1
|
Zhao W, Wei Z, Chen H, Zhang J, Duan H, Jin L. Comparative transcriptome analysis of Isatis indigotica under different precipitation conditions. Mol Biol Rep 2025; 52:348. [PMID: 40156688 DOI: 10.1007/s11033-025-10451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Plant adaptation to environmental stress is crucial for improving crop resilience and productivity. The growth and yield of Isatis indigotica are significantly affected by water conditions. In this study, high-throughput transcriptome sequencing was performed on leaf samples from Isatis indigotica after different treatments: normal precipitation (CK), 40% rainfall reduction (R1), 80% rainfall reduction (R2), 40% rainfall enhancement (I1) and 80% rainfall enhancement (I2). RESULTS Under 80% rainfall augmentation (I2), the malondialdehyde (MDA) content of Isatis indigotica leaves was the lowest, and the proline (pro) and catalase (CAT) activities were the highest. These findings indicate that normal precipitation conditions do not meet the optimal water requirements for the growth of Isatis indigotica and that appropriate irrigation can be used to improve the accumulation and quality of medicinal substances from this species. Transcriptome analysis of Isatis indigotica leaves compared with those in the control group (CK) revealed 896, 2551, 1294, and 3082 differentially expressed genes in the reduced rainfall reduction groups (R1, R2) and increased rainfall groups (I1, 12), respectively. The number of differentially expressed genes (DEGs) gradually increased with increasing rainfall and decreased after rainfall reduction. The GO enrichment results revealed that the DEGs were significantly enriched in functions such as cellular processes, metabolic processes, stimulus response, cell structure, and catalytic and binding activities. KEGG analysis revealed that metabolic pathways such as glutathione metabolism, phenylpropanoid biosynthesis, and plant hormone signaling were significantly enriched, with the greatest number of enriched genes. This study revealed 32 antioxidant system-related genes, 49 phenylpropanoid biosynthesis-related genes, and 49 plant hormone signaling pathway-related genes among the significantly enriched pathways. CONCLUSIONS This study provides new insights into the regulation of Isatis indigotica leaves in response to different water contents at the molecular level. The findings also provide a reference for optimizing the field management of Isatis indigotica and improving the quality and yield of medicinal materials.
Collapse
Affiliation(s)
- Wenlong Zhao
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China
| | - Ziqi Wei
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Honggang Chen
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China
| | - Jinbao Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China
| | - Haijing Duan
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China.
- Gansu Engineering Research Center for Evaluation and Conservation and Utilization of Rare Chinese Medicinal Resources, Lanzhou, China.
| |
Collapse
|
2
|
Modica G, Arcidiacono F, Puglisi I, Baglieri A, La Malfa S, Gentile A, Arbona V, Continella A. Response to Water Stress of Eight Novel and Widely Spread Citrus Rootstocks. PLANTS (BASEL, SWITZERLAND) 2025; 14:773. [PMID: 40094758 PMCID: PMC11901693 DOI: 10.3390/plants14050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Drought is a problematic abiotic stress affecting citrus crops in the Mediterranean basin and the rootstock plays a fundamental role in adopting adaptive mechanisms in response to water deficit. The aim of this study is to evaluate the response of eight rootstocks under three treatments imposed: control (100% of reference evapotranspiration, Et0), 66% Et0 and 50% Et0. The rootstock genotypes studied were C35 citrange, Bitters, Carpenter and Furr which have been recently spread and so far, little investigated, while others have been widely used especially in the Mediterranean citrus industry, i.e., Citrus macrophylla, C. volkameriana, Swingle citrumelo and Carrizo citrange. Morphological analyses, leaf chlorophyll content determination, physiological measurement, proline accumulation, malondialdehyde determination and antioxidant enzyme activities were measured. The results exhibited that Bitters and Furr showed an increment in leaf area to reduce the effects of drought conditions. A decrement in gas exchanges and xylem water potential was noticed in Carrizo and C35 citrange at both water shortage treatments. Carrizo exhibited a significant increase in malondialdehyde at both stresses (90.3 and 103.3%, for 66 and 50% Et0). Bitters and Furr performed better than the other rootstocks with regard to enzymatic and hormonal assays. Specifically, Bitters showed a significant reduction in CAT (-68.6%), SOD (-82.5%) and APX (-36.7%). Furthermore, Bitters and Furr were closely related to morphological parameters, e.g., leaf area and root length, and physiological measurements. C. volkameriana showed a decrease in xylem water potential, while overall Carrizo and C35 citranges showed a susceptible response to water stress reducing morphological and physiological measurements.
Collapse
Affiliation(s)
- Giulia Modica
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Fabio Arcidiacono
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Ivana Puglisi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| | - Vicent Arbona
- Plant Ecophysiology and Biotechnology Laboratory, Department of Agricultural and Environmental Sciences, Universitat Jaume I, 12071 Castellon de la Plana, Spain;
| | - Alberto Continella
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (G.M.); (F.A.); (I.P.); (A.B.); (S.L.M.); (A.G.)
| |
Collapse
|
3
|
Chen C, Wang Y, Wu K, Ding Y, Tang M, Zhang X, Pan Y, Wu L, Su C, Hong Z, Zhang J, Li J. The DnaJ1 heat shock protein interacts with the flavanone 3-hydroxylase-like protein F3HL to synergistically enhance drought tolerance by scavenging reactive oxygen species in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70097. [PMID: 40089906 DOI: 10.1111/tpj.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
The widely distributed heat shock protein DnaJ is renowned for its pivotal role in enhancing thermal tolerance in plants; however, its involvement in drought tolerance remains elusive. In this study, genes encoding DnaJ1 were cloned from drought-resistant wild tomato (Solanum pennellii) and drought-sensitive cultivated tomato (Solanum lycopersicum). SpDnaJ1 and SlDnaJ1 from both tomato species were localized in the chloroplast, and their gene expression was induced by various abiotic stresses. SpDnaJ1 was found to be a more potent regulator than SlDnaJ1 in oxidative stress tolerance when expressed in yeast cells. Overexpression of SpDnaJ1 was demonstrated to confer drought tolerance in transgenic plants of cultivated tomato. These transgenic plants exhibited reduced relative conductivity, leaf water loss rate, and malondialdehyde content as compared to the wild-type plants following drought treatment. RNA-seq analysis revealed that overexpression of SpDnaJ1 primarily affects the expression of genes associated with antioxidants, protease inhibitors, and MAPK signaling in response to drought stress. Screening of a tomato cDNA library in the yeast two-hybrid system identified a flavanone 3-hydroxylase-like protein (F3HL) as an interacting protein of DnaJ1. Subsequent findings revealed that F3HL enhances drought tolerance in tomato by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. These findings demonstrate a pivotal role of DnaJ1-F3HL interaction in enhancing drought tolerance, unveiling a novel molecular mechanism in drought tolerance in plants.
