of ER activity rescues the reproduction failure caused by insufficient stamen elongation by realigning the stamen and pistil lengths.
Collapse
Affiliation(s)
- Satomi Negoro
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tomo Hirabayashi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Gastaldi V, Alem AL, Mansilla N, Ariel FD, Viola IL, Lucero LE, Gonzalez DH. BREVIPEDICELLUS/KNAT1 targets TCP15 to modulate filament elongation during Arabidopsis late stamen development. PLANT PHYSIOLOGY 2023; 191:29-34. [PMID: 36303324 PMCID: PMC9806550 DOI: 10.1093/plphys/kiac502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 06/01/2023]
Abstract
The Arabidopsis homeodomain protein BREVIPEDICELLUS/KNAT1 represses the expression of the gene encoding the transcription factor TCP15 to limit filament growth at late stages of stamen development.
Collapse
Affiliation(s)
- Victoria Gastaldi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Antonela L Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Leandro E Lucero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
10
|
Gramzow L, Klupsch K, Fernández-Pozo N, Hölzer M, Marz M, Rensing SA, Theißen G. Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae). BMC PLANT BIOLOGY 2022; 22:340. [PMID: 35836106 PMCID: PMC9281134 DOI: 10.1186/s12870-022-03631-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Katharina Klupsch
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Noé Fernández-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM - CSIC - UMA, Málaga, 29010, Spain
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- Present Address: Methodology and Research Infrastructure/Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108, Freiburg, Germany
| | - Günter Theißen
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
11
|
Qu G, Peng D, Yu Z, Chen X, Cheng X, Yang Y, Ye T, Lv Q, Ji W, Deng X, Zhou B. Advances in the role of auxin for transcriptional regulation of lignin biosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:743-754. [PMID: 33663680 DOI: 10.1071/fp20381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Lignin is a natural polymer interlaced with cellulose and hemicellulose in secondary cell walls (SCWs). Auxin acts via its signalling transduction to regulate most of plant physiological processes. Lignification responds to auxin signals likewise and affects the development of anther and secondary xylem in plants. In this review, the research advances of AUXIN RESPONSE FACTOR (ARF)-dependent signalling pathways regulating lignin formation are discussed in detail. In an effort to facilitate the understanding of several key regulators in this process, we present a regulatory framework that comprises protein-protein interactions at the top and protein-gene regulation divided into five tiers. This characterises the regulatory roles of auxin in lignin biosynthesis and links auxin signalling transduction to transcriptional cascade of lignin biosynthesis. Our works further point to several of significant problems that need to be resolved in the future to gain a better understanding of the underlying mechanisms through which auxin regulates lignin biosynthesis.
Collapse
Affiliation(s)
- Gaoyi Qu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004, China
| | - Ziqin Yu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Xinling Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Xinrui Cheng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Youzhen Yang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Tao Ye
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Wenjun Ji
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China
| | - Xiangwen Deng
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha 410004, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology; 410004, Changsha, China; and Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong 438107, China; and National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha 410004, Hunan, China; and Forestry Biotechnology Hunan Key Laboratories, Hunan Changsha, 410004, China; and Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; and Corresponding author.
| |
Collapse
|
12
|
Cucinotta M, Cavalleri A, Chandler JW, Colombo L. Auxin and Flower Development: A Blossoming Field. Cold Spring Harb Perspect Biol 2021; 13:a039974. [PMID: 33355218 PMCID: PMC7849340 DOI: 10.1101/cshperspect.a039974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The establishment of the species-specific floral organ body plan involves many coordinated spatiotemporal processes, which include the perception of positional information that specifies floral meristem and floral organ founder cells, coordinated organ outgrowth coupled with the generation and maintenance of inter-organ and inter-whorl boundaries, and the termination of meristem activity. Auxin is integrated within the gene regulatory networks that control these processes and plays instructive roles at the level of tissue-specific biosynthesis and polar transport to generate local maxima, perception, and signaling. Key features of auxin function in several floral contexts include cell nonautonomy, interaction with cytokinin gradients, and the central role of MONOPTEROS and ETTIN to regulate canonical and noncanonical auxin response pathways, respectively. Arabidopsis flowers are not representative of the enormous angiosperm floral diversity; therefore, comparative studies are required to understand how auxin underlies these developmental differences. It will be of great interest to compare the conservation of auxin pathways among flowering plants and to discuss the evolutionary role of auxin in floral development.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alex Cavalleri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
13
|
Acosta IF. Letter to the Editor: Author Response-The Role of Auxin in Late Stamen Development. PLANT & CELL PHYSIOLOGY 2020; 61:1533-1534. [PMID: 32592487 PMCID: PMC7511248 DOI: 10.1093/pcp/pcaa088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
14
|
Cardarelli M, Ghelli R. Letter to the Editor: The Role of Auxin in Late Stamen Development. PLANT & CELL PHYSIOLOGY 2020; 61:1531-1532. [PMID: 32592488 DOI: 10.1093/pcp/pcaa089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Maura Cardarelli
- IBPM-CNR c/o Dip. Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Roberta Ghelli
- IBPM-CNR c/o Dip. Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
15
|
Marzi D, Brunetti P, Mele G, Napoli N, Calò L, Spaziani E, Matsui M, De Panfilis S, Costantino P, Serino G, Cardarelli M. Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:379-394. [PMID: 32142184 DOI: 10.1111/tpj.14736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 - oppositely to ARF8 - directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far-red light receptors PHYA/PHYB. In conclusion, different light qualities - sequentially perceived by specific photoreceptors - and the downstream COP1-HY5/HYH module finely tune auxin-induced stamen elongation and thus male fertility.
