1
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
2
|
Caeiro-Dias G, Brelsford A, Kaliontzopoulou A, Meneses-Ribeiro M, Crochet PA, Pinho C. Variable levels of introgression between the endangered Podarcis carbonelli and highly divergent congeneric species. Heredity (Edinb) 2021; 126:463-476. [PMID: 33199832 PMCID: PMC8027454 DOI: 10.1038/s41437-020-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Recent empirical studies have demonstrated that speciation with gene flow is more common than previously thought. From a conservation perspective, the potential negative effects of hybridization raise concerns on the genetic integrity of endangered species. However, introgressive hybridization has also been growingly recognized as a source of diversity and new advantageous alleles. Carbonell's wall lizard (Podarcis carbonelli) is an endangered species whose distribution overlaps with four other congeneric species. Our goal here was to determine whether P. carbonelli is completely reproductively isolated from its congeners and to evaluate the relevance of hybridization and interspecific gene flow for developing a conservation plan. We used restriction site associated DNA (RAD) sequencing to discover SNPs in samples from four contact zones between P. carbonelli and four other species. Principal component analysis, multilocus genotype assignment and interspecific heterozygosity suggest incomplete reproductive isolation and ongoing gene flow between species. However, hybridization dynamics vary across all pairs, suggesting complex interactions between multiple intrinsic and extrinsic barriers. Despite seemingly ubiquitous interspecific gene flow, we found evidence of strong reproductive isolation across most contact zones. Instead, indirect effects of hybridization like waste of reproductive effort in small isolated populations may be more problematic. Our results highlight the need to further evaluate the consequences of introgression for P. carbonelli, both on a geographic and genomic level and included in a comprehensive and urgently needed conservation plan. Besides, those findings will add important insights on the potential effects of hybridization and introgression for endangered species.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France.
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Biology Department, University of California Riverside, Riverside, CA, USA
| | - Antigoni Kaliontzopoulou
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
| | - Mariana Meneses-Ribeiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
| | - Pierre-André Crochet
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Catarina Pinho
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
3
|
Size Selective Harvesting Does Not Result in Reproductive Isolation among Experimental Lines of Zebrafish, Danio rerio: Implications for Managing Harvest-Induced Evolution. BIOLOGY 2021; 10:biology10020113. [PMID: 33557025 PMCID: PMC7913724 DOI: 10.3390/biology10020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Mortality in fish populations is commonly size-selective. In fisheries, larger fish are preferentially caught while natural predators preferentially consume smaller fish. Removal of certain sized fish from populations and elevated fishing mortality constitute a selection pressure which may change life-history, behaviour and reduce adult body-size. Because behaviour and body-size are related and influence mating preferences and reproductive output, size-selective mortality may favour subpopulations that less readily mate with each other. Our aim is to test this possibility using three experimental lines of zebrafish (Danio rerio) generated in laboratory by removing large-sized, small-sized and random-sized fish for five generations. We tested mating preferences among males and females and tested if they spawned together. We found males and females of all subpopulations to reproduce among themselves. Females generally preferred large-sized males. Females of all lines spawned with males, and males of all lines fertilised eggs of females independent of the subpopulation origin. Our study shows that size-selective mortality typical of fisheries or in populations facing heavy predation does not result in evolution of reproductive barriers. Thus, when populations adapted to fishing pressure come in contact with populations unexposed to such pressures, interbreeding may happen thereby helping exploited populations recover from harvest-induced evolution. Abstract Size-selective mortality is common in fish stocks. Positive size-selection happens in fisheries where larger size classes are preferentially targeted while gape-limited natural predation may cause negative size-selection for smaller size classes. As body size and correlated behavioural traits are sexually selected, harvest-induced trait changes may promote prezygotic reproductive barriers among selection lines experiencing differential size-selective mortality. To investigate this, we used three experimental lines of zebrafish (Danio rerio) exposed to positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations. We tested prezygotic preferences through choice tests and spawning trials. In the preference tests without controlling for body size, we found that females of all lines preferred males of the generally larger small-harvested line. When the body size of stimulus fish was statistically controlled, this preference disappeared and a weak evidence of line-assortative preference emerged, but only among large-harvested line fish. In subsequent spawning trials, we did not find evidence for line-assortative reproductive allocation in any of the lines. Our study suggests that size-selection due to fisheries or natural predation does not result in reproductive isolation. Gene flow between wild-populations and populations adapted to size-selected mortality may happen during secondary contact which can speed up trait recovery.