Collapse
Affiliation(s)
- Chunrui Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Yaling Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Ke Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Yin Ding
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Min Tang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Xingguo Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Yu Pan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Lang Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Chenggang Su
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jinhua Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, P. R. China
| |
Collapse
|
4
|
Liu L, Tang C, Zhang Y, Sha X, Tian S, Luo Z, Wei G, Zhu L, Li Y, Fu J, Luo P, Wang Q. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. THE NEW PHYTOLOGIST 2025; 245:1985-2003. [PMID: 39686522 DOI: 10.1111/nph.20355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and jasmonic acid (JA) are important plant hormones in response to drought stress. We have identified that ZmHsf28 elevated ABA and JA accumulation to confer drought tolerance in maize; however, the underlying mechanism still remains elusive. The knockout line zmhsf28 is generated to confirm the positive role of ZmHsf28 in drought response. Multiple approaches are combined to reveal protein interaction among ZmHsf28, ZmSnRK2.2 and ZmJAZ14/17, which form a regulatory module to mediate maize drought tolerance through regulating ABA and JA key biosynthetic genes ZmNCED3 and ZmLOX8. Upon drought stress, zmhsf28 plants exhibit weaker tolerance than the WT plants with slower stomatal closure and more reactive oxygen species accumulation. ZmHsf28 interacted with ZmSnRK2.2 physically, resulting in phosphorylation at Ser220, which enhances binding to the heat shock elements of ZmNECD3 and ZmLOX8 promoters and subsequent gene expression. Meanwhile, ZmMYC2 upregulates ZmHsf28 gene expression through acting on the G-box of its promoter. Besides, ZmJAZ14/17 competitively interact with ZmHsf28 to interfere with protein interaction between ZmHsf28 and ZmSnRK2.2, blocking ZmHsf28 phosphorylation and impairing downstream gene regulation. The ZmSnRK2.2-ZmHsf28-ZmJAZ14/17 module is identified to regulate drought tolerance through coordinating ABA and JA signaling, providing the insights for breeding to improve drought resistance in maize.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- College of Life Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyu Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuaibing Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyi Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guocheng Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peigao Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
6
|
Zhi QQ, Chen Y, Hu H, Huang WQ, Bao GG, Wan XR. Physiological and transcriptome analyses reveal tissue-specific responses of Leucaena plants to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108926. [PMID: 38996715 DOI: 10.1016/j.plaphy.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Leucaena leucocephala (Leucaena) is a leguminous tree widely cultivated in tropical and subtropical regions due to its strong environmental suitability for abiotic stresses, especially drought. However, the molecular mechanisms and key pathways involved in Leucaena's drought response require further elucidation. Here, we comparatively analyzed the physiological and early transcriptional responses of Leucaena leaves and roots under drought stress simulated by polyethylene glycol (PEG) treatments. Drought stress induced physiological changes in Leucaena seedlings, including decreases in relative water content (RWC) and increases in relative electrolyte leakage (REL), malondialdehyde (MDA), proline contents as well as antioxidant enzyme activities. In response to drought stress, 6461 and 8295 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. In both tissues, the signaling transduction pathway of plant hormones was notably the most enriched. Specifically, abscisic acid (ABA) biosynthesis and signaling related genes (NCED, PP2C, SnRK2 and ABF) were strongly upregulated particularly in leaves. The circadian rhythm, DNA replication, alpha-linolenic acid metabolism, and secondary metabolites biosynthesis related pathways were repressed in leaves, while the glycolysis/gluconeogenesis and alpha-linolenic acid metabolism and amino acid biosynthesis processes were promoted in roots. Furthermore, heterologous overexpression of Leucaena drought-inducible genes (PYL5, PP2CA, bHLH130, HSP70 and AUX22D) individually in yeast increased the tolerance to drought and heat stresses. Overall, these results deepen our understanding of the tissue-specific mechanisms of Leucaena in response to drought and provide target genes for future drought-tolerance breeding engineering in crops.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ying Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Han Hu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Qi Huang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ge-Gen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Xiao-Rong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
7
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
8
|
Li S, Lu S, Wang J, Liu Z, Yuan C, Wang M, Guo J. Divergent effects of single and combined stress of drought and salinity on the physiological traits and soil properties of Platycladus orientalis saplings. FRONTIERS IN PLANT SCIENCE 2024; 15:1351438. [PMID: 38903426 PMCID: PMC11187290 DOI: 10.3389/fpls.2024.1351438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Drought and salinity are two abiotic stresses that affect plant productivity. We exposed 2-year-old Platycladus orientalis saplings to single and combined stress of drought and salinity. Subsequently, the responses of physiological traits and soil properties were investigated. Biochemical traits such as leaf and root phytohormone content significantly increased under most stress conditions. Single drought stress resulted in significantly decreased nonstructural carbohydrate (NSC) content in stems and roots, while single salt stress and combined stress resulted in diverse response of NSC content. Xylem water potential of P. orientalis decreased significantly under both single drought and single salt stress, as well as the combined stress. Under the combined stress of drought and severe salt, xylem hydraulic conductivity significantly decreased while NSC content was unaffected, demonstrating that the risk of xylem hydraulic failure may be greater than carbon starvation. The tracheid lumen diameter and the tracheid double wall thickness of root and stem xylem was hardly affected by any stress, except for the stem tracheid lumen diameter, which was significantly increased under the combined stress. Soil ammonium nitrogen, nitrate nitrogen and available potassium content was only significantly affected by single salt stress, while soil available phosphorus content was not affected by any stress. Single drought stress had a stronger effect on the alpha diversity of rhizobacteria communities, and single salt stress had a stronger effect on soil nutrient availability, while combined stress showed relatively limited effect on these soil properties. Regarding physiological traits, responses of P. orientalis saplings under single and combined stress of drought and salt were diverse, and effects of combined stress could not be directly extrapolated from any single stress. Compared to single stress, the effect of combined stress on phytohormone content and hydraulic traits was negative to P. orientalis saplings, while the combined stress offset the negative effects of single drought stress on NSC content. Our study provided more comprehensive information on the response of the physiological traits and soil properties of P. orientalis saplings under single and combined stress of drought and salt, which would be helpful to understand the adapting mechanism of woody plants to abiotic stress.
Collapse
Affiliation(s)
- Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Fakhrzad F, Jowkar A. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. BMC PLANT BIOLOGY 2024; 24:330. [PMID: 38664602 PMCID: PMC11044323 DOI: 10.1186/s12870-024-05007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.
Collapse
Affiliation(s)
- Fazilat Fakhrzad
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran.
| |
Collapse
|
10
|
Akhiyarova G, Finkina EI, Zhang K, Veselov D, Vafina G, Ovchinnikova TV, Kudoyarova G. The Long-Distance Transport of Some Plant Hormones and Possible Involvement of Lipid-Binding and Transfer Proteins in Hormonal Transport. Cells 2024; 13:364. [PMID: 38474328 PMCID: PMC10931013 DOI: 10.3390/cells13050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Adaptation to changes in the environment depends, in part, on signaling between plant organs to integrate adaptive response at the level of the whole organism. Changes in the delivery of hormones from one organ to another through the vascular system strongly suggest that hormone transport is involved in the transmission of signals over long distances. However, there is evidence that, alternatively, systemic responses may be brought about by other kinds of signals (e.g., hydraulic or electrical) capable of inducing changes in hormone metabolism in distant organs. Long-distance transport of hormones is therefore a matter of debate. This review summarizes arguments for and against the involvement of the long-distance transport of cytokinins in signaling mineral nutrient availability from roots to the shoot. It also assesses the evidence for the role of abscisic acid (ABA) and jasmonates in long-distance signaling of water deficiency and the possibility that Lipid-Binding and Transfer Proteins (LBTPs) facilitate the long-distance transport of hormones. It is assumed that proteins of this type raise the solubility of hydrophobic substances such as ABA and jasmonates in hydrophilic spaces, thereby enabling their movement in solution throughout the plant. This review collates evidence that LBTPs bind to cytokinins, ABA, and jasmonates and that cytokinins, ABA, and LBTPs are present in xylem and phloem sap and co-localize at sites of loading into vascular tissues and at sites of unloading from the phloem. The available evidence indicates a functional interaction between LBTPs and these hormones.
Collapse
Affiliation(s)
- Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (E.I.F.); (T.V.O.)
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of 10 Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| | - Dmitriy Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| | - Gulnara Vafina
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (E.I.F.); (T.V.O.)
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| |
Collapse
|
11
|
Balbontín C, Gutiérrez C, Schreiber L, Zeisler-Diehl VV, Marín JC, Urrutia V, Hirzel J, Figueroa CR. Alkane biosynthesis is promoted in methyl jasmonate-treated sweet cherry (Prunus avium) fruit cuticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:530-535. [PMID: 37515815 DOI: 10.1002/jsfa.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The cuticle plays an important role in the survival of plants, and it is important to preserve the quality of fleshy fruits like sweet cherry. Plant hormones play a role in cuticle formation. In this sense, jasmonates have been shown to induce cuticle biosynthesis, but until today this has not been demonstrated in sweet cherry fruit. Therefore, the effect of exogenous methyl jasmonate (MeJA) application at the fruit set stage on the expression levels of cuticle synthesis-related genes and the wax composition of the isolated cuticle was studied in developing and ripe fruits of sweet cherry (Prunus avium 'Bing'), respectively. RESULTS MeJA treatment resulted in up-regulation of the cuticle biosynthesis-related gene expression, such as PaWINA, PaWINB, PaKCS1, PaKCS6, PaLACS1, PaLACS2, PaWS, and PaWBC11. These genes play a vital role in the elongation and transport of fatty acids, and wax biosynthesis. Analysis of cuticular components in ripe fruit showed an increase in long-chain linear aliphatic wax compounds, particularly C27, C28, C29, C30, and C31 alkanes. CONCLUSION Exogenous MeJA application at the fruit set stage of sweet cherry has a significant effect on the wax composition of the ripe fruit cuticle, particularly in terms of alkane biosynthesis. The results of this study may provide insights into the regulation of cuticle biosynthesis by jasmonates and be useful for improving fruit quality and storage life. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristián Balbontín
- Departamento de Producción Vegetal, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Camilo Gutiérrez
- Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Juan C Marín
- Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Victoria Urrutia
- Departamento de Producción Vegetal, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Juan Hirzel
- Departamento de Producción Vegetal, Instituto de Investigaciones Agropecuarias, Chillán, Chile
| | - Carlos R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
12
|
Neupane A, Shahzad F, Bernardini C, Levy A, Vashisth T. Poor shoot and leaf growth in Huanglongbing-affected sweet orange is associated with increased investment in defenses. FRONTIERS IN PLANT SCIENCE 2023; 14:1305815. [PMID: 38179481 PMCID: PMC10766359 DOI: 10.3389/fpls.2023.1305815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
Citrus disease Huanglongbing (HLB) causes sparse (thinner) canopies due to reduced leaf and shoot biomass. Herein, we present results demonstrating the possible mechanisms behind compromised leaf growth of HLB-affected 'Valencia' sweet orange trees by comparing morphological, transcriptome, and phytohormone profiles at different leaf development phases (1. buds at the start of the experiment; 2. buds on day 5; . 3. leaf emergence; 4. leaf expansion; and 5. leaf maturation) to healthy trees. Over a period of 3 months (in greenhouse conditions), HLB-affected trees had ≈40% reduction in growth traits such as tree height, number of shoots per tree, shoot length, internode length, and leaf size compared to healthy trees. In addition, buds from HLB-affected trees lagged by ≈1 week in sprouting as well as leaf growth. Throughout the leaf development, high accumulation of defense hormones, salicylic acid (SA) and abscisic acid (ABA), and low levels of growth-promoting hormone (auxin) were found in HLB-affected trees compared to healthy trees. Concomitantly, HLB-affected trees had upregulated differentially expressed genes (DEGs) encoding SA, ABA, and ethylene-related proteins in comparison to healthy trees. The total number of cells per leaf was lower in HLB-affected trees compared to healthy trees, which suggests that reduced cell division may coincide with low levels of growth-promoting hormones leading to small leaf size. Both bud dieback and leaf drop were higher in HLB-affected trees than in healthy trees, with concomitant upregulated DEGs encoding senescence-related proteins in HLB-affected trees that possibly resulted in accelerated aging and cell death. Taken together, it can be concluded that HLB-affected trees had a higher tradeoff of resources on defense over growth, leading to sparse canopies and a high tree mortality rate with HLB progression.
