1
|
Anderson SAS, Matute DR. Secondary Sympatry as a Sorting Process. Ecol Lett 2025; 28:e70108. [PMID: 40213962 PMCID: PMC11987058 DOI: 10.1111/ele.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
A much remarked-upon pattern in nature is elevated trait disparity in sympatric relative to allopatric populations or species. Early explanations focused on secondary contact between allopatrically speciating taxa and emphasised adaptive divergence driven by costly interactions in sympatry (i.e., 'character displacement'). Here we consider a related hypothesis, 'species sorting', which describes a bias in the outcome of secondary contact wherein lineages are unlikely to establish sympatry unless and until they evolve sufficient trait differences in allopatry. Sorting-like processes are prevalent in community assembly theory but are more seldom discussed in the context of speciation and secondary sympatry. We first define ecological and reproductive species sorting as analogous to ecological and reproductive character displacement, and we synthesise 'differential fusion' and the 'Templeton effect' within this framework. Through the logic of coexistence and assembly theories, we distinguish the types of allopatry-derived trait differences that will likely promote sympatry from those that likely will not, and we discuss biogeographic consequences of the latter. We then highlight new empirical approaches to distinguish sorting from displacement and survey the mixed evidence to-date. We finally suggest key priorities for future research into the hypothesized role of species sorting as a generator of major biodiversity patterns.
Collapse
Affiliation(s)
- Sean A. S. Anderson
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Daniel R. Matute
- Department of BiologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Sherratt TN, Beatty CD, Dewan I, Di Iorio K, Finkelstein I, Loeffler-Henry K, Miller M, Para F, Raposo M, Sherratt F. Territorial-sneaker games with non-uniform interactions and female mate choice. Behav Ecol 2025; 36:araf002. [PMID: 39895950 PMCID: PMC11786120 DOI: 10.1093/beheco/araf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Male territorial-sneaker polymorphisms are common in nature. To understand how these polymorphisms evolve, we developed a game theoretical model analogous to the classical Hawk-Dove model, but with two important differences. First, we allowed non-uniform interaction rates of strategies to account for the possibility that some interactions between male strategies are disproportionately more frequent than others. Second, we allowed females to exhibit a preference for one type of male and thereby choose mates adaptively. Selection dynamics were modeled using coupled replicator equations. The model confirms that there is a broad range of conditions under which a male polymorphism will arise. We applied the model to understand the genetic polymorphism in adult male Mnais damselflies (Zygoptera). Here, orange-winged adult males defend oviposition sites and mate with females when they arrive, while clear-winged 'sneaker' males are typically non-territorial and opportunistically mate with females. Intriguingly, in allopatry, the males of Mnais costalis and M. pruinosa both exhibit the same orange-clear winged polymorphism but where the species co-occur, males of M. costalis evolve orange wings while males of M. pruinosa tend to evolve clear wings. To understand this phenomenon and evaluate the importance of female choice in mediating it, we extended our game-theoretical model to two interacting species. While both competitive and reproductive interference can explain the male monomorphisms in sympatry, reproductive interference explains the phenomenon under a wider set of conditions. When females of the rarer species change their male preferences to facilitate species discrimination, it can generate runaway selection on male phenotypes.
Collapse
Affiliation(s)
- Thomas N Sherratt
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Christopher D Beatty
- Program for Conservation Genomics, Department of Biology. Stanford University, Jane Stanford Way, Stanford, CA 94305, United States
| | - Ian Dewan
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Katherine Di Iorio
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Isaac Finkelstein
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Karl Loeffler-Henry
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Marrissa Miller
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Falisha Para
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Megan Raposo
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Frances Sherratt
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
3
|
Schwartz PJ. Freud's 1926 conjecture is confirmed: evidence from the dorsal periaqueductal gray in mice that human psychological defense against internal instinctual threat evolved from animal motor defense against external predatory threat. Front Psychol 2024; 15:1427816. [PMID: 39380762 PMCID: PMC11458385 DOI: 10.3389/fpsyg.2024.1427816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
In 1926, Freud famously conjectured that the human ego defense of repression against an internal instinctual threat evolved from the animal motor defense of flight from an external predatory threat. Studies over the past 50 years mainly in rodents have investigated the neurobiology of the fight-or-flight reflex to external threats, which activates the emergency alarm system in the dorsal periaqueductal gray (dPAG), the malfunction of which appears likely in panic and post-traumatic stress disorders, but perhaps also in some "non-emergent" conditions like social anxiety and "hysterical" conversion disorder. Computational neuroscience studies in mice by Reis and colleagues have revealed unprecedented insights into the dPAG-related neural mechanisms underlying these evolutionarily honed emergency vertebrate defensive functions (e.g., explore, risk assessment, escape, freeze). A psychoanalytic interpretation of the Reis studies demonstrates that Freud's 1926 conjecture is confirmed, and that internal instinctual threats alone can also set off the dPAG emergency alarm system, which is regulated by 5-HT1A and CRF-1 receptors. Consistent with current psychoanalytic and neurobiologic theories of panic, several other of the primitive components of the dPAG alarm system may also have relevance for understanding of the unconscious determinants of impaired object relationships (e.g., avoidance distance). These dPAG findings reveal (1) a process of "evolution in situ," whereby a more sophisticated dPAG ego defense is seen evolving out of a more primitive dPAG motor defense, (2) a dPAG location for the phylogenetically ancient kernel of Freud's Ego and Id, and (3) a Conscious Id theory that has been conclusively invalidated.