Collapse
|
4
|
Corush JB, Fitzpatrick BM, Wolfe EL, Keck BP. Breeding behaviour predicts patterns of natural hybridization in North American minnows (Cyprinidae). J Evol Biol 2020; 34:486-500. [PMID: 33300154 DOI: 10.1111/jeb.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/01/2022]
Abstract
Premating barriers such as variation in reproductive behaviour can evolve quickly, but because gametic and postzygotic incompatibilities often evolve more slowly, circumstances that bring gametes into contact can breach the boundaries of premating isolation. In aquatic environments, the gametes of organisms with external fertilization are released into a constantly moving environment and may come into contact with heterospecific gametes. In fishes, nest association (spawning in another species' nest) is a behaviour that brings gametes from different species into close spatiotemporal proximity. These interactions might increase chances of hybridization, especially when multiple species associate with a single nest builder. This study addresses these interactions in the largest clade of North American freshwater fishes, the minnows (Cyprinidae). We compiled a list of over 17,000 hybrid specimens in conjunction with species distribution data, breeding behaviours, and an inferred phylogeny to test if breeding behaviour, in addition to evolutionary history, is an important predictor of hybridization. We find that breeding behaviour is a significant predictor of hybridization, even when phylogenetic relatedness and divergence time are accounted for. Specifically, nest associates are more likely to hybridize with other nest associates whereas non-nesting species had relatively low rates of hybridization.
Collapse
Affiliation(s)
- Joel B Corush
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, Wayne State University, Detroit, MI, USA
| | - Benjamin M Fitzpatrick
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth L Wolfe
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Benjamin P Keck
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
5
|
Rometsch SJ, Torres-Dowdall J, Meyer A. Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190535. [PMID: 32654645 DOI: 10.1098/rstb.2019.0535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cichlid fishes are exceptionally species-rich, speciated at explosive rates and, hence, are a model system in speciation research. Yet, their reproductive isolating barriers have, so far, not been comprehensively studied. Here, we review current knowledge on pre- and postzygotic mechanisms in cichlids. While premating isolation is the norm in cichlids, its strength varies across lineages and with the geographical setting. Moreover, manipulations of ambient conditions tended to reduce assortative mating among closely related species, suggesting that premating isolation in cichlids is often fragile and context dependent. The observed lack of complete reproductive isolation is supported by past and present hybridization events that have contributed to diversity by creating novel allelic combinations. On the other hand, our meta-analysis highlights that intrinsic postzygotic isolation might accumulate faster than assumed. Mild forms of genetic incompatibilities, such as sex ratio distortion, can already be observed among closely related species. Therefore, cessation of gene flow by strong reproductive isolation in cichlids requires a combination of premating prezygotic isolation supplemented with intrinsic and extrinsic postzygotic barriers. Further, we suggest crucial next steps to improve our knowledge about reproductive barriers in cichlids to understand the evolutionary dynamics of pre- and postzygotic isolation mechanisms during adaptive radiations. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Sina J Rometsch
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Feller AF, Selz OM, McGee MD, Meier JI, Mwaiko S, Seehausen O. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids. Ecol Evol 2020; 10:7445-7462. [PMID: 32760540 PMCID: PMC7391563 DOI: 10.1002/ece3.6471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023] Open
Abstract
The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second-generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations.