Collapse
Affiliation(s)
- Answiya Neupane
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Faisal Shahzad
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Tripti Vashisth
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
13
|
Khan FS, Goher F, Paulsmeyer MN, Hu CG, Zhang JZ. Calcium (Ca 2+ ) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1025-1034. [PMID: 37422725 DOI: 10.1111/plb.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca2+ ) is an essential stress-sensing secondary messenger in plants. Ca2+ sensors, including calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs), are involved in jasmonates (JAs) signalling and biosynthesis. Moreover, JAs are phospholipid-derived phytohormones that control plant response to abiotic stresses. The JAs signalling pathway affects hormone-receptor gene transcription by binding to the basic helix-loop-helix (bHLH) transcription factor. MYC2 acts as a master regulator of JAs signalling module assimilated through various genes. The Ca2+ sensor CML regulates MYC2 and is involved in a distinct mechanism mediating JAs signalling during abiotic stresses. This review highlights the pivotal role of the Ca2+ sensors in JAs biosynthesis and MYC2-mediated JAs signalling during abiotic stresses in plants.
Collapse
Affiliation(s)
- F S Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - F Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Paulsmeyer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, Wisconsin, USA
| | - C-G Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J-Z Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Waheed A, Haxim Y, Kahar G, Islam W, Ahmad M, Khan KA, Ghramh HA, Alqahtani FM, Hashemand M, Daoyuan Z. Jasmonic acid boosts the salt tolerance of kidney beans (Phaseolus vulgaris L.) by upregulating its osmolytes and antioxidant mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91237-91246. [PMID: 37474859 DOI: 10.1007/s11356-023-28632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
As a lipid-derived compound, jasmonic acid (JA) regulates growth and defense against environmental stresses. An exogenous foliar JA application was investigated in our study (HA; 0.5 mM) on kidney bean plants (Phaseolus vulgaris L.) grown under different salinity stress concentrations (0, 75, and 150 mM NaCl). According to the results, salt concentrations were related to an increase in malondialdehyde (MDA) levels, whereas they declined the chlorophyll content index. In contrast, JA application decreased the level of MDA but increased the chlorophyll content index. Moreover, increasing salinity levels increased proline, phenolic compounds, flavonoids, free amino acid concentrations, and shikimic acid concentrations, as well as the activities of polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD). In addition, JA applications further increased their concentrations with increasing salinity stress levels. JA application increases salt-induced osmolytes and non-enzymatic antioxidants while increasing enzymatic antioxidant activity, suggesting kidney beans have a strong antioxidant mechanism, which can adapt to salinity stress. Our results showed that exogenous JA foliar applications could enhance the salt tolerance ability of kidney bean plants by upregulating their antioxidant mechanism and osmolytes.
Collapse
Affiliation(s)
- Abdul Waheed
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yakupjan Haxim
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Gulnaz Kahar
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Waqar Islam
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Mushtaq Ahmad
- Department of Zoology, Islamia College University, Peshawar, 24420, Pakistan
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashemand
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Zhang Daoyuan
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
16
|
Zhao Y, Lu K, Zhang W, Guo W, Chao E, Yang Q, Zhang H. PagDA1a and PagDA1b expression improves salt and drought resistance in transgenic poplar through regulating ion homeostasis and reactive oxygen species scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107898. [PMID: 37482028 DOI: 10.1016/j.plaphy.2023.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
DA1/DAR proteins play a crucial role in plant biomass production. However, their functions in woody plants in response to abiotic stress are still unknown. In this study, a total number of six PagDA1/DAR family genes were identified in the poplar genome, and the biological functions of PagDA1a and PagDA1b in the resistance to salt and drought stresses were investigated in transgenic poplar. PagDA1a and PagDA1b were ubiquitously expressed in roots, stems, and leaves, with predominant expression in roots, and were significantly induced by abiotic stress and ABA. Transgenic poplar overexpressing either PagDA1a or PagDA1b showed restrained growth but improved resistance to salt and drought stresses. Further ion content and antioxidant enzyme expression analyses exhibited that transgenic poplar accumulated less sodium (Na+), hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves, accompanied with increased activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT), and up-regulated transcription of SOD1, APX1, and CAT2. Our observations demonstrate that PagDA1a and PagDA1b improve salt and drought tolerance through ion homeostasis optimization and ROS scavenging ability enhancement in transgenic poplar, and both can be used for the future genetic breeding of new salt and drought tolerant tree species.
Collapse
Affiliation(s)
- Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Kaifeng Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Luohanya Road, Taian, Shandong, 27100, China
| | - Erkun Chao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; College of Life Sciences, Qufu Normal University, 57 Jingxuanxi Road, Qufu, Shandong, 273165, China
| | - Qingshan Yang
- Shandong Academy of Forestry, 42 Wenhua East Road, Jinan, Shandong, 250014, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong, 264025, China; College of Life Sciences, Qufu Normal University, 57 Jingxuanxi Road, Qufu, Shandong, 273165, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China.
| |
Collapse
|
17
|
Đurić M, Subotić A, Prokić L, Trifunović-Momčilov M, Milošević S. Alterations in Physiological, Biochemical, and Molecular Responses of Impatiens walleriana to Drought by Methyl Jasmonate Foliar Application. Genes (Basel) 2023; 14:genes14051072. [PMID: 37239432 DOI: 10.3390/genes14051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Drought stress affects plant growth and development through several mechanisms, including the induction of oxidative stress. To cope with drought, plants have drought tolerance mechanisms at the physiological, biochemical, and molecular levels. In this study, the effects of foliar application of distilled water and methyl jasmonate (MeJA) (5 and 50 µM) on the physiological, biochemical, and molecular responses of Impatiens walleriana during two drought regimes (15 and 5% soil water content, SWC) were investigated. The results showed that plant response depended on the concentration of the elicitor and the stress intensity. The highest chlorophyll and carotenoid contents were observed at 5% SWC in plants pre-treated with 50 µM MeJA, while the MeJA did not have a significant effect on the chlorophyll a/b ratio in drought-stressed plants. Drought-induced formation of hydrogen peroxide and malondialdehyde in plants sprayed with distilled water was significantly reduced in plant leaves pretreated with MeJA. The lower total polyphenol content and antioxidant activity of secondary metabolites in MeJA-pretreated plants were observed. The foliar application of MeJA affected the proline content and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase) in plants that suffered from drought. The expression of abscisic acid (ABA) metabolic genes (IwNCED4, IwAAO2, and IwABA8ox3) was the most affected in plants sprayed with 50 µM MeJA, while of the four analyzed aquaporin genes (IwPIP1;4, IwPIP2;2, IwPIP2;7, and IwTIP4;1), the expression of IwPIP1;4 and IwPIP2;7 was strongly induced in drought-stressed plants pre-treated with 50 µM MeJA. The study's findings demonstrated the significance of MeJA in regulating the gene expression of the ABA metabolic pathway and aquaporins, as well as the considerable alterations in oxidative stress responses of drought-stressed I. walleriana foliar sprayed with MeJA. The results improved our understanding of this horticulture plant's stress physiology and the field of plant hormones' interaction network in general.