Collapse
Affiliation(s)
- Davide Marzi
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | | | | - Nadia Napoli
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Lorenzo Calò
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Erica Spaziani
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Simone De Panfilis
- Centre for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Roma, I-00161, Italy
| | - Paolo Costantino
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | |
Collapse
|
16
|
Liu L, Zhao L, Chen P, Cai H, Hou Z, Jin X, Aslam M, Chai M, Lai L, He Q, Liu Y, Huang X, Chen H, Chen Y, Qin Y. ATP binding cassette transporters ABCG1 and ABCG16 affect reproductive development via auxin signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1172-1186. [PMID: 31944421 DOI: 10.1111/tpj.14690] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 05/19/2023]
Abstract
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil-expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.
Collapse
Affiliation(s)
- Liping Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Piaojuan Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyang Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhimin Hou
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingyue Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengnan Chai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linyi Lai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing He
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhui Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyi Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihuang Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingzhi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
17
|
Acosta IF, Przybyl M. Jasmonate Signaling during Arabidopsis Stamen Maturation. PLANT & CELL PHYSIOLOGY 2019; 60:2648-2659. [PMID: 31651948 PMCID: PMC6896695 DOI: 10.1093/pcp/pcz201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The last stages of stamen development, collectively called stamen maturation, encompass pollen viability, filament elongation and anther dehiscence or opening. These processes are essential for male fertility in Arabidopsis and require the function of jasmonate signaling. There is a good understanding of jasmonate synthesis, perception and transcriptional outputs in Arabidopsis stamens. In addition, the spatiotemporal localization of jasmonate signaling components at the tissue and cellular levels has started to emerge in recent years. However, the ultimate cellular functions activated by jasmonate to promote stamen maturation remain unknown. The hormones auxin and gibberellin have been proposed to control the activation of jasmonate synthesis to promote stamen maturation, although we hypothesize that this action is rather indirect. In this review, we examine these different areas, attempt to clarify some confusing aspects found in the literature and raise testable hypothesis that may help to further understand how jasmonate controls male fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| | - Marine Przybyl
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
18
|
Lee ZH, Tatsumi Y, Ichihashi Y, Suzuki T, Shibata A, Shirasu K, Yamaguchi N, Ito T. CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Bouré N, Kumar SV, Arnaud N. The BAP Module: A Multisignal Integrator Orchestrating Growth. TRENDS IN PLANT SCIENCE 2019; 24:602-610. [PMID: 31076166 DOI: 10.1016/j.tplants.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 05/22/2023]
Abstract
Coordination of cell proliferation, cell expansion, and differentiation underpins plant growth. To maximise reproductive success, growth needs to be fine-tuned in response to endogenous and environmental cues. This developmental plasticity relies on a cellular machinery that integrates diverse signals and coordinates the downstream responses. In arabidopsis, the BAP regulatory module, which includes the BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME INTERACTING FACTOR 4 (PIF4) transcription factors (TFs), has been shown to coordinate growth in response to multiple growth-regulating signals. In this Opinion article, we provide an integrative view on the BAP module control of cell expansion and discuss whether its function is conserved or diversified, thus providing new insights into the molecular control of growth.