Collapse
Affiliation(s)
- Anna F. Feller
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Oliver M. Selz
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Matthew D. McGee
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Joana I. Meier
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Department of ZoologyUniversity of CambridgeCambridgeUK
- St John’s CollegeUniversity of CambridgeCambridgeUK
| | - Salome Mwaiko
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Ole Seehausen
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| |
Collapse
|
7
|
Meier JI, Stelkens RB, Joyce DA, Mwaiko S, Phiri N, Schliewen UK, Selz OM, Wagner CE, Katongo C, Seehausen O. The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nat Commun 2019; 10:5391. [PMID: 31796733 PMCID: PMC6890737 DOI: 10.1038/s41467-019-13278-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023] Open
Abstract
The process of adaptive radiation was classically hypothesized to require isolation of a lineage from its source (no gene flow) and from related species (no competition). Alternatively, hybridization between species may generate genetic variation that facilitates adaptive radiation. Here we study haplochromine cichlid assemblages in two African Great Lakes to test these hypotheses. Greater biotic isolation (fewer lineages) predicts fewer constraints by competition and hence more ecological opportunity in Lake Bangweulu, whereas opportunity for hybridization predicts increased genetic potential in Lake Mweru. In Lake Bangweulu, we find no evidence for hybridization but also no adaptive radiation. We show that the Bangweulu lineages also colonized Lake Mweru, where they hybridized with Congolese lineages and then underwent multiple adaptive radiations that are strikingly complementary in ecology and morphology. Our data suggest that the presence of several related lineages does not necessarily prevent adaptive radiation, although it constrains the trajectories of morphological diversification. It might instead facilitate adaptive radiation when hybridization generates genetic variation, without which radiation may start much later, progress more slowly or never occur.
Collapse
Affiliation(s)
- Joana I Meier
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- St John's College, University of Cambridge, St John's Street, Cambridge, CB2 1TP, UK
| | - Rike B Stelkens
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Division of Population Genetics, Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, 106 91, Stockholm, Sweden
| | - Domino A Joyce
- Evolutionary and Ecological Genomics Group, Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Salome Mwaiko
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Numel Phiri
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Ulrich K Schliewen
- SNSB-Bavarian State Collection of Zoology, Münchhausenstrasse 21, 81247, Munich, Germany
| | - Oliver M Selz
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Catherine E Wagner
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Biodiversity Institute and Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, CH-3012, Bern, Switzerland.
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.
| |
Collapse
|
8
|
Richards TJ, Ortiz‐Barrientos D, McGuigan K. Natural selection drives leaf divergence in experimental populations of Senecio lautus under natural conditions. Ecol Evol 2019; 9:6959-6967. [PMID: 31380026 PMCID: PMC6662321 DOI: 10.1002/ece3.5263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/11/2022] Open
Abstract
Leaf morphology is highly variable both within and between plant species. This study employs a combination of common garden and reciprocal transplant experiments to determine whether differences in leaf shape between Senecio lautus ecotypes has evolved as an adaptive response to divergent ecological conditions.We created a synthetic population of hybrid genotypes to segregate morphological variation between three ecotypes and performed reciprocal transplants where this hybrid population was transplanted into the three adjacent native environments. We measured nine leaf morphology traits across the experimental and natural populations at these sites.We found significant divergence in multivariate leaf morphology toward the native character in each environment, suggesting environmental conditions at each site exert selective pressure that results in a phenotypic shift toward the local phenotype of the wild populations.These associations suggest that differences in leaf morphology between S. lautus ecotypes have arisen as a result of divergent selection on leaf shape or associated traits that confer an adaptive advantage in each environment, which has led to the formation of morphologically distinct ecotypes.