Collapse
Affiliation(s)
- Marija Đurić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Angelina Subotić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Milošević
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
18
|
Ribeiro DG, Bezerra ACM, Santos IR, Grynberg P, Fontes W, de Souza Castro M, de Sousa MV, Lisei-de-Sá ME, Grossi-de-Sá MF, Franco OL, Mehta A. Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091900. [PMID: 37176957 PMCID: PMC10180824 DOI: 10.3390/plants12091900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The co-occurrence of biotic and abiotic stresses in agricultural areas severely affects crop performance and productivity. Drought is one of the most adverse environmental stresses, and its association with root-knot nematodes further limits the development of several economically important crops, such as cowpea. Plant responses to combined stresses are complex and require novel adaptive mechanisms through the induction of specific biotic and abiotic signaling pathways. Therefore, the present work aimed to identify proteins involved in the resistance of cowpea to nematode and drought stresses individually and combined. We used the genotype CE 31, which is resistant to the root-knot nematode Meloidogyne spp. And tolerant to drought. Three biological replicates of roots and shoots were submitted to protein extraction, and the peptides were evaluated by LC-MS/MS. Shotgun proteomics revealed 2345 proteins, of which 1040 were differentially abundant. Proteins involved in essential biological processes, such as transcriptional regulation, cell signaling, oxidative processes, and photosynthesis, were identified. However, the main defense strategies in cowpea against cross-stress are focused on the regulation of hormonal signaling, the intense production of pathogenesis-related proteins, and the downregulation of photosynthetic activity. These are key processes that can culminate in the adaptation of cowpea challenged by multiple stresses. Furthermore, the candidate proteins identified in this study will strongly contribute to cowpea genetic improvement programs.
Collapse
Affiliation(s)
- Daiane Gonzaga Ribeiro
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília CEP 71966-700, DF, Brazil
| | | | - Ivonaldo Reis Santos
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro-UnB, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
| | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Mariana de Souza Castro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Maria Eugênia Lisei-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
| | - Maria Fatima Grossi-de-Sá
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília CEP 71966-700, DF, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasilia CEP 70770-917, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília CEP 71966-700, DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande CEP 79117-900, MS, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
| |
Collapse
|
19
|
Demirkol G, Yılmaz N. Morphologically and genetically diverse forage pea (Pisum sativum var. arvense L.) genotypes under single and combined salt and drought stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:880-892. [PMID: 36878162 DOI: 10.1016/j.plaphy.2023.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Salinity and drought stresses limit agricultural productivity of many crops including forage pea which is an important forage legume. Due to increasing importance of legumes in forage production, there is a clear need to investigate the underlying affects of salinity and drought stresses on forage pea. This study was designed to understand how single or combined salinity and drought stresses impact on physio-biochemical and molecular status of morphologically and genetically diverse forage pea genotypes. Firstly, yield-related parameters were determined under three-year field experiment. The results revealed that the agro-morphological features of the genotypes are significantly different. Afterwards, the sensitivities of the 48 forage pea genotypes were determined against single and combined salinity and drought stresses by performing growth parameters, biochemical status, antioxidative enzymes, and endogenous hormones. Also, the salt and drought-related gene expressions were evaluated under normal and stressed conditions. The results collectively showed that the genotypes of O14, and T8 were more tolerant against combined stress compared to others, via activating antioxidative enzymes (CAT, GR, and SOD), endogenous hormones (IAA, ABA, and JA), stress-related genes (DREB3, DREB5, bZIP11, bZIP37, MYB48, ERD, RD22) and leaf senescence genes (SAG102, SAG102). These genotypes could be used to develop pea plants that tolerate salinity or drought stress conditions. To the best of our knowledge, the present study is the first detailed study in pea against combined salt and drought stresses.
Collapse
Affiliation(s)
- Gürkan Demirkol
- Department of Field Crops, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| | - Nuri Yılmaz
- Department of Field Crops, Faculty of Agriculture, Ordu University, Ordu, Turkey
| |
Collapse
|
20
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
21
|
Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:546-561. [PMID: 36534116 DOI: 10.1111/tpj.16067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.
Collapse
Affiliation(s)
- Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingjing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoyun Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingqin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuehui Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jianli Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Aidong Sun
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
22
|
Kawaguchi K, Nakaune M, Ma JF, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant Hormone and Inorganic Ion Concentrations in the Xylem Exudate of Grafted Plants Depend on the Scion-Rootstock Combination. PLANTS (BASEL, SWITZERLAND) 2022; 11:2594. [PMID: 36235460 PMCID: PMC9571263 DOI: 10.3390/plants11192594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In grafted plants, inorganic ions and plant hormones in the xylem exudate transported from the rootstock to the scion directly or indirectly affect the scion, thereby improving the traits. Therefore, the concentration of these components in the xylem exudate of grafted plants may be an indicator for rootstock selection. On the other hand, few reports have presented a comprehensive analysis of substances transferred from the rootstock to the scion in plants grafted onto different rootstocks, primarily commercial cultivars. In this study, we measured inorganic ions and plant hormones in the xylem exudate from the rootstock to the scion in various grafted plants of tomato and eggplant. The results revealed that the concentrations of inorganic ions and plant hormones in the xylem exudate significantly differed depending on the type of rootstock. In addition, we confirmed the concentration of the inorganic ions and plant hormones in the xylem exudate of plants grafted onto the same tomato rootstock cultivars as rootstock with tomato or eggplant as the scions. As a result, the concentrations of inorganic ions and plant hormones in the xylem exudate were significantly different in the grafted plants with eggplant compared with tomato as the scion. These results suggest that signals from the scion (shoot) control the inorganic ions and plant hormones transported from the rootstock (root).
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Nakaune
- Saitama Agricultural Technology Research Center, Sugahiro, Kumagaya 360-0102, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Fernandes P, Colavolpe MB, Serrazina S, Costa RL. European and American chestnuts: An overview of the main threats and control efforts. FRONTIERS IN PLANT SCIENCE 2022; 13:951844. [PMID: 36092400 PMCID: PMC9449730 DOI: 10.3389/fpls.2022.951844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Chestnuts are multipurpose trees significant for the economy and wildlife. These trees are currently found around the globe, demonstrating their genetic adaptation to different environmental conditions. Several biotic and abiotic stresses have challenged these species, contributing to the decline of European chestnut production and the functional extinction of the American chestnut. Several efforts started over the last century to understand the cellular, molecular, and genetic interactions behind all chestnut biotic and abiotic interactions. Most efforts have been toward breeding for the primary diseases, chestnut blight and ink disease caused by the pathogens, Cryphonectria parasitica and Phytophthora cinnamomi, respectively. In Europe and North America, researchers have been using the Asian chestnut species, which co-evolved with the pathogens, to introgress resistance genes into the susceptible species. Breeding woody trees has several limitations which can be mostly related to the long life cycles of these species and the big genome landscapes. Consequently, it takes decades to improve traits of interest, such as resistance to pathogens. Currently, the availability of genome sequences and next-generation sequencing techniques may provide new tools to help overcome most of the problems tree breeding is still facing. This review summarizes European and American chestnut's main biotic stresses and discusses breeding and biotechnological efforts developed over the last decades, having ink disease and chestnut blight as the main focus. Climate change is a rising concern, and in this context, the adaptation of chestnuts to adverse environmental conditions is of extreme importance for chestnut production. Therefore, we also discuss the abiotic challenges on European chestnuts, where the response to abiotic stress at the genetic and molecular level has been explored.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Green-It Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | | | - Susana Serrazina
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int J Mol Sci 2022; 23:ijms23169310. [PMID: 36012575 PMCID: PMC9409098 DOI: 10.3390/ijms23169310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Roots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses. Firstly, we summarize how root growth and architecture are regulated by essential genes and metabolic processes under water-deficit conditions. Secondly, the functions of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes for improving the resilience of crop production to water stress. Through these insights, we conclude that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots, future studies should have a network view, linking key responses of roots with environmental factors.