Collapse
Affiliation(s)
- Nathalie Bouré
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - S Vinod Kumar
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Nicolas Arnaud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
20
|
PACLOBUTRAZOL-RESISTANCE Gene Family Regulates Floral Organ Growth with Unequal Genetic Redundancy in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20040869. [PMID: 30781591 PMCID: PMC6412927 DOI: 10.3390/ijms20040869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023] Open
Abstract
A PACLOBUTRAZOL-RESISTANCE (PRE) gene family, consisting of six genes in Arabidopsis thaliana, encodes a group of helix-loop-helix proteins that act in the growth-promoting transcriptional network. To delineate the specific role of each of the PRE genes in organ growth, we took a reverse genetic approach by constructing high order pre loss-of-function mutants of Arabidopsis thaliana. In addition to dwarf vegetative growth, some double or high order pre mutants exhibited defective floral development, resulting in reduced fertility. While pre2pre5 is normally fertile, both pre2pre6 and pre5pre6 showed reduced fertility. Further, the reduced fertility was exacerbated in the pre2pre5pre6 mutant, indicative of the redundant and critical roles of these PREs. Self-pollination assay and scanning electron microscopy analysis showed that the sterility of pre2pre5pre6 was mainly ascribed to the reduced cell elongation of anther filament, limiting access of pollens to stigma. We found that the expression of a subset of flower-development related genes including ARGOS, IAA19, ACS8, and MYB24 was downregulated in the pre2pre5pre6 flowers. Given these results, we propose that PREs, with unequal functional redundancy, take part in the coordinated growth of floral organs, contributing to successful autogamous reproduction in Arabidopsis thaliana.
Collapse
|
21
|
Liu K, Yuan C, Feng S, Zhong S, Li H, Zhong J, Shen C, Liu J. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). BMC Genomics 2017; 18:351. [PMID: 28476147 PMCID: PMC5420106 DOI: 10.1186/s12864-017-3722-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. Results In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Conclusions Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3722-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
| | - Shaoxian Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Shuting Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jinxiang Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| |
Collapse
|
22
|
Cecchetti V, Celebrin D, Napoli N, Ghelli R, Brunetti P, Costantino P, Cardarelli M. An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1194-1207. [PMID: 27659765 DOI: 10.1111/nph.14207] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/15/2016] [Indexed: 05/06/2023]
Abstract
Here, we investigated the role of auxin distribution in controlling Arabidopsis thaliana late stamen development. We analysed auxin distribution in anthers by monitoring DR5 activity: at different flower developmental stages; inhibiting auxin transport; in the rpk2-3 and ems1 mutants devoid of middle layer (ML) or tapetum, respectively; and in the auxin biosynthesis yuc6 and perception afb1-3 mutants. We ran a phenotypic, DR5::GUS and gene expression analysis of yuc6rpk2 and afb1rpk2 double mutants, and of 1-N-naphthylphthalamic acid (NPA)-treated flower buds. We show that an auxin maximum, caused by transport from the tapetum, is established in the ML at the inception of late stamen development. rpk2-3 mutant stamens lacking the ML have an altered auxin distribution with excessive accumulation in adjacent tissues, causing non-functional pollen grains, indehiscent anthers and reduced filament length; the expression of genes controlling stamen development is also altered in rpk2-3 as well as in NPA-treated flower buds. By decreasing auxin biosynthesis or perception in the rpk2-3 background, we eliminated these developmental and gene expression anomalies. We propose that the auxin maximum in the ML plays a key role in late stamen development, as it ensures correct and coordinated pollen maturation, anther dehiscence and filament elongation.
Collapse
Affiliation(s)
- Valentina Cecchetti
- Istituto di Biologia e Patologia Molecolari (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Celebrin
- Istituto di Biologia e Patologia Molecolari (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Nadia Napoli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Ghelli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Patrizia Brunetti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maura Cardarelli
- Istituto di Biologia e Patologia Molecolari (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
23
|
DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2016; 113:11010-5. [PMID: 27651492 DOI: 10.1073/pnas.1604769113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:β-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.