Collapse
Affiliation(s)
- Thomas J. Richards
- School of Biological Sciences St LuciaUniversity of QueenslandSt LuciaQueenslandAustralia
- Department of Plant BiologySwedish University of Agricultural SciencesLinnean Center for Plant BiologyUppsalaSweden
| | | | - Katrina McGuigan
- School of Biological Sciences St LuciaUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
9
|
Luquet E, Rödin Mörch P, Cortázar‐Chinarro M, Meyer‐Lucht Y, Höglund J, Laurila A. Post‐glacial colonization routes coincide with a life‐history breakpoint along a latitudinal gradient. J Evol Biol 2019; 32:356-368. [DOI: 10.1111/jeb.13419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Emilien Luquet
- Univ LyonUniversité Claude Bernard Lyon 1CNRSENTPEUMR5023 LEHNA Villeurbanne France
| | - Patrik Rödin Mörch
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Maria Cortázar‐Chinarro
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| |
Collapse
|
10
|
Mérot C, Salazar C, Merrill RM, Jiggins CD, Joron M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc Biol Sci 2018; 284:rspb.2017.0335. [PMID: 28592669 DOI: 10.1098/rspb.2017.0335] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/08/2017] [Indexed: 11/12/2022] Open
Abstract
The process by which species evolve can be illuminated by investigating barriers that limit gene flow between taxa. Recent radiations, such as Heliconius butterflies, offer the opportunity to compare isolation between pairs of taxa at different stages of ecological, geographical, and phylogenetic divergence. Here, we report a comparative analysis of existing and novel data in order to quantify the strength and direction of isolating barriers within a well-studied clade of Heliconius Our results highlight that increased divergence is associated with the accumulation of stronger and more numerous barriers to gene flow. Wing pattern is both under natural selection for Müllerian mimicry and involved in mate choice, and therefore underlies several isolating barriers. However, pairs which share a similar wing pattern also display strong reproductive isolation mediated by traits other than wing pattern. This suggests that, while wing pattern is a key factor for early stages of divergence, it may become facultative at later stages of divergence. Additional factors including habitat partitioning, hybrid sterility, and chemically mediated mate choice are associated with complete speciation. Therefore, although most previous work has emphasized the role of wing pattern, our comparative results highlight that speciation is a multi-dimensional process, whose completion is stabilized by many factors.
Collapse
Affiliation(s)
- C Mérot
- ISYEB UMR 7205, Muséum National d'Histoire Naturelle, 45 rue Buffon, Paris, France .,IBIS, Université Laval, 1030 Avenue de la Médecine, Québec, Canada
| | - C Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera, 24 No 63C-69, Bogota D.C., 111221, Colombia
| | - R M Merrill
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.,Smithsonian Tropical Research Institute, MRC 0580-12, Unit 9100 Box 0948, DPO AA 34002-9998, Panama
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.,Smithsonian Tropical Research Institute, MRC 0580-12, Unit 9100 Box 0948, DPO AA 34002-9998, Panama
| | - M Joron
- ISYEB UMR 7205, Muséum National d'Histoire Naturelle, 45 rue Buffon, Paris, France .,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
11
|
Tanner JC, Ward JL, Shaw RG, Bee MA. Multivariate phenotypic selection on a complex sexual signal. Evolution 2017; 71:1742-1754. [DOI: 10.1111/evo.13264] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Jessie C. Tanner
- Department of Ecology, Evolution, and Behavior University of Minnesota Saint Paul Minnesota 55108
| | - Jessica L. Ward
- Department of Biology Ball State University Muncie Indiana 47306
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior University of Minnesota Saint Paul Minnesota 55108
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior University of Minnesota Saint Paul Minnesota 55108
- Graduate Program in Neuroscience University of Minnesota Minneapolis Minnesota 55455
| |
Collapse
|
12
|
Ford AGP, Rüber L, Newton J, Dasmahapatra KK, Balarin JD, Bruun K, Day JJ. Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation. Evolution 2016; 70:2718-2735. [PMID: 27659769 PMCID: PMC5132037 DOI: 10.1111/evo.13072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/29/2016] [Accepted: 09/10/2016] [Indexed: 12/22/2022]
Abstract
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.