Collapse
|
25
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
26
|
Bano N, Fakhrah S, Mohanty CS, Bag SK. Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton ( Gossypium hirsutum): A Network Biology Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:818472. [PMID: 35548277 PMCID: PMC9083274 DOI: 10.3389/fpls.2022.818472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
Abiotic stress tolerance is an intricate feature controlled through several genes and networks in the plant system. In abiotic stress, salt, and drought are well known to limit cotton productivity. Transcriptomics meta-analysis has arisen as a robust method to unravel the stress-responsive molecular network in crops. In order to understand drought and salt stress tolerance mechanisms, a meta-analysis of transcriptome studies is crucial. To confront these issues, here, we have given details of genes and networks associated with significant differential expression in response to salt and drought stress. The key regulatory hub genes of drought and salt stress conditions have notable associations with functional drought and salt stress-responsive (DSSR) genes. In the network study, nodulation signaling pathways 2 (NSP2), Dehydration-responsive element1 D (DRE1D), ethylene response factor (ERF61), cycling DOF factor 1 (CDF1), and tubby like protein 3 (TLP3) genes in drought and tubby like protein 1 (TLP1), thaumatin-like proteins (TLP), ethylene-responsive transcription factor ERF109 (EF109), ETS-Related transcription Factor (ELF4), and Arabidopsis thaliana homeodomain leucine-zipper gene (ATHB7) genes in salt showed the significant putative functions and pathways related to providing tolerance against drought and salt stress conditions along with the significant expression values. These outcomes provide potential candidate genes for further in-depth functional studies in cotton, which could be useful for the selection of an improved genotype of Gossypium hirsutum against drought and salt stress conditions.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Effects of Drought on the Growth of Lespedeza davurica through the Alteration of Soil Microbial Communities and Nutrient Availability. J Fungi (Basel) 2022; 8:jof8040384. [PMID: 35448615 PMCID: PMC9025084 DOI: 10.3390/jof8040384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/24/2023] Open
Abstract
Lespedeza davurica (Laxm.) is highly important for reducing soil erosion and maintaining the distinctive natural scenery of semiarid grasslands in northwest China. In this study, a pot experiment was conducted to investigate the effects of drought (20% water-holding capacity) on biomass and its allocation, root characteristics, plant hormones, and soil microbial communities and nutrients after L. davurica was grown in a greenhouse. Drought reduced the total biomass of L. davurica but increased the root:shoot biomass ratio. In addition, drought altered the composition and structure of microbial communities by limiting the mobility of nutrients in non-rhizosphere soils. In particular, drought increased the relative abundances of Basidiomycota, Acidobacteria, Actinobacteria, Coprinellus, Humicola and Rubrobacter, which were closely positively related to the soil organic carbon, pH, available phosphorus, ammonia nitrogen (N) and nitrate N under drought conditions. Furthermore, soil fungi could play a more potentially significant role than that of bacteria in the response of L. davurica to drought. Consequently, our study uncovered the effects of drought on the growth of L. davurica by altering soil microbial communities and/or soil nutrients, thus providing new insights for forage production and natural grassland restoration on the Loess Plateau of China.
Collapse
|
28
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|
29
|
Ahmad Lone W, Majeed N, Yaqoob U, John R. Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. PLANT CELL REPORTS 2022; 41:603-617. [PMID: 34374791 DOI: 10.1007/s00299-021-02763-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Exogenously supplied BR and JA help KS101 and KBS3 genotypes of Brassica rapa to alleviate drought stress by modifying osmolyte concentration, levels of antioxidant enzymes and photosynthetic system. Oilseed plants are susceptible to drought stress and a significant loss in yield has been reported during recent decades. Thus, it is imperative to understand the various underlying drought response mechanisms in Brassica oilseed plants to formulate the sustainable strategies to protect the crop yield under water-limiting conditions. Phytohormones play a key role in fine-tuning various regulatory mechanisms for drought stress adaptation in plants, and the present study explores the response of several physiological stress markers by exogenous supplementation of 24-epibrassinolide (EBL) and jasmonic acid (JA) on two genotypes of Brassica rapa, KS101 and KBS3 under drought stress conditions. The exogenous application of BR and JA, separately or in combination, significantly alleviated the drought stress by improving photosynthetic rate, photosynthetic pigments, stomatal conductance, transpiration rate and antioxidant defence. We observed that concentration of different osmolytes increased and membrane damage significantly reduced by the application of BR and JA. The overall activity of antioxidant enzymes POD, CAT, GR, APX and CAT elevated during all the treatments, be it stress alone or in combination with BR and JA, compared to the control. However, we observed that the BR was much better in mitigating the drought stress compared to JA. Thus, the present study suggests that BR and JA supplementation improves the performance of B. rapa on exposure to drought stress, which hints at the critical role of BR and JA in improving crop productivity in drought-prone areas.
Collapse
Affiliation(s)
- Waseem Ahmad Lone
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India
| | - Neelofar Majeed
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India
| | - Umer Yaqoob
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190 006, Kashmir, India.
| |
Collapse
|
30
|
Noor J, Ullah A, Saleem MH, Tariq A, Ullah S, Waheed A, Okla MK, Al-Hashimi A, Chen Y, Ahmed Z, Ahmad I. Effect of Jasmonic Acid Foliar Spray on the Morpho-Physiological Mechanism of Salt Stress Tolerance in Two Soybean Varieties ( Glycine max L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050651. [PMID: 35270123 PMCID: PMC8931774 DOI: 10.3390/plants11050651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 05/26/2023]
Abstract
Jasmonates (JAs) are lipid-derived compounds that function in plants as key signaling compounds during stressful conditions. This study aimed to examine the effects of exogenous fo-liar-JA application (100 μmol L-1) on the morpho-physiological response of two soybean varieties (parachinar-local and swat-84) grown under different NaCl regimes (0, 40, 80, and 120 mM). Results show that exogenous JA application alone and in combination with salt stress altered the growth and metabolism of both soybeans. For instance, they accumulated significant amounts of Na+ and Cl-, while their K+, Mg2+, Fe2+, Mn2+, B3+, and P3+ contents were low. Further, photosynthetic pigments Chl a and Chl b increased at low concentrations of salt and exogenous JA. Car decreased under both salt and exogenous JA as compared with untreated control. In addition, sugar, phenol, and protein content increased under both salt and exogenous JA application. In contrast, the exogenous JA application alleviated the negative impact of salt stress on the growth and metabolism of both soybeans. Further, the high concentrations of soluble protein and phenol in the leaves of both soybeans may contribute to their ability to adapt to salinity. However, molecular studies are necessary to understand the ameliorative role of exogenous JA in the growth and metabolism of salt-treated young seedlings in both soybean varieties.
Collapse
Affiliation(s)
- Javaria Noor
- Department of Botany, Islamia College University, Peshawar 25120, Pakistan;
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.W.); (Z.A.)
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.W.); (Z.A.)
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan;
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.W.); (Z.A.)
| | - Mohammad K. Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
| | - Zeeshan Ahmed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (A.W.); (Z.A.)
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Izhar Ahmad
- Department of Botany, Islamia College University, Peshawar 25120, Pakistan;
| |
Collapse
|
31
|
Kućko A, Florkiewicz AB, Wolska M, Miętki J, Kapusta M, Domagalski K, Wilmowicz E. Jasmonate-Dependent Response of the Flower Abscission Zone Cells to Drought in Yellow Lupine. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040527. [PMID: 35214860 PMCID: PMC8877524 DOI: 10.3390/plants11040527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 05/31/2023]
Abstract
Lipid membranes, as primary places of the perception of environmental stimuli, are a source of various oxygenated polyunsaturated fatty acids-oxylipins-functioning as modulators of many signal transduction pathways, e.g., phytohormonal. Among exogenous factors acting on plant cells, special attention is given to drought, especially in highly sensitive crop species, such as yellow lupine. Here, we used this species to analyze the contribution of lipid-related enzymes and lipid-derived plant hormones in drought-evoked events taking place in a specialized group of cells-the flower abscission zone (AZ)-which is responsible for organ detachment from the plant body. We revealed that water deficits in the soil causes lipid peroxidation in these cells and the upregulation of phospholipase D, lipoxygenase, and, concomitantly, jasmonic acid (JA) strongly accumulates in AZ tissue. Furthermore, we followed key steps in JA conjugation and signaling under stressful conditions by monitoring the level and tissue localization of enzyme providing JA derivatives (JASMONATE RESISTANT1) and the JA receptor (CORONATINE INSENSITIVE1). Collectively, drought-triggered AZ activation during the process of flower abscission is closely associated with the lipid modifications, leading to the formation of JA, its conjugation, and induction of signaling pathways.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Aleksandra Bogumiła Florkiewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Magdalena Wolska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Jakub Miętki
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Krzysztof Domagalski
- Department of Immunology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland;
| | - Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| |
Collapse
|
32
|
Nunes da Silva M, Carvalho SMP, Rodrigues AM, Gómez-Cadenas A, António C, Vasconcelos MW. Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae. PLANT, CELL & ENVIRONMENT 2022; 45:528-541. [PMID: 34773419 DOI: 10.1111/pce.14224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/07/2023]
Abstract
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.