Collapse
Affiliation(s)
- Paul J. Schwartz
- Section on Ego Mechanics, Cincinnati Psychoanalytic Institute, Cincinnati, OH, United States
| |
Collapse
|
4
|
Dellinger M, Steele SE, Sprockel E, Philip J, Pálsson A, Benhaïm D. Variation in personality shaped by evolutionary history, genotype and developmental plasticity in response to feeding modalities in the Arctic charr. Proc Biol Sci 2023; 290:20232302. [PMID: 38087921 PMCID: PMC10716646 DOI: 10.1098/rspb.2023.2302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Animal personality has been shown to be influenced by both genetic and environmental factors and shaped by natural selection. Currently, little is known about mechanisms influencing the development of personality traits. This study examines the extent to which personality development is genetically influenced and/or environmentally responsive (plastic). We also investigated the role of evolutionary history, assessing whether personality traits could be canalized along a genetic and ecological divergence gradient. We tested the plastic potential of boldness in juveniles of five Icelandic Arctic charr morphs (Salvelinus alpinus), including two pairs of sympatric morphs, displaying various degrees of genetic and ecological divergence from the ancestral anadromous charr, split between treatments mimicking benthic versus pelagic feeding modalities. We show that differences in mean boldness are mostly affected by genetics. While the benthic treatment led to bolder individuals overall, the environmental effect was rather weak, suggesting that boldness lies under strong genetic influence with reduced plastic potential. Finally, we found hints of differences by morphs in boldness canalization through reduced variance and plasticity, and higher consistency in boldness within morphs. These findings provide new insights on how behavioural development may impact adaptive diversification.
Collapse
Affiliation(s)
- Marion Dellinger
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Sarah E. Steele
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| | - Evert Sprockel
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- HAS University of Applied Sciences, 's-Hertogenbosch, The Netherlands
| | - Joris Philip
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Glasgow, UK
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, Hólar, Iceland
| |
Collapse
|
5
|
McCormack JE, Hill MM, DeRaad DA, Kirsch EJ, Reckling KR, Mutchler MJ, Ramirez BR, Campbell RML, Salter JF, Pizarro AK, Tsai WLE, Bonaccorso E. An elevational shift facilitated the Mesoamerican diversification of Azure-hooded Jays ( Cyanolyca cucullata) during the Great American Biotic Interchange. Ecol Evol 2023; 13:e10411. [PMID: 37589041 PMCID: PMC10425738 DOI: 10.1002/ece3.10411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/18/2023] Open
Abstract
The Great American Biotic Interchange (GABI) was a key biogeographic event in the history of the Americas. The rising of the Panamanian land bridge ended the isolation of South America and ushered in a period of dispersal, mass extinction, and new community assemblages, which sparked competition, adaptation, and speciation. Diversification across many bird groups, and the elevational zonation of others, ties back to events triggered by the GABI. But the exact timing of these events is still being revealed, with recent studies suggesting a much earlier time window for faunal exchange, perhaps as early as 20 million years ago (Mya). Using a time-calibrated phylogenetic tree, we show that the jay genus Cyanolyca is emblematic of bird dispersal trends, with an early, pre-land bridge dispersal from Mesoamerica to South America 6.3-7.3 Mya, followed by a back-colonization of C. cucullata to Mesoamerica 2.3-4.8 Mya, likely after the land bridge was complete. As Cyanolyca species came into contact in Mesoamerica, they avoided competition due to a prior shift to lower elevation in the ancestor of C. cucullata. This shift allowed C. cucullata to integrate itself into the Mesoamerican highland avifauna, which our time-calibrated phylogeny suggests was already populated by higher-elevation, congeneric dwarf-jays (C. argentigula, C. pumilo, C. mirabilis, and C. nanus). The outcome of these events and fortuitous elevational zonation was that C. cucullata could continue colonizing new highland areas farther north during the Pleistocene. Resultingly, four C. cucullata lineages became isolated in allopatric, highland regions from Panama to Mexico, diverging in genetics, morphology, plumage, and vocalizations. At least two of these lineages are best described as species (C. mitrata and C. cucullata). Continued study will further document the influence of the GABI and help clarify how dispersal and vicariance shaped modern-day species assemblages in the Americas.
Collapse
Affiliation(s)
- John E. McCormack
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | - Molly M. Hill
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | - Devon A. DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Eliza J. Kirsch
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | | | | | - Brenda R. Ramirez
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | | | - Jessie F. Salter
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCaliforniaUSA
| | - Alana K. Pizarro
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | | | - Elisa Bonaccorso
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
| |
Collapse
|
6
|
Reproductive character displacement allows two sexually deceptive orchids to coexist and attract the same specific pollinator. Evol Ecol 2022. [DOI: 10.1007/s10682-021-10149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractAn increased divergence in characters between species in secondary contact can be shaped by selection against competition for a common resource (ecological character displacement, ECD) or against maladapted hybridization (reproductive character displacement, RCD). These selective pressures can act between incipient species (reinforcement) or well-separated species that already completed the speciation process, but that can still hybridize and produce maladapted hybrids. Here, we investigated two well-separated sexually deceptive orchid species that, unusually, share their specific pollinator. Sympatric individuals of these species are more divergent than allopatric ones in floral characters involved in a mechanical isolating barrier, a pattern suggestive of RCD. To experimentally test this scenario, we built an artificial sympatric population with allopatric individuals. We measured flower characters, genotyped the offspring in natural and artificial sympatry and estimated fertility of hybrids. Different from naturally sympatric individuals, allopatric individuals in artificial sympatry hybridized widely. Hybrids showed lower pollination success and seed viability than parentals. Character displacement did not affect plant pollination success. These findings suggest that RCD evolved between these species to avoid hybridization and that selection on reinforcement may be very strong even in plants with highly specialized pollination.