Collapse
Affiliation(s)
- Antonia G P Ford
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Current Address: School of Biological Sciences, Bangor University, ECW Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, Wales, United Kingdom
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Jason Newton
- NERC Life Sciences Mass Spectrometry Facility, SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, United Kingdom
| | | | | | - Kristoffer Bruun
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Julia J Day
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Cramer ERA, Stensrud E, Marthinsen G, Hogner S, Johannessen LE, Laskemoen T, Eybert MC, Slagsvold T, Lifjeld JT, Johnsen A. Sperm performance in conspecific and heterospecific female fluid. Ecol Evol 2016; 6:1363-77. [PMID: 26855769 PMCID: PMC4733106 DOI: 10.1002/ece3.1977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/08/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022] Open
Abstract
Divergent sexual selection within allopatric populations may result in divergent sexual phenotypes, which can act as reproductive barriers between populations upon secondary contact. This hypothesis has been most tested on traits involved in precopulatory sexual selection, with less work focusing on traits that act after copulation and before fertilization (i.e., postcopulatory prezygotic traits), particularly in internally fertilizing vertebrates. However, postcopulatory sexual selection within species can also drive trait divergence, resulting in reduced performance of heterospecific sperm within the female reproductive tract. Such incompatibilities, arising as a by‐product of divergent postcopulatory sexual selection in allopatry, can represent reproductive barriers, analogous to species‐assortative mating preferences. Here, we tested for postcopulatory prezygotic reproductive barriers between three pairs of taxa with diverged sperm phenotypes and moderate‐to‐high opportunity for postcopulatory sexual selection (barn swallows Hirundo rustica versus sand martins Riparia riparia, two subspecies of bluethroats, Luscinia svecica svecica versus L. s. namnetum, and great tits Parus major versus blue tits Cyanistes caeruleus). We tested sperm swimming performance in fluid from the outer reproductive tract of females, because the greatest reduction in sperm number in birds occurs as sperm swim across the vagina. Contrary to our expectations, sperm swam equally well in fluid from conspecific and heterospecific females, suggesting that postcopulatory prezygotic barriers do not act between these taxon pairs, at this stage between copulation and fertilization. We therefore suggest that divergence in sperm phenotypes in allopatry is insufficient to cause widespread postcopulatory prezygotic barriers in the form of impaired sperm swimming performance in passerine birds.
Collapse
Affiliation(s)
- Emily R A Cramer
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Even Stensrud
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Gunnhild Marthinsen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Silje Hogner
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | | | - Terje Laskemoen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | | | - Tore Slagsvold
- Department of Biosciences Center for Ecological and Evolutionary Synthesis (CEES) University of Oslo PO Box 1066 Blindern 0316 Oslo Norway
| | - Jan T Lifjeld
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Arild Johnsen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| |
Collapse
|
14
|
McNeil GV, Friesen CN, Gray SM, Aldredge A, Chapman LJ. Male colour variation in a eurytopic African cichlid: the role of diet and hypoxia. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Georgia V. McNeil
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Caitlin N. Friesen
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Suzanne M. Gray
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Amalia Aldredge
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Lauren J. Chapman
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
- Wildlife Conservation Society; 2300 Southern Boulevard Bronx NY 10460 USA
| |
Collapse
|
15
|
Nichols P, Genner MJ, van Oosterhout C, Smith A, Parsons P, Sungani H, Swanstrom J, Joyce DA. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc Biol Sci 2015; 282:20142272. [PMID: 25392475 PMCID: PMC4262179 DOI: 10.1098/rspb.2014.2272] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theory proposes that genomic admixture between formerly reproductively isolated populations can generate phenotypic novelty for selection to act upon. Secondary contact may therefore be a significant promoter of phenotypic novelty that allows species to overcome environmental challenges and adapt to novel environments, including during adaptive radiation. To date, this has largely been considered from the perspective of interspecific hybridization at contact zones. However, it is also possible that this process occurs more commonly between natural populations of a single species, and thus its importance in adaptive evolution may have been underestimated. In this study, we tested the consequences of genomic introgression during apparent secondary contact between phenotypically similar lineages of the riverine cichlid fish Astatotilapia calliptera. We provide population genetic evidence of a secondary contact zone in the wild, and then demonstrate using mate-choice experiments that both lineages can reproduce together successfully in laboratory conditions. Finally, we show that genomically admixed individuals display extreme phenotypes not observed in the parental lineages. Collectively, the evidence shows that secondary contact can drive the evolution of phenotypic novelty, suggesting that pulses of secondary contact may repeatedly seed genetic novelty, which when coupled with ecological opportunity could promote rapid adaptive evolution in natural circumstances.