Collapse
|
24
|
Song S, Qi T, Huang H, Xie D. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. MOLECULAR PLANT 2013; 6:1065-73. [PMID: 23543439 DOI: 10.1093/mp/sst054] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper stamen development is essential for plants to achieve their life cycles. Defects in stamen development will cause male sterility. A vast array of research efforts have been made to understand stamen developmental processes and regulatory mechanisms over the past decades. It is so far reported that phytohormones, including jasmonate, auxin, gibberellin, brassinosteroid, and cytokinin, play essential roles in regulation of stamen development. This review will briefly summarize the molecular basis for coordinated regulation of stamen development by jasmonate, auxin, and gibberellin in Arabidopsis.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
25
|
Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4901-17. [PMID: 22844095 PMCID: PMC3427993 DOI: 10.1093/jxb/ers167] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The PIN-FORMED (PIN) auxin efflux transport protein family has been well characterized in the model plant Arabidopsis thaliana, where these proteins are crucial for auxin regulation of various aspects of plant development. Recent evidence indicates that PIN proteins may play a role in fruit set and early fruit development in tomato (Solanum lycopersicum), but functional analyses of PIN-silenced plants failed to corroborate this hypothesis. Here it is demonstrated that silencing specifically the tomato SlPIN4 gene, which is predominantly expressed in tomato flower bud and young developing fruit, leads to parthenocarpic fruits due to precocious fruit development before fertilization. This phenotype was associated with only slight modifications of auxin homeostasis at early stages of flower bud development and with minor alterations of ARF and Aux/IAA gene expression. However, microarray transcriptome analysis and large-scale quantitative RT-PCR profiling of transcription factors in developing flower bud and fruit highlighted differentially expressed regulatory genes, which are potential targets for auxin control of fruit set and development in tomato. In conclusion, this work provides clear evidence that the tomato PIN protein SlPIN4 plays a major role in auxin regulation of tomato fruit set, possibly by preventing precocious fruit development in the absence of pollination, and further gives new insights into the target genes involved in fruit set.
Collapse
Affiliation(s)
- Fabien Mounet
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Present address: UMR 5546, Laboratoire de Recherche en Sciences VégétalesF-31326 Castanet TolosanFrance
| | - Annick Moing
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Present address: Institute of Soil Science and Plant Cultivation, Department of Biochemistry and Crop Quality24100 PulawyPoland
| | - Johannes Rohrmann
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Johann Petit
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Virginie Garcia
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Mickaël Maucourt
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Kentaro Yano
- Meiji University1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, 214-8571Japan
| | - Catherine Deborde
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Koh Aoki
- Kazusa DNA Research Institute2-6-7 Kazusa-Kamatari, KisarazuJapan
- Present address: Osaka Prefecture University, Environmental and Life Sciences, 1-1 Gakuen-cho, Naka-ku, SakaiOsaka 599-8531Japan
| | - Hélène Bergès
- INRA-Centre National de Ressources Génomiques VégétalesF-31326 Castanet TolosanFrance
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC46022 ValenciaSpain
| | - Alisdair R. Fernie
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Institut Jean-Pierre Bourgin, UMR1318-INRA-AgroParisTech, INRA Centre of Versailles-GrignonF-78026 Versailles cedexFrance
| | - Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Auxin-responsive grape Aux/IAA9 regulates transgenic Arabidopsis plant growth. Mol Biol Rep 2012; 39:7823-9. [DOI: 10.1007/s11033-012-1625-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 04/16/2012] [Indexed: 01/21/2023]
|
27
|
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet 2012; 8:e1002506. [PMID: 22346763 PMCID: PMC3276552 DOI: 10.1371/journal.pgen.1002506] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Collapse
Affiliation(s)
- Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christine M. Ellis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara E. Ploense
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Aurore Chételat
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ina Haupt
- Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Brian J. Kennerley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward E. Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
28
|
Auxin-nonresponsive grape Aux/IAA19 is a positive regulator of plant growth. Mol Biol Rep 2011; 39:911-7. [PMID: 21562765 DOI: 10.1007/s11033-011-0816-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/03/2011] [Indexed: 12/31/2022]
Abstract
We report the characterization of VvIAA19, an auxin/indole-3-acetic acid (Aux/IAA) protein, in grapevine (Vitis vinifera L.). VvIAA19 was expressed abundantly in berries. VvIAA19 transcription was rapidly increased at pre-anthesis and then decreased during fruit set. Before véraison, however, VvIAA19 gene expression was upregulated again and maximum expression was maintained until the end of ripening. Exogenous IAA did not induce VvIAA19 expression in grape leaves, suggesting that VvIAA19 might be auxin-nonresponsive. The overexpression of VvIAA19 in Arabidopsis thaliana had a notable effect on plant growth. Although no morphological changes were observed, transgenic Arabidopsis plants overexpressing VvIAA19 exhibited faster growth, including root elongation and floral transition, than the control plant, suggesting that the constitutive expression of VvIAA19 protein resulted in increased growth rates without any detectable harm. Taken together, we conclude that grape Aux/IAA19 protein is likely to play a crucial role as a plant growth regulator.
Collapse
|