Collapse
|
7
|
Morita K, Yamamichi M. How does the magnitude of genetic variation affect ecological and reproductive character displacement? POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Keiichi Morita
- Department of General Systems Studies The University of Tokyo Tokyo Japan
| | - Masato Yamamichi
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine Nagasaki University Nagasaki Japan
| |
Collapse
|
8
|
Kenyon HL, Martin PR. Experimental tests of selection against heterospecific aggression as a driver of avian colour pattern divergence. J Evol Biol 2021; 34:1110-1124. [PMID: 33949033 DOI: 10.1111/jeb.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Signal divergence is thought to reduce the costs of co-occurrence for closely related species and may thereby be important in the generation and maintenance of new biodiversity. In birds, closely related, sympatric species are more divergent in their colour patterns than those that live apart, but the selective pressures driving sympatric divergence in colour pattern are not well-understood. Here, we conducted field experiments on naïve birds using spectrometer-matched, painted, 3D-printed models to test whether selection against heterospecific aggression might drive colour pattern divergence in the genus Poecile. We found that territorial male black-capped chickadees (P. atricapillus) are equally likely to attack sympatric and allopatric congeners, and wintering flocks are equally likely to visit feeders occupied by sympatric and allopatric congeners, despite sympatric congeners being more divergent in colour pattern. These results suggest that either the concerted evolution of additional traits (e.g. discrimination), or interactions in sympatry that promote learning, is required if colour pattern divergence among sympatric species is to reduce heterospecific aggression. Alternatively, colour pattern divergence among sympatric species may be caused by other selective pressures, such as selection against hybridization or habitat partitioning and secondary signal adaptation.
Collapse
Affiliation(s)
- Haley L Kenyon
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Paul R Martin
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
Martin PR, Burke KW, Bonier F. Plasticity versus Evolutionary Divergence: What Causes Habitat Partitioning in Urban-Adapted Birds? Am Nat 2020; 197:60-74. [PMID: 33417523 DOI: 10.1086/711753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractHabitat partitioning can facilitate the coexistence of closely related species and often results from competitive interference inducing plastic shifts of subordinate species in response to aggressive, dominant species (plasticity) or the evolution of ecological differences in subordinate species that reduce their ability to occupy habitats where the dominant species occurs (evolutionary divergence). Evidence consistent with both plasticity and evolutionary divergence exist, but the relative contributions of each to habitat partitioning have been difficult to discern. Here we use a global data set on the breeding occurrence of birds in cities to test predictions of these alternative hypotheses to explain previously described habitat partitioning associated with competitive interference. Consistent with plasticity, the presence of behaviorally dominant congeners in a city was associated with a 65% reduction in the occurrence of subordinate species, but only when the dominant was a widespread breeder in urban habitats. Consistent with evolutionary divergence, increased range-wide overlap with dominant congeners was associated with a 56% reduction in the occurrence of subordinates in cities, even when the dominant was absent from the city. Overall, our results suggest that both plasticity and evolutionary divergence play important, concurrent roles in habitat partitioning among closely related species in urban environments.
Collapse
|
10
|
Kyogoku D, Wheatcroft D. Heterospecific mating interactions as an interface between ecology and evolution. J Evol Biol 2020; 33:1330-1344. [PMID: 32762053 DOI: 10.1111/jeb.13687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
Reproductive interference (costly interspecific sexual interactions) is well-understood to promote divergence in mating-relevant traits (i.e. reproductive character displacement: RCD), but it can also reduce population growth, eventually leading to local extinction of one of the species. The ecological and evolutionary processes driven by reproductive interference can interact with each other. These interactions are likely to influence whether the outcome is coexistence or extinction, but remain little studied. In this paper, we first develop an eco-evolutionary perspective on reproductive interference by integrating ecological and evolutionary processes in a common framework. We also present a simple model to demonstrate the eco-evolutionary dynamics of reproductive interference. We then identify a number of factors that are likely to influence the relative likelihoods of extinction or RCD. We discuss particularly relevant factors by classifying them into four categories: the nature of the traits responding to selection, the mechanisms determining the expression of these traits, mechanisms of reproductive interference and the ecological background. We highlight previously underappreciated ways in which these factors may influence the relative likelihoods of RCD and local extinction. By doing so, we also identify questions and future directions that will increase our holistic understanding of the outcomes of reproductive interference.