Collapse
Affiliation(s)
- Paul Nichols
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Martin J Genner
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Cock van Oosterhout
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, UK School of Environmental Science, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alan Smith
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Paul Parsons
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Harold Sungani
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer Swanstrom
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Domino A Joyce
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
16
|
Abstract
The extraordinary species richness of freshwater fishes has attracted much research on mechanisms and modes of speciation. We here review research on speciation in freshwater fishes in light of speciation theory, and place this in a context of broad-scale diversity patterns in freshwater fishes. We discuss several major repeated themes in freshwater fish speciation and the speciation mechanisms they are frequently associated with. These include transitions between marine and freshwater habitats, transitions between discrete freshwater habitats, and ecological transitions within habitats, as well as speciation without distinct niche shifts. Major research directions in the years to come include understanding the transition from extrinsic environment-dependent to intrinsic reproductive isolation and its influences on species persistence and understanding the extrinsic and intrinsic constraints to speciation and how these relate to broad-scale diversification patterns through time.
Collapse
Affiliation(s)
- Ole Seehausen
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Catherine E. Wagner
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
17
|
Selz OM, Pierotti MER, Maan ME, Schmid C, Seehausen O. Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behav Ecol 2014. [DOI: 10.1093/beheco/aru024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
18
|
Anderson CJR, Harmon L. Ecological and Mutation-Order Speciation in Digital Organisms. Am Nat 2014; 183:257-68. [DOI: 10.1086/674359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Selz OM, Thommen R, Maan ME, Seehausen O. Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish. J Evol Biol 2013; 27:275-89. [DOI: 10.1111/jeb.12287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/06/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023]
Affiliation(s)
- O. M. Selz
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - R. Thommen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - M. E. Maan
- Behavioural Biology Research Group; Center for Behaviour and Neurosciences; University of Groningen; Groningen The Netherlands
| | - O. Seehausen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| |
Collapse
|
20
|
Rodríguez RL, Boughman JW, Gray DA, Hebets EA, Höbel G, Symes LB. Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecol Lett 2013; 16:964-74. [PMID: 23809185 PMCID: PMC3757319 DOI: 10.1111/ele.12142] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 01/08/2023]
Abstract
The contribution of sexual selection to diversification remains poorly understood after decades of research. This may be in part because studies have focused predominantly on the strength of sexual selection, which offers an incomplete view of selection regimes. By contrast, students of natural selection focus on environmental differences that help compare selection regimes across populations. To ask how this disparity in focus may affect the conclusions of evolutionary research, we relate the amount of diversification in mating displays to quantitative descriptions of the strength and the amount of divergence in mate preferences across a diverse set of case studies of mate choice. We find that display diversification is better explained by preference divergence rather than preference strength; the effect of the latter is more subtle, and is best revealed as an interaction with the former. Our findings cast the action of sexual selection (and selection in general) in a novel light: the strength of selection influences the rate of evolution, and how divergent selection is determines how much diversification can occur. Adopting this view will enhance tests of the relative role of natural and sexual selection in processes such as speciation.