Collapse
Affiliation(s)
- Marta Nunes da Silva
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Vairão, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Vairão, Portugal
| | - Ana M Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Marta W Vasconcelos
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
33
|
Zi X, Zhou S, Wu B. Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize ( Zea mays L.) at Seedling and Flowering Stages. Molecules 2022; 27:molecules27030771. [PMID: 35164035 PMCID: PMC8839722 DOI: 10.3390/molecules27030771] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Water shortage caused by long-term drought is one of the most serious abiotic stress factors in maize. Different drought conditions lead to differences in growth, development, and metabolism of maize. In previous studies, proteomics and genomics methods have been widely used to explain the response mechanism of maize to long-term drought, but there are only a few articles related to metabolomics. In this study, we used transcriptome and metabolomics analysis to characterize the differential effects of drought stress imposed at seedling or flowering stages on maize. Through the association analysis of genes and metabolites, we found that maize leaves had 61 and 54 enriched pathways under seedling drought and flowering drought, respectively, of which 13 and 11 were significant key pathways, mostly related to the biosynthesis of flavonoids and phenylpropanes, glutathione metabolism and purine metabolism. Interestingly, we found that the α-linolenic acid metabolic pathway differed significantly between the two treatments, and a total of 10 differentially expressed genes and five differentially abundant metabolites have been identified in this pathway. Some differential accumulation of metabolites (DAMs) was related to synthesis of jasmonic acid, which may be one of the key pathways underpinning maize response to different types of long-term drought. In general, metabolomics provides a new method for the study of water stress in maize and lays a theoretical foundation for drought-resistant cultivation of silage maize.
Collapse
|
34
|
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 2022; 23:ijms23031084. [PMID: 35163008 PMCID: PMC8835272 DOI: 10.3390/ijms23031084] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Drought is one of the major constraints to rain-fed agricultural production, especially under climate change conditions. Plants evolved an array of adaptive strategies that perceive stress stimuli and respond to these stress signals through specific mechanisms. Abscisic acid (ABA) is a premier signal for plants to respond to drought and plays a critical role in plant growth and development. ABA triggers a variety of physiological processes such as stomatal closure, root system modulation, organizing soil microbial communities, activation of transcriptional and post-transcriptional gene expression, and metabolic alterations. Thus, understanding the mechanisms of ABA-mediated drought responses in plants is critical for ensuring crop yield and global food security. In this review, we highlighted how plants adjust ABA perception, transcriptional levels of ABA- and drought-related genes, and regulation of metabolic pathways to alter drought stress responses at both cellular and the whole plant level. Understanding the synergetic role of drought and ABA will strengthen our knowledge to develop stress-resilient crops through integrated advanced biotechnology approaches. This review will elaborate on ABA-mediated drought responses at genetic, biochemical, and molecular levels in plants, which is critical for advancement in stress biology research.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan;
- College of Horticulture, Hainan University, Haikou 570100, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, College of Life Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China;
| | - Eyalira Jacob Okal
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
| | - Hafiz Sohaib Ahmad Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China;
| | - Wei Yuan
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.Y.); (Q.Z.)
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
35
|
Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H, Zin El-Abedin TK, Fahad S. Phytohormones Trigger Drought Tolerance in Crop Plants: Outlook and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 12:799318. [PMID: 35095971 PMCID: PMC8792739 DOI: 10.3389/fpls.2021.799318] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
In the past and present, human activities have been involved in triggering global warming, causing drought stresses that affect animals and plants. Plants are more defenseless against drought stress; and therefore, plant development and productive output are decreased. To decrease the effect of drought stress on plants, it is crucial to establish a plant feedback mechanism of resistance to drought. The drought reflex mechanisms include the physical stature physiology and biochemical, cellular, and molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-balance, comparative water contents and stomatal adjustment are considered as most prominent features against drought resistance in crop plants. In addition, the signal transduction pathway and reactive clearance of oxygen are crucial mechanisms for coping with drought stress via calcium and phytohormones such as abscisic acid, salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play a vital role in increasing resistance against drought stress in plants. The number of characteristic loci, transgenic methods and the application of exogenous substances [nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also equally important for enhancing the drought resistance of plants. In a nutshell, the current review will mainly focus on the role of phytohormones and related mechanisms involved in drought tolerance in various crop plants.
Collapse
Affiliation(s)
- Shehzad Iqbal
- Faculty of Agriculture Sciences, Universidad De Talca, Talca, Chile
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Iqra Mubeen
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Iqra Kanwal
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Gonzalo A. Díaz
- Faculty of Agriculture Sciences, Universidad De Talca, Talca, Chile
| | - Aqleem Abbas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nauman Atiq
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huda Alshaya
- Cell and Molecular Biology, University of Arkansas, Fayetteville, NC, United States
| | - Tarek K. Zin El-Abedin
- Department of Agriculture and Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
36
|
Nazim M, Ali M, Shahzad K, Ahmad F, Nawaz F, Amin M, Anjum S, Nasif O, Ali Alharbi S, Fahad S, Danish S, Datta R. Kaolin and Jasmonic acid improved cotton productivity under water stress conditions. Saudi J Biol Sci 2021; 28:6606-6614. [PMID: 34764776 PMCID: PMC8568989 DOI: 10.1016/j.sjbs.2021.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022] Open
Abstract
Drought is one of the most emerging threat that causes a severe reduction in cotton plant growth and development. Being cotton is a major cash crop has great threat to prevailing drought events in Pakistan. A field experiment was conducted in Kharif season 2018 at Research Area of MNS-University of Agriculture, Multan, Pakistan to assess the role of foliar applied kaolin and jasmonic acid on vegetative growth, gas exchange and reproductive traits of cotton under normal irrigated and artificial water deficit conditions. The experiment was laid -out in a factorial randomized complete block design with split - split plot arrangement. Main plots were allocated for irrigation levels, sub-plots for two -cotton genotypes viz. NIAB - 878 and SLH - 19 while sub - sub plots for treatments of kaolin and Jasmonic acid. Water deficit stress was created by skipping irrigation at flowering for 21 days. Foliar sprays of Kaolin (5%, w/v) and Jasmonic acid (100 μM) were applied alone or in combination at 60 days after planntinon both to normal irrigated and water-stresse skip irrigation while irrigation water alone was sprayed in control plots. Both cotton genotypes responded variably to normal irrigated and skip conditions. Skipping irrigation for up to 21 days at flowering caused a significant decrease in leaf relative water content, SPAD values, net photosynthetic rate and seed cotton yield in both the genotypes. Seed cotton yield showed an overall decline of 24.7% in skip over Normal irrigated crop. The genotype NIAB - 878 produced maximum seed cotton yield of 3.304 Mg ha-1 in normal that dropped to 2.579 Mg ha-1 in skip, thus showing an average decline of 21.9 %. Similarly, SLH - 19 produced 2.537 Mg ha-1 seed cotton under normal that dropped to 1.822 Mg ha-1 in skip, showing an average decline of 28.2%. The Application of Kaolin and JA Jasmonic acid, either applied individually or in combination, improved vegetative and reproductive development of both cotton varieties in normal and skip regimes. However, combined kaolin and Jasmonic Acid application proved to be more beneficial in terms of seed cotton production and other parameters studied.
Collapse
Affiliation(s)
- Muhammad Nazim
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Khurram Shahzad
- Department of Soil Science, Faculty of Agriculture, Lasbella University of Agriculture, Water and Marine Sciences, Uthal, Balochistan 90150, Pakistan
| | - Fiaz Ahmad
- Plant Physiology/ Chemistry Section, Central Cotton Research Institute, Multan 66000, Pakistan
| | - Fahim Nawaz
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Amin
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| |
Collapse
|
37
|
Zhao Z, Kou M, Zhong R, Xia C, Christensen MJ, Zhang X. Transcriptome Analysis Revealed Plant Hormone Biosynthesis and Response Pathway Modification by Epichloëgansuensis in Achnatheruminebrians under Different Soil Moisture Availability. J Fungi (Basel) 2021; 7:jof7080640. [PMID: 34436179 PMCID: PMC8398561 DOI: 10.3390/jof7080640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
The present study was designed to explore the effects of the endophyte Epichloë gansuensis on gene expression related to plant hormone biosynthesis and response pathways and the content of salicylic acid (SA) and jasmonic acid (JA) hormones of Achnatherum inebrians, under different moisture conditions. Through a pot experiment and transcriptome analysis, we found a total of 51 differentially expressed genes (DEGs) related to hormone biosynthesis and response pathways, including 12 auxin related genes, 8 cytokinin (CTK) related genes, 3 gibberellin (GA) related genes, 7 abscisic acid (ABA) related genes, 7 ethylene (ET) related genes, 12 JA related genes and 4 SA related genes. Furthermore, key genes of JA and SA biosynthesis and response pathways, such as LOX2S, AOS, OPR, ACX, JMT, JAZ, PAL, NPR1, TGA and PR-1, showed different degrees of upregulation or downregulation. Under 60% soil moisture content, the JA content of endophyte-free (EF) A. inebrians was significantly (p < 0.05) higher than that of endophyte-infected (EI) A. inebrians. Under 30% and 60% soil moisture content, the SA content of EF A. inebrians was significantly (p < 0.05) higher than that of EI A. inebrians. SA content of EI A. inebrians under 30% and 60% soil moisture content was significantly (p < 0.05) higher than that under 15% soil moisture content. With both EI and EF plants, the SA and JA levels, respectively, are very similar at 15% soil moisture content. This study has revealed that E. gansuensis differentially activated plant hormone synthesis and signal transduction pathways of A. inebrians plants under different soil moisture availability.