Collapse
|
11
|
Huang Y, Wang X, Yang X, Jiang J, Hu J. Unveiling the roles of interspecific competition and local adaptation in phenotypic differentiation of parapatric frogs. Curr Zool 2020; 66:383-392. [PMID: 32617086 PMCID: PMC7319442 DOI: 10.1093/cz/zoaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding how ecological processes affect phenotypic evolution has been and continues to be an important goal of ecology and evolutionary biology. Interspecific competition for resources can be a selective force driving phenotypic differentiation that reduces competition among sympatric species (character divergence), enabling closely-related species to coexist. However, although patterns of character divergence are well documented in both empirical and theoretical researches, how local adaptation to abiotic environment affects trait evolution in the face of interspecific competition is less known. Here, we investigate how patterns in morphological traits of 2 parapatric frog species, Feirana quadranus and F. taihangnica, vary among allopatric and sympatric regions using range-wide data derived from extensive field surveys. Feirana quadranus was overall larger than F. taihangnica in body size (i.e., snout–vent length [SVL]), and the difference between SVL of both species in sympatry was larger than that in allopatry. From allopatry to sympatry, the 2 species diverged in foot and hand traits, but converged in eye size and interorbital span, even when we controlled for the effects of geographic gradients. Sympatric divergence in SVL, hand and foot traits is likely acting as a case of evolutionary shift caused by interspecific competition. In contrast, sympatric convergence of eye-related traits may derive at least partly from adaptation to local environments. These results imply the relative roles of interspecific competition and local adaptation in shaping phenotypic diversification. Our findings illustrate how traits evolve in parapatric species pair due to sympatric divergent and convergent evolution. It thus provides insights into understanding underlying evolutionary processes of parapatric species, that is, competition and local adaptation.
Collapse
Affiliation(s)
- Yan Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Xiaoyi Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junhua Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
12
|
Lipshutz SE. Interspecific competition, hybridization, and reproductive isolation in secondary contact: missing perspectives on males and females. Curr Zool 2018; 64:75-88. [PMID: 29492041 PMCID: PMC5809030 DOI: 10.1093/cz/zox060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/15/2017] [Indexed: 12/26/2022] Open
Abstract
Research on sexual selection and hybridization has focused on female mate choice and male-male competition. While the evolutionary outcomes of interspecific female preference have been well explored, we are now gaining a better understanding of the processes by which male-male competition between species in secondary contact promotes reproductive isolation versus hybridization. What is relatively unexplored is the interaction between female choice and male competition, as they can oppose one another or align with similar outcomes for reproductive isolation. The role of female-female competition in hybridization is also not well understood, but could operate similarly to male-male competition in polyandrous and other systems where costs to heterospecific mating are low for females. Reproductive competition between either sex of sympatric species can cause the divergence and/or convergence of sexual signals and recognition, which in turn influences the likelihood for interspecific mating. Future work on species interactions in secondary contact should test the relative influences of both mate choice and competition for mates on hybridization outcomes, and should not ignore the possibilities that females can compete over mating resources, and males can exercise mate choice.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Ecology and Evolutionary Biology, Division of Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
13
|
Pfennig KS. Reinforcement as an initiator of population divergence and speciation. Curr Zool 2016; 62:145-154. [PMID: 29491902 PMCID: PMC5804236 DOI: 10.1093/cz/zow033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/29/2015] [Indexed: 02/02/2023] Open
Abstract
When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, more generally, reproductive character displacement), thereby contributes to the evolution of enhanced reproductive isolation between hybridizing groups. By enhancing reproductive isolation in this way, reinforcement plays an important role in the final stages of speciation. However, reinforcement can also contribute to the early stages of speciation. Specifically, because selection to avoid hybridization occurs only in sympatric populations, the unfolding of reinforcement can lead to the evolution of traits in sympatric populations that reduce reproduction between conspecifics in sympatry versus those in allopatry. Thus, reinforcement between species can lead to reproductive isolation—and possibly speciation—between populations in sympatry versus those in allopatry or among different sympatric populations. Here, I describe how this process can occur, the conditions under which it is most likely to occur, and the empirical data needed to evaluate the hypothesis that reinforcement can initiate speciation.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
14
|
Species distribution and population connectivity of deep-sea mussels at hydrocarbon seeps in the Gulf of Mexico. PLoS One 2015; 10:e0118460. [PMID: 25859657 PMCID: PMC4393317 DOI: 10.1371/journal.pone.0118460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/17/2015] [Indexed: 11/19/2022] Open
Abstract
Hydrocarbon seepage is widespread and patchy in the Gulf of Mexico, and six species of symbiont containing bathymodiolin mussels are found on active seeps over wide and overlapping depth and geographic ranges. We use mitochondrial genes to discriminate among the previously known and a newly discovered species and to assess the connectivity among populations of the same species in the northern Gulf of Mexico (GoM). Our results generally validate the morphologically based distribution of the three previously known GoM species of Bathymodiolus, although we found that approximately 10% of the morphologically based identifications were incorrect and this resulted in some inaccuracies with respect to their previously assigned depth and geographical distribution patterns. These data allowed us to confirm that sympatry of two species of Bathymodiolus within a single patch of mussels is common. A new species of bathymodiolin, Bathymodiolus sp. nov., closely related to B. heckerae was also discovered. The two species live at the same depths but have not been found in sympatry and both have small effective population sizes. We found evidence for genetic structure within populations of the three species of Bathymodiolinae for which we had samples from multiple sites and suggest limited connectivity for populations at some sites. Despite relatively small sample sizes, genetic diversity indices suggest the largest population sizes for B. childressi and Tamu fisheri and the smallest for B. heckerae and B. sp. nov. among the GoM bathymodiolins. Moreover, we detected an excess of rare variants indicating recent demographic changes and population expansions for the four species of bathymodiolins from the Gulf of Mexico.