Collapse
Affiliation(s)
- Rafael L Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Variation in contact zone dynamics between two species of topminnows, Fundulus notatus and F. olivaceus, across isolated drainage systems. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9653-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Ward JL, Blum MJ. Exposure to an environmental estrogen breaks down sexual isolation between native and invasive species. Evol Appl 2012; 5:901-12. [PMID: 23346234 PMCID: PMC3552407 DOI: 10.1111/j.1752-4571.2012.00283.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
Environmental change can increase the likelihood of interspecific hybridization by altering properties of mate recognition and discrimination between sympatric congeners. We examined how exposure to an environmentally widespread endocrine-disrupting chemical (EDC), bisphenol A (BPA), affected visual communication signals and behavioral isolation between an introduced freshwater fish and a native congener (genus: Cyprinella). Exposure to BPA induced changes in the expression of male secondary traits as well as male and female mate choice, leading to an overall reduction in prezygotic isolation between congeners. Changes in female mate discrimination were not tightly linked to changes in male phenotypic traits, suggesting that EDC exposure may alter female choice thresholds independently of the effects of exposure on males. These findings indicate that environmental exposure to EDCs can lead to population declines via the erosion of species boundaries and by promoting the establishment and spread of non-native species via hybridization.
Collapse
Affiliation(s)
- Jessica L Ward
- Department of Ecology and Evolutionary Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Fisheries, Wildlife and Conservation Biology and Department of Ecology, Evolution and Behavior, University of MinnesotaSaint Paul, MN, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, Tulane UniversityNew Orleans, LA, USA
| |
Collapse
|
23
|
Signal Divergence is Correlated with Genetic Distance and not Environmental Differences in Darters (Percidae: Etheostoma). Evol Biol 2012. [DOI: 10.1007/s11692-012-9179-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Affiliation(s)
- I Keller
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
| | | |
Collapse
|
25
|
Schwarzer J, Misof B, Schliewen UK. Speciation within genomic networks: a case study based on Steatocranus cichlids of the lower Congo rapids. J Evol Biol 2011; 25:138-48. [PMID: 22070232 DOI: 10.1111/j.1420-9101.2011.02409.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybridization in animals is a much more common phenomenon as previously thought and may have profound implications for speciation research. The cichlid genus Steatocranus (Teleostei: Cichlidae), a close relative to members of the East African cichlid radiations, radiated under riverine conditions in the lower Congo rapids and produced a small species flock. Previous phylogenetic analyses suggested that hybridization occurred and contributed to speciation in this genus. A re-analysis of an already published 2000 loci-AFLP data set explicitly testing for patterns of ancient gene flow provided strong evidence for a highly reticulate phylogenetic history of the genus. We provide, to our knowledge, the first example of a complex reticulate network in vertebrates, including multiple closely related species connected through ancient as well as recent gene flow. In this context, the limited validity of strictly bifurcating tree hypotheses as a phylogenetic basis for hypothesis testing in evolutionary biology is discussed.
Collapse
Affiliation(s)
- Julia Schwarzer
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, Bonn, Germany.
| | | | | |
Collapse
|
26
|
Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB. Predicting the probability of outbreeding depression. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2011; 25:465-75. [PMID: 21486369 DOI: 10.1111/j.1523-1739.2011.01662.x] [Citation(s) in RCA: 447] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fragmentation of animal and plant populations typically leads to genetic erosion and increased probability of extirpation. Although these effects can usually be reversed by re-establishing gene flow between population fragments, managers sometimes fail to do so due to fears of outbreeding depression (OD). Rapid development of OD is due primarily to adaptive differentiation from selection or fixation of chromosomal variants. Fixed chromosomal variants can be detected empirically. We used an extended form of the breeders' equation to predict the probability of OD due to adaptive differentiation between recently isolated population fragments as a function of intensity of selection, genetic diversity, effective population sizes, and generations of isolation. Empirical data indicated that populations in similar environments had not developed OD even after thousands of generations of isolation. To predict the probability of OD, we developed a decision tree that was based on the four variables from the breeders' equation, taxonomic status, and gene flow within the last 500 years. The predicted probability of OD in crosses between two populations is elevated when the populations have at least one of the following characteristics: are distinct species, have fixed chromosomal differences, exchanged no genes in the last 500 years, or inhabit different environments. Conversely, the predicted probability of OD in crosses between two populations of the same species is low for populations with the same karyotype, isolated for <500 years, and that occupy similar environments. In the former case, we recommend crossing be avoided or tried on a limited, experimental basis. In the latter case, crossing can be carried out with low probability of OD. We used crosses with known results to test the decision tree and found that it correctly identified cases where OD occurred. Current concerns about OD in recently fragmented populations are almost certainly excessive.