Collapse
Affiliation(s)
- Zhenrui Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.Z.); (M.K.); (R.Z.); (C.X.)
| | - Mingzhu Kou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.Z.); (M.K.); (R.Z.); (C.X.)
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.Z.); (M.K.); (R.Z.); (C.X.)
| | - Chao Xia
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.Z.); (M.K.); (R.Z.); (C.X.)
| | | | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Z.Z.); (M.K.); (R.Z.); (C.X.)
- Correspondence:
| |
Collapse
|
38
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
39
|
Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. PLANT CELL REPORTS 2021; 40:1513-1541. [PMID: 33034676 DOI: 10.1007/s00299-020-02614-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| | - Sidra Charagh
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rida Javed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
40
|
Zhang A, Ji Y, Sun M, Lin C, Zhou P, Ren J, Luo D, Wang X, Ma C, Zhang X, Feng G, Nie G, Huang L. Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genomics 2021; 22:568. [PMID: 34301177 PMCID: PMC8305952 DOI: 10.1186/s12864-021-07888-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought is one of the major environmental stresses resulting in a huge reduction in crop growth and biomass production. Pearl millet (Pennisetum glaucum L.) has excellent drought tolerance, and it could be used as a model plant to study drought resistance. The root is a very crucial part of plant that plays important roles in plant growth and development, which makes it a focus of research. RESULTS In this study, we explored the mechanism of drought tolerance of pearl millet by comparing physiological and transcriptomic data under normal condition and drought treatment at three time points (1 h, 3 h and 7 h) in the root during the seedling stage. The relative electrical conductivity went up from 1 h to 7 h in both control and drought treatment groups while the content of malondialdehyde decreased. A total of 2004, 1538 and 605 differentially expressed genes were found at 1 h, 3 h and 7 h respectively and 12 genes showed up-regulation at all time points. Some of these differentially expressed genes were significantly enriched into 'metabolic processes', 'MAPK signaling pathway' and 'plant hormone signal transduction' such as the ABA signal transduction pathway in GO and KEGG enrichment analysis. CONCLUSIONS Pearl millet was found to have a quick drought response, which may occur before 1 h that contributes to its tolerance against drought stress. These results can provide a theoretical basis to enhance the drought resistance in other plant species.
Collapse
Affiliation(s)
- Ailing Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Ji
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuang Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Puding Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juncai Ren
- College of Animal Science and Technology, Southwest University, Rongchang Campus, Chongqing, 402460, China
| | - Dan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
41
|
Aslam S, Gul N, Mir MA, Asgher M, Al-Sulami N, Abulfaraj AA, Qari S. Role of Jasmonates, Calcium, and Glutathione in Plants to Combat Abiotic Stresses Through Precise Signaling Cascade. FRONTIERS IN PLANT SCIENCE 2021; 12:668029. [PMID: 34367199 PMCID: PMC8340019 DOI: 10.3389/fpls.2021.668029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Plant growth regulators have an important role in various developmental processes during the life cycle of plants. They are involved in abiotic stress responses and tolerance. They have very well-developed capabilities to sense the changes in their external milieu and initiate an appropriate signaling cascade that leads to the activation of plant defense mechanisms. The plant defense system activation causes build-up of plant defense hormones like jasmonic acid (JA) and antioxidant systems like glutathione (GSH). Moreover, calcium (Ca2+) transients are also seen during abiotic stress conditions depicting the role of Ca2+ in alleviating abiotic stress as well. Therefore, these growth regulators tend to control plant growth under varying abiotic stresses by regulating its oxidative defense and detoxification system. This review highlights the role of Jasmonates, Calcium, and glutathione in abiotic stress tolerance and activation of possible novel interlinked signaling cascade between them. Further, phyto-hormone crosstalk with jasmonates, calcium and glutathione under abiotic stress conditions followed by brief insights on omics approaches is also elucidated.
Collapse
Affiliation(s)
- Saima Aslam
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadia Gul
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mudasir A. Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Mohd. Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadiah Al-Sulami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Qari
- Genetics and Molecular Biology Central Laboratory (GMCL), Department of Biology, Aljumun University College, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
42
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
43
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
44
|
Gao Z, Gao S, Li P, Zhang Y, Ma B, Wang Y. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. PHYSIOLOGIA PLANTARUM 2021; 172:162-175. [PMID: 33314279 DOI: 10.1111/ppl.13314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Jasmonates (JAs) play a key role in the regulation of growth and the defense response to environmental stresses. JAs inhibit plant growth and promote defense response. However, their roles in desert halophyte in the response to salt stress remain poorly understood. The effects of the combination of methyl jasmonate (MeJA) and NaCl treatment (the "MeN" condition) on the growth regulation and defense response of Nitraria tangutorum seedlings were investigated. Compared with NaCl treatment alone, exogenous MeJA aggravated the growth inhibition of seedlings by antagonizing to growth-related hormones and suppressing the transcript levels of these hormones-responsive genes, including gibberellin (GA)-responsive NtPIF3, NtGAST1, NtGSAT4, and cytokinin (CYT)-responsive NtARR1, NtARR11, NtARR12. Meanwhile, exogenous MeJA enhanced defense response and alleviated the stress damage by increasing antioxidase activity and antioxidant content, accumulating more osmolytes, maintaining lower Na+ /K+ ratios in shoots and higher Na+ efflux rates in roots of plants. In addition, exogenous MeJA increased the contents of endogenous JA and ABA, and the transcript levels of genes involved in their biosynthesis and responsiveness, thereby further regulating the transcript levels of defense response genes. These findings suggest that exogenous MeJA increases salt stress-induced growth inhibition and prioritizes the defensive responses (e.g. antioxidant defense, osmotic adjustment, and ion homeostasis) of N. tangutorum. These effects may be related to the amplification of jasmonic acid (JA) and abscisic acid (ABA) signals.
Collapse
Affiliation(s)
- Ziqi Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Shuai Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Pengxuan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
45
|
Nunes da Silva M, Vasconcelos MW, Pinto V, Balestra GM, Mazzaglia A, Gomez-Cadenas A, Carvalho SMP. Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: biochemical and genetic responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:258-266. [PMID: 33711719 DOI: 10.1016/j.plaphy.2021.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The use of plant elicitors for controlling Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of the kiwifruit bacterial canker (KBC), has been analysed in the past and, while salicylic acid (SA) seems to decrease disease susceptibility, methyl jasmonate (MJ) shows an opposite effect. However, the metabolic and genomic responses of Psa-infected plants following elicitation with these two compounds, as compared with non-elicited Psa-inoculated plants, are poorly understood, being the focus of this study. Micropropagated A. chinensis 'Hayward' plants were elicited with MJ or SA, and further inoculated with Psa. Fifteen days post-inoculation, Psa population in MJ-treated plants was increased by 7.4-fold, whereas SA elicitation led to decreased Psa colonization (0.5-fold), as compared with non-elicited inoculated plants. Additionally, elicitation with MJ or SA generally decreased polyphenols and lignin concentrations (by at least 20%) and increased total proteins (by at least 50%). MJ led to the upregulation of SOD, involved in plant antioxidant system, and reporter genes for the jasmonic acid (JA) (JIH and LOX1), abscisic acid (SnRK), SA (ICS1), and ethylene (ACAS1, ETR1 and SAM) pathways. Moreover, it increased ABA (40%) and decreased carotenoids (30%) concentrations. Contrastingly, comparing with non-elicited Psa-inoculated plants, SA application resulted in the downregulation of antioxidant system-related genes (SOD and APX) and of reporter genes for ethylene (ETR1) and JA (JIH and ETR1). This study contributes to the understanding of potential mechanisms involved in kiwifruit plant defences against Psa, highlighting the role of the JA, ABA and ethylene in plant susceptibility to the pathogen.