Collapse
|
15
|
Martin PR, Montgomerie R, Lougheed SC. Color Patterns of Closely Related Bird Species Are More Divergent at Intermediate Levels of Breeding-Range Sympatry. Am Nat 2015; 185:443-51. [DOI: 10.1086/680206] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Beans CM. The case for character displacement in plants. Ecol Evol 2014; 4:852-65. [PMID: 24683467 PMCID: PMC3967910 DOI: 10.1002/ece3.978] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/28/2013] [Accepted: 01/10/2014] [Indexed: 01/31/2023] Open
Abstract
The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species.
Collapse
Affiliation(s)
- Carolyn M Beans
- Department of Biology, University of VirginiaCharlottesville, Virginia
| |
Collapse
|
17
|
Calhim S, Adamik P, Järvistö P, Leskinen P, Török J, Wakamatsu K, Laaksonen T. Heterospecific female mimicry in Ficedula flycatchers. J Evol Biol 2014; 27:660-6. [PMID: 24494669 DOI: 10.1111/jeb.12328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/22/2013] [Accepted: 12/26/2013] [Indexed: 11/29/2022]
Abstract
Mimicry is a widespread phenomenon. Vertebrate visual mimicry often operates in an intraspecific sexual context, with some males resembling conspecific females. Pied flycatcher (Ficedula hypoleuca) dorsal plumage varies from the ancestral black to female-like brown. Experimental studies have shown that conspecific and heterospecific (collared flycatcher, F. albicollis) individuals of both sexes respond, at least initially, to brown individuals as if they were female. We quantified the perceptual and biochemical differences between brown feathers and found that brown pied flycatcher males are indistinguishable from heterospecific, but not from conspecific, females in both aspects. To our knowledge, this is the first evidence of a visual mimetic signalling system in a sexual context where the model is heterospecific to the mimic. By only mimicking heterospecific females, brown pied flycatcher males can establish territories next to the more dominant collared flycatcher in sympatry, suffer less aggression by darker conspecifics in allopatry and preserve within-species sexual recognition throughout the breeding range. A closer look at the evolutionary history and ecology of these two species illustrates how such a mimetic system can evolve. Although likely rare, this phenomenon might not be unique to Ficedula flycatchers.
Collapse
Affiliation(s)
- S Calhim
- Division of Ecology & Evolutionary Biology, Department of Biology & Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Biology, University of Turku, Turku, Finland
| | - P Adamik
- Department of Zoology, Palacký University, Olomouc, Czech Republic
| | - P Järvistö
- Department of Biology, University of Turku, Turku, Finland
| | - P Leskinen
- Department of Biology, University of Turku, Turku, Finland
| | - J Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös University, Budapest, Hungary
| | - K Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - T Laaksonen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Bodey TW, Ward EJ, Phillips RA, McGill RAR, Bearhop S. Species versus guild level differentiation revealed across the annual cycle by isotopic niche examination. J Anim Ecol 2013; 83:470-8. [PMID: 24215391 DOI: 10.1111/1365-2656.12156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
Abstract
Interspecific competitive interactions typically result in niche differentiation to alleviate competition through mechanisms including character displacement. However, competition is not the sole constraint on resource partitioning, and its effects are mediated by factors including the environmental context in which species coexist. Colonial seabirds provide an excellent opportunity to investigate the importance of competition in shaping realized niche widths because their life histories lead to variation in intra- and interspecific competition across the annual cycle. Dense breeding aggregations result in intense competition for prey in surrounding waters, whereas non-breeding dispersal to larger geographical areas produces lower densities of competitors. Bayesian hierarchical models of the isotopic niche, closely aligned to the trophic niche, reveal the degree of segregation between species and functional groups during both time periods. Surprisingly, species explained far more of the variance in the isotopic niche during the non-breeding than the breeding period. Our results underline the key role of non-breeding dynamics in alleviating competition and promoting distinctions between species through the facilitation of resource partitioning. Such situations may be common in a diverse range of communities sustained by ephemeral but abundant food items. This highlights how consideration of the hierarchical grouping of competitive interactions alongside consideration of abiotic constraints across the complete annual cycle allows a full understanding of the role of competition in driving patterns of character displacement.