Collapse
Affiliation(s)
- Richard Frankham
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Joyce DA, Lunt DH, Genner MJ, Turner GF, Bills R, Seehausen O. Repeated colonization and hybridization in Lake Malawi cichlids. Curr Biol 2011; 21:R108-9. [PMID: 21300271 DOI: 10.1016/j.cub.2010.11.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Knudsen R, Siwertsson A, Adams CE, Garduño-Paz M, Newton J, Amundsen PA. Temporal stability of niche use exposes sympatric Arctic charr to alternative selection pressures. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9451-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Crispo E, Chapman LJ. Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. J Evol Biol 2010; 23:2091-2103. [PMID: 20722894 DOI: 10.1111/j.1420-9101.2010.02069.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic adaptation and phenotypic plasticity are two ways in which organisms can adapt to local environmental conditions. We examined genetic and plastic variation in gill and brain size among swamp (low oxygen; hypoxic) and river (normal oxygen; normoxic) populations of an African cichlid fish, Pseudocrenilabrus multicolor victoriae. Larger gills and smaller brains should be advantageous when oxygen is low, and we hypothesized that the relative contribution of local genetic adaptation vs. phenotypic plasticity should be related to potential for dispersal between environments (because of gene flow's constraint on local genetic adaptation). We conducted a laboratory-rearing experiment, with broods from multiple populations raised under high-oxygen and low-oxygen conditions. We found that most of the variation in gill size was because of plasticity. However, both plastic and genetic effects on brain mass were detected, as were genetic effects on brain mass plasticity. F(1) offspring from populations with the highest potential for dispersal between environments had characteristically smaller and more plastic brains. This phenotypic pattern might be adaptive in the face of gene flow, if smaller brains and increased plasticity confer higher average fitness across environment types.
Collapse
Affiliation(s)
- E Crispo
- Department of Biology, McGill University, Montréal, QC, Canada.
| | | |
Collapse
|
30
|
Stelkens RB, Young KA, Seehausen O. THE ACCUMULATION OF REPRODUCTIVE INCOMPATIBILITIES IN AFRICAN CICHLID FISH. Evolution 2010; 64:617-33. [DOI: 10.1111/j.1558-5646.2009.00849.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Egger B, Mattersdorfer K, Sefc KM. Variable discrimination and asymmetric preferences in laboratory tests of reproductive isolation between cichlid colour morphs. J Evol Biol 2009; 23:433-9. [PMID: 20002244 DOI: 10.1111/j.1420-9101.2009.01906.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mating behaviour affects reproductive isolation and phenotypic differentiation. In Lake Tanganyika, the cichlid fish Tropheus moorii diversified into numerous, currently allopatric colour variants. Allopatric isolation is periodically interrupted by dispersal and secondary contact during lake level fluctuations, making long-term differentiation partly dependent on assortative mating. Laboratory experiments with two moderately distinct morphs revealed assortative female preferences in one (Nakaku), but random mate choice in the other morph (Mbita). No discrimination was apparent between two subtly differentiated morphs (Chimba and Moliro). Tested against each other in a previous study, the highly distinct Moliro and Nakaku exhibited strong assortative preferences. The correlation between colour pattern similarity and mate discrimination suggests that allopatry and philopatric behaviour are less crucial for the maintenance of differentiation between highly distinct morphs than for more similar morphs. Interestingly, the asymmetric isolation in one pair of morphs is congruent with a pattern of unidirectional mitochondrial introgression between populations.
Collapse
Affiliation(s)
- B Egger
- Department of Zoology, University of Graz, Graz, Austria
| | | | | |
Collapse
|