Collapse
Affiliation(s)
- M Nunes da Silva
- GreenUPorto - Research Centre for Sustainable Agrifood Production & DGAOT, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646, Vairão, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - M W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - V Pinto
- GreenUPorto - Research Centre for Sustainable Agrifood Production & DGAOT, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646, Vairão, Portugal
| | - G M Balestra
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy
| | - A Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy
| | - A Gomez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Avda. Vicent Sos Baynat, 12071, Castelló de la Plana, Spain
| | - S M P Carvalho
- GreenUPorto - Research Centre for Sustainable Agrifood Production & DGAOT, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646, Vairão, Portugal.
| |
Collapse
|
46
|
Xu C, Wei L, Huang S, Yang C, Wang Y, Yuan H, Xu Q, Zhang W, Wang M, Zeng X, Luo J. Drought Resistance in Qingke Involves a Reprogramming of the Phenylpropanoid Pathway and UDP-Glucosyltransferase Regulation of Abiotic Stress Tolerance Targeting Flavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3992-4005. [PMID: 33769045 DOI: 10.1021/acs.jafc.0c07810] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tibetan hulless barley (qingke) is an important food crop in the Tibetan plateau. However, it often suffers from drought stress resulting in reduction of food production because of the extreme plateau environment. To elucidate the molecular mechanisms underlying the drought resistance of qingke, the transcriptomic and metabolomic responses of drought-sensitive (D) and drought-resistant (XL) accessions were characterized in experiments with a time course design. The phenylpropanoid pathway was reprogrammed by downregulating the lignin pathway and increasing the biosynthesis of flavonoids and anthocyanins, and this regulation improved plant tolerance for drought stress. Besides, flavonoid glycosides have induced accumulation of metabolites that participated in drought stress resistance. HVUL7H11410 exhibited the activity of wide-spectrum glucosyltransferase and mediated flavonoid glycosylation to enhance drought stress resistance. Overall, the findings provide insights into the regulatory mechanism underlying drought stress tolerance associated with metabolic reprogramming. Furthermore, the flavonoid-enriched qingke is more tolerant to drought stress and can be used as a functional food to benefit human health.
Collapse
Affiliation(s)
- Congping Xu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Lingling Wei
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
| | - Sishu Huang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chunbao Yang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences Lhasa, Tibet 850002, China
- Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences Lhasa, Tibet 850002, China
- Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences Lhasa, Tibet 850002, China
- Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences Lhasa, Tibet 850002, China
- Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Weiqin Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan 430070, China
| | - Mu Wang
- Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences Lhasa, Tibet 850002, China
- Plant Sciences College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
47
|
Dong T, Xi L, Xiong B, Qiu X, Huang S, Xu W, Wang J, Wang B, Yao Y, Duan C, Tang X, Sun G, Wang X, Deng H, Wang Z. Drought resistance in Harumi tangor seedlings grafted onto different rootstocks. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:529-541. [PMID: 33516276 DOI: 10.1071/fp20242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this study we analysed the influence of drought stress on the leaf morphological characteristics, osmotic adjustment substances, antioxidant enzymes, and resistance-related photosynthetic physiological indices of Harumi tangor plants grafted onto Poncirus trifoliata (Pt), Citrus junos (Cj), and Citrus tangerine (Ct). The leaf relative water content and leaf area of the three rootstocks decreased with increasing drought stress, with the smallest decrease in Cj. The relative conductivity and malondialdehyde content increased with increasing drought stress. Proline, total soluble sugar, soluble protein, and activities of superoxide dismutase, ascorbate peroxidase, and catalase increased with drought stress but decreased under severe drought stress, with Cj exhibiting the greatest increase in enzyme activity. The net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll a and b content were all lower than those of the control, whereas intercellular CO2 concentration increased with increasing drought stress. The initial fluorescence and maximal quantum yield of PSII were approximately equal for all rootstocks but increased with increasing drought stress severity. The combined analysis of physiological indicators, membership function, and principal components indicated that the drought resistance of grafted H. tangor decreased in the order Cj > Ct > Pt.
Collapse
Affiliation(s)
- Tiantian Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Xi
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wenxin Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiaqi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bozhi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuan Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changwen Duan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoyu Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; and Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; and Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; and Corresponding author.
| |
Collapse
|
48
|
Liu W, Jiang Y, Jin Y, Wang C, Yang J, Qi H. Drought-induced ABA, H 2O 2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems. BMC PLANT BIOLOGY 2021; 21:83. [PMID: 33557758 PMCID: PMC7871556 DOI: 10.1186/s12870-021-02869-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cinnamyl alcohol dehydrogenase (CAD) is an important enzyme functions at the last step in lignin monomer synthesis pathway. Our previous work found that drought induced the expressions of CmCAD genes and promoted lignin biosynthesis in melon stems. RESULTS Here we studied the effects of abscisic acid (ABA), hydrogen peroxide (H2O2) and jasmonic acid (JA) to CmCADs under drought stress. Results discovered that drought-induced ABA, H2O2 and MeJA were prevented efficiently from increasing in melon stems pretreated with fluridone (Flu, ABA inhibitor), imidazole (Imi, H2O2 scavenger) and ibuprofen (Ibu, JA inhibitor). ABA and H2O2 are involved in the positive regulations to CmCAD1, 2, 3, and 5, and JA is involved in the positive regulations to CmCAD2, 3, and 5. According to the expression profiles of lignin biosynthesis genes, ABA, H2O2 and MeJA all showed positive regulations to CmPAL2-like, CmPOD1-like, CmPOD2-like and CmLAC4-like. In addition, positive regulations were also observed with ABA to CmPAL1-like, CmC4H and CmCOMT, with H2O2 to CmPAL1-like, CmC4H, CmCCR and CmLAC17-like, and with JA to CmCCR, CmCOMT, CmLAC11-like and CmLAC17-like. As expected, the signal molecules positively regulated CAD activity and lignin biosynthesis under drought stress. Promoter::GUS assays not only further confirmed the regulations of the signal molecules to CmCAD1~3, but also revealed the important role of CmCAD3 in lignin synthesis due to the strongest staining of CmCAD3 promoter::GUS. CONCLUSIONS CmCADs but CmCAD4 are positively regulated by ABA, H2O2 and JA under drought stress and participate in lignin synthesis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, People's Republic of China
| | - Yun Jiang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
| | - Yazhong Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Chenghui Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Juan Yang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
49
|
Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Li S, Hamani AKM, Si Z, Liang Y, Gao Y, Duan A. Leaf Gas Exchange of Tomato Depends on Abscisic Acid and Jasmonic Acid in Response to Neighboring Plants under Different Soil Nitrogen Regimes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1674. [PMID: 33260470 PMCID: PMC7759899 DOI: 10.3390/plants9121674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022]
Abstract
High planting density and nitrogen shortage are two important limiting factors for crop yield. Phytohormones, abscisic acid (ABA), and jasmonic acid (JA), play important roles in plant growth. A pot experiment was conducted to reveal the role of ABA and JA in regulating leaf gas exchange and growth in response to the neighborhood of plants under different nitrogen regimes. The experiment included two factors: two planting densities per pot (a single plant or four competing plants) and two N application levels per pot (1 and 15 mmol·L-1). Compared to when a single plant was grown per pot, neighboring competition decreased stomatal conductance (gs), transpiration (Tr) and net photosynthesis (Pn). Shoot ABA and JA and the shoot-to-root ratio increased in response to neighbors. Both gs and Pn were negatively related to shoot ABA and JA. In addition, N shortage stimulated the accumulation of ABA in roots, especially for competing plants, whereas root JA in competing plants did not increase in N15. Pearson's correlation coefficient (R2) of gs to ABA and gs to JA was higher in N1 than in N15. As compared to the absolute value of slope of gs to shoot ABA in N15, it increased in N1. Furthermore, the stomatal limitation and non-stomatal limitation of competing plants in N1 were much higher than in other treatments. It was concluded that the accumulations of ABA and JA in shoots play a coordinating role in regulating gs and Pn in response to neighbors; N shortage could intensify the impact of competition on limiting carbon fixation and plant growth directly.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (S.L.); (A.K.M.H.); (Z.S.); (Y.L.)
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing 100081, China
| | - Abdoul Kader Mounkaila Hamani
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (S.L.); (A.K.M.H.); (Z.S.); (Y.L.)
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing 100081, China
| | - Zhuanyun Si
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (S.L.); (A.K.M.H.); (Z.S.); (Y.L.)
- Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing 100081, China
| | - Yueping Liang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (S.L.); (A.K.M.H.); (Z.S.); (Y.L.)
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (S.L.); (A.K.M.H.); (Z.S.); (Y.L.)
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (S.L.); (A.K.M.H.); (Z.S.); (Y.L.)
| |
Collapse
|