Collapse
Affiliation(s)
- Thomas W Bodey
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR10 9EZ, UK
| | - Eric J Ward
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Rona A R McGill
- SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
| | - Stuart Bearhop
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR10 9EZ, UK
| |
Collapse
|
19
|
Abramov AV, Puzachenko AY. Species Co-Existence and Morphological Divergence in West Siberian Mustelids (Carnivora, Mustelidae). MAMMAL STUDY 2012. [DOI: 10.3106/041.037.0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Abstract
Character displacement occurs when competition for either resources or successful reproduction imposes divergent selection on interacting species, causing divergence in traits associated with resource use or reproduction. Here, we describe how character displacement can be mediated either by genetically canalized changes (i.e., changes that reflect allelic or genotype frequency changes) or by phenotypic plasticity. We also discuss how these two mechanisms influence the tempo of character displacement. Specifically, we suggest that, under some conditions, character displacement mediated by phenotypic plasticity might occur more rapidly than that mediated by genetically canalized changes. Finally, we describe how these two mechanisms may act together and determine character displacement's mode, such that it proceeds through an initial phase in which trait divergence is environmentally induced to a later phase in which divergence becomes genetically canalized. This plasticity-first hypothesis predicts that character displacement should be generally mediated by ancestral plasticity and that it will arise similarly in multiple, independently evolving populations. We conclude by highlighting future directions for research that would test these predictions.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
21
|
Vallin N, Rice AM, Bailey RI, Husby A, Qvarnström A. Positive feedback between ecological and reproductive character displacement in a young avian hybrid zone. Evolution 2011; 66:1167-79. [PMID: 22486696 DOI: 10.1111/j.1558-5646.2011.01518.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Character displacement can reduce costly interspecific interactions between young species. We investigated the mechanisms behind divergence in three key traits-breeding habitat choice, timing of breeding, and plumage coloration-in Ficedula flycatchers. We found that male pied flycatchers became expelled from the preferred deciduous habitat into mixed forest as the superior competitor, collared flycatchers, increased in numbers. The peak in food abundance differs between habitats, and the spatial segregation was paralleled by an increased divergence in timing of breeding between the two species. Male pied flycatchers vary from brown to black with brown coloration being more frequent in sympatry with collared flycatchers, a pattern often proposed to result from selection against hybridization, that is, reinforcement. In contrast to this view, we show that brown male pied flycatchers more often hybridize than black males. Male pied flycatcher plumage coloration influenced the territory obtained in areas of co-occurrence with collared flycatchers, and brown male pied flycatchers experienced higher relative fitness than black males when faced with heterospecific competition. We suggest that allopatric divergence in resource defense ability causes a feedback loop at secondary contact where male pied flycatchers with the most divergent strategy compared to collared flycatchers are favored by selection.
Collapse
Affiliation(s)
- Niclas Vallin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Ecological character displacement occurs when competition imposes divergent selection on interacting species, causing divergence in traits associated with resource use. Generally, divergence is assumed to occur when selection acts on the same, continuously varying trait in both species. However, selection might target multiple traits, and even closely related heterospecifics involved in character displacement might differ in selective targets. We investigated the targets of selection in a species of spadefoot toad, Spea multiplicata, during experimentally imposed competition with a congener, S. bombifrons. When examining traits separately, we found significant selection acting on multiple resource-acquisition traits. Yet, controlling for the independent effects of these traits in a multiple regression revealed that direct selection on a single trait might have contributed toward indirect selection on other correlated traits. Moreover, although we found evidence for plasticity in most traits, competition with S. bombifrons imposed selection on morphology and not on plasticity. Additional experiments suggest that the selective targets during character displacement might differ between the two species involved in this one instance of character displacement. Identifying the targets of competitively mediated selection is crucial, because whether and how character displacement ultimately unfolds depends on the nature of these targets and correlations among them.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
23
|
Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol 2011; 11:138. [PMID: 21609448 PMCID: PMC3121626 DOI: 10.1186/1471-2148-11-138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022] Open
Abstract
Background Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). Results We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry. Conclusions Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
24
|
Runemark A, Hansson B, Pafilis P, Valakos ED, Svensson EI. Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence? BMC Evol Biol 2010; 10:269. [PMID: 20813033 PMCID: PMC2939580 DOI: 10.1186/1471-2148-10-269] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 09/02/2010] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. RESULTS Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. CONCLUSIONS Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations.
Collapse
Affiliation(s)
- Anna Runemark
- Section for Animal Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Pfennig DW, McGee M. Resource polyphenism increases species richness: a test of the hypothesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:577-91. [PMID: 20083634 DOI: 10.1098/rstb.2009.0244] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A major goal of evolutionary biology is to identify the causes of diversification and to ascertain why some evolutionary lineages are especially diverse. Evolutionary biologists have long speculated that polyphenism--where a single genome produces alternative phenotypes in response to different environmental stimuli--facilitates speciation, especially when these alternative phenotypes differ in resource or habitat use, i.e. resource polyphenism. Here, we present a series of replicated sister-group comparisons showing that fishes and amphibian clades in which resource polyphenism has evolved are more species rich, and have broader geographical ranges, than closely related clades lacking resource polyphenism. Resource polyphenism may promote diversification by facilitating each of the different stages of the speciation process (isolation, divergence, reproductive isolation) and/or by reducing a lineage's risk of extinction. Generally, resource polyphenism may play a key role in fostering diversity, and species in which resource polyphenism has evolved may be predisposed to diversify.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, University of North Carolina, , Chapel Hill, NC 27517, USA.
| | | |
Collapse
|
26
|
Foley BR, Genissel A, Kristy HL, Nuzhdin SV. Does segregating variation in sexual or microhabitat preferences lead to non-random mating within a population of Drosophila melanogaster? Biol Lett 2010; 6:102-5. [PMID: 19692395 DOI: 10.1098/rsbl.2009.0608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in female choice for mates has implications for the maintenance of genetic variation and the evolution of male traits. Yet, estimates of population-level variation in male mating success owing to female genotype are rare. Here, we used a panel of recombinant inbred lines to estimate the strength of selection at many genetic loci in a single generation and attempt to assess differences between females with respect to the males they mated with. We performed selection assays in a complex environment to allow differences in habitat or social group preference to be expressed. We detected directional selection at loci across the genome, but are unable to provide support for differential male success because of variation in female genotype.
Collapse
Affiliation(s)
- Brad R Foley
- Department of Molecular and Computational Biology, University of Southern California, , CA 90089, USA.
| | | | | | | |
Collapse
|
27
|
Grether GF, Losin N, Anderson CN, Okamoto K. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biol Rev Camb Philos Soc 2009; 84:617-35. [DOI: 10.1111/j.1469-185x.2009.00089.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Rice AM, Leichty AR, Pfennig DW. Parallel evolution and ecological selection: replicated character displacement in spadefoot toads. Proc Biol Sci 2009; 276:4189-96. [PMID: 19726477 DOI: 10.1098/rspb.2009.1337] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecological character displacement--trait evolution stemming from selection to lessen resource competition between species--is most often inferred from a pattern in which species differ in resource-use traits in sympatry but not in allopatry, and in which sympatric populations within each species differ from conspecific allopatric populations. Yet, without information on population history, the presence of a divergent phenotype in multiple sympatric populations does not necessarily imply that there has been repeated evolution of character displacement. Instead, such a pattern may arise if there has been character displacement in a single ancestral population, followed by gene flow carrying the divergent phenotype into multiple, derived, sympatric populations. Here, we evaluate the likelihood of such historical events versus ongoing ecological selection in generating divergence in trophic morphology between multiple populations of spadefoot toad (Spea multiplicata) tadpoles that are in sympatry with a heterospecific and those that are in allopatry. We present both phylogenetic and population genetic evidence indicating that the same divergent trait, which minimizes resource competition with the heterospecific, has arisen independently in multiple sympatric populations. These data, therefore, provide strong indirect support for competition's role in divergent trait evolution.
Collapse
Affiliation(s)
- Amber M Rice
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
29
|
Pfennig KS, Pfennig DW. Character Displacement: Ecological And Reproductive Responses To A Common Evolutionary Problem. QUARTERLY REVIEW OF BIOLOGY 2009; 84:253-76. [PMID: 19764283 DOI: 10.1086/605079] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
30
|
EROUKHMANOFF F, HARGEBY A, ARNBERG NN, HELLGREN O, Bensch S, SVENSSON EI. Parallelism and historical contingency during rapid ecotype divergence in an isopod. J Evol Biol 2009; 22:1098-1110. [DOI: 10.1111/j.1420-9101.2009.01723.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
MILANKOV VESNA, LUDOŠKI JASMINA, STÅHLS GUNILLA, STAMENKOVIĆ JELENA, VUJIĆ ANTE. High molecular and phenotypic diversity in theMerodon aviduscomplex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zool J Linn Soc 2009. [DOI: 10.1111/j.1096-3642.2008.00462.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Pfennig DW, Martin RA. A maternal effect mediates rapid population divergence and character displacement in spadefoot toads. Evolution 2008; 63:898-909. [PMID: 19154374 DOI: 10.1111/j.1558-5646.2008.00544.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite long-standing interest in character displacement, little is known of its underlying proximate causes. Here, we explore the role of maternal effects in character displacement. We specifically investigated whether differences in maternal body condition mediate divergence in the expression of resource-use traits between populations of spadefoot toads (Spea multiplicata) that occur in sympatry with a heterospecific competitor and those that occur in allopatry. In sympatry, S. multiplicata is forced by its competitor onto a less profitable resource. As a result, sympatric females mature in poorer condition and invest less into offspring. Consequently, their offspring produce a resource-use phenotype that minimizes competition with the other species and that also differs from the phenotype produced in allopatry. These differences in trait expression between allopatry and sympatry disappear once mothers are equilibrated in body condition in the laboratory. Thus, a condition-dependent maternal effect mediates population divergence and character displacement. Such effects potentially buffer populations from extinction (via competitive exclusion) while genetic changes accumulate, which produce divergent traits in the absence of the maternal effect. Maternal effects may therefore often be important in determining the initial direction and rate of evolution during the early stages of character displacement.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
33
|
Botes C, Johnson SD, Cowling RM. Coexistence of succulent tree aloes: partitioning of bird pollinators by floral traits and flowering phenology. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16391.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
RICE AM, PFENNIG DW. Analysis of range expansion in two species undergoing character displacement: why might invaders generally ‘win’ during character displacement? J Evol Biol 2008; 21:696-704. [DOI: 10.1111/j.1420-9101.2008.01518.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Liow LH, Quental TB. Biotic interactions and their consequences for macroevolution: learning from the fossil record and beyond. PALEOBIOLOGY 2008; 62:715-995. [PMID: 39239253 PMCID: PMC7616416 DOI: 10.1111/j.1558-5646.2008.00317.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Every organism interacts with a host of other organisms of the same and different species throughout its life. These biotic interactions have varying influences on the reproduction and dispersal of the organism, and hence also the population and species lineage to which the organism belongs. By extension, biotic interactions must contribute to the macroevolutionary patterns that we observe in the fossil record, but exactly how, when and why are research questions we have been asking before the start of the journal Paleobiology. In this contribution for Paleobiology's 50th anniversary, we present a brief overview of how paleobiologists have studied biotic interactions and their macroevolutionary consequences, recognizing paleontology's unique position to contribute data and insights to the topic of interspecies interactions. We then explore, in a semi free-form manner, what promising avenues might be open to those of us who use the fossil record to understand biotic interactions. In general, we emphasize the need for an increased effort in the understanding of ecological details, the integration of different types of information, and to strive for model-based approaches.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History Museum and Centre for Planetary Habitability (Department of Geosciences) University of Oslo, Oslo, Norway
| | - Tiago B Quental
- Departamento de Ecologia, Universidade de São Paulo (USP), São Paulo, Brasil
| |
Collapse
|
36
|
Smadja C, Ganem G. Divergence of odorant signals within and between the two European subspecies of the house mouse. Behav Ecol 2007. [DOI: 10.1093/beheco/arm127] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
|
38
|
Cadena CD. Testing the role of interspecific competition in the evolutionary origin of elevational zonation: an example with Buarremon brush-finches (Aves, Emberizidae) in the neotropical mountains. Evolution 2007; 61:1120-36. [PMID: 17492966 DOI: 10.1111/j.1558-5646.2007.00095.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interspecific competition might drive the evolution of ecological niches and result in pairs of formerly competing species segregating along ecological gradients following a process of character displacement. This mechanism has been proposed to account for replacement of related species along gradients of elevation in many areas of the world, but the fundamental issue of whether competition is responsible for the origin of elevational replacements has not been tested. To test hypotheses about the role of interspecific competition in the origin of complementary elevational ranges, I combined molecular phylogenetics, phylogeography, and population genetic analyses on Buarremon torquatus and B. brunneinucha (Aves, Emberizidae), whose patterns of elevational distribution suggest character displacement or ecological release. The hypothesis that elevational distributions in these species changed in opposite directions as a result of competition is untenable because: (1) a historical expansion of the range of B. brunneinucha into areas occupied by B. torquatus was not accompanied by a shift in the elevational range of the former species; (2) when B. brunneinucha colonized the range of B. torquatus, lineages of the latter distributions had already diverged; and (3) historical trends in effective population size do not suggest populations with elevational ranges abutting those of putative competitors have declined as would be expected if competition caused range contractions. However, owing to uncertainty in coalescent estimates of historical population sizes, the hypothesis that some populations of B. torquatus have declined cannot be confidently rejected, which suggests asymmetric character displacement might have occurred. I suggest that the main role of competition in elevational zonation may be to act as a sorting mechanism that allows the coexistence along mountain slopes only of ecologically similar species that differ in elevational distributions prior to attaining sympatry. The contrasting biogeographic histories of B. brunneinucha and B. torquatus illustrate how present-day ecological interactions can have recent origins, and highlights important challenges for testing the hypothesis of character displacement in the absence of data on population history and robust reconstructions of the evolution of traits and geographic ranges.
Collapse
Affiliation(s)
- Carlos Daniel Cadena
- Department of Biology and International Center for Tropical Ecology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA.
| |
Collapse
|
39
|
Pfennig DW, Rice AM, Martin RA. Field and experimental evidence for competition's role in phenotypic divergence. Evolution 2007; 61:257-71. [PMID: 17348937 DOI: 10.1111/j.1558-5646.2007.00034.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resource competition has long been viewed as a major cause of phenotypic divergence within and between species. Theory predicts that divergence arises because natural selection favors individuals that are phenotypically dissimilar from their competitors. Yet, there are few conclusive tests of this key prediction. Drawing on data from both natural populations and a controlled experiment, this paper presents such a test in tadpoles of two species of spadefoot toads (Spea bombifrons and S. multiplicata). These two species show exaggerated divergence in trophic morphology where they are found together (mixed-species ponds) but not where each is found alone (pure-species ponds), suggesting that they have undergone ecological character displacement. Moreover, in pure-species ponds, both species exhibit resource polymorphism. Using body size as a proxy for fitness, we found that in pure-species ponds disruptive selection favors extreme trophic phenotypes in both species, suggesting that intraspecific competition for food promotes resource polymorphism. In mixed-species ponds, by contrast, we found that trophic morphology was subject to stabilizing selection in S. multiplicata and directional selection in S. bombifrons. A controlled experiment revealed that the more similar an S. multiplicata was to its S. bombifrons tankmate in resource use, the worse was its performance. These results indicate that S. multiplicata individuals that differ from S. bombifrons would be selectively favored in competition. Our data therefore demonstrate how resource competition between phenotypically similar individuals can drive divergence between them. Moreover, our results indicate that how competition contributes to such divergence may be influenced not only by the degree to which competitors overlap in resource use, but also by the abundance and quality of resources. Finally, our finding that competitively mediated disruptive selection may promote resource polymorphism has potentially important implications for understanding how populations evolve in response to heterospecific competitors. In particular, once a population evolves resource polymorphism, it may be more prone to undergo ecological character displacement.
Collapse
Affiliation(s)
- David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
40
|
Rosenblatt JS. Gilbert Gottlieb: Intermediator between psychology and evolutionary biology. Dev Psychobiol 2007; 49:800-7. [DOI: 10.1002/dev.20271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|