1
|
Kalugotla G, Marmerstein V, Baldridge MT. Regulation of host/pathogen interactions in the gastrointestinal tract by type I and III interferons. Curr Opin Immunol 2024; 87:102425. [PMID: 38763032 PMCID: PMC11162908 DOI: 10.1016/j.coi.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Harnik Y, Buchauer L, Ben-Moshe S, Averbukh I, Levin Y, Savidor A, Eilam R, Moor AE, Itzkovitz S. Spatial discordances between mRNAs and proteins in the intestinal epithelium. Nat Metab 2021; 3:1680-1693. [PMID: 34931081 DOI: 10.1038/s42255-021-00504-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The use of transcriptomes as reliable proxies for cellular proteomes is controversial. In the small intestine, enterocytes operate for 4 days as they migrate along villi, which are highly graded microenvironments. Spatial transcriptomics have demonstrated profound zonation in enterocyte gene expression, but how this variability translates to protein content is unclear. Here we show that enterocyte proteins and messenger RNAs along the villus axis are zonated, yet often spatially discordant. Using spatial sorting with zonated surface markers, together with a Bayesian approach to infer protein translation and degradation rates from the combined spatial profiles, we find that, while many genes exhibit proteins zonated toward the villus tip, mRNA is zonated toward the villus bottom. Finally, we demonstrate that space-independent protein synthesis delays can explain many of the mRNA-protein discordances. Our work provides a proteomic spatial blueprint of the intestinal epithelium, highlighting the importance of protein measurements for inferring cell states in tissues that operate outside of steady state.
Collapse
Affiliation(s)
- Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lisa Buchauer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Averbukh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Lobo-da-Cunha A, Amaral-de-Carvalho D, Oliveira E, Alves Â, Costa V, Calado G. Mannitol oxidase and polyol dehydrogenases in the digestive gland of gastropods: Correlations with phylogeny and diet. PLoS One 2018. [PMID: 29529078 PMCID: PMC5846779 DOI: 10.1371/journal.pone.0193078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mannitol oxidase and polyol dehydrogenases are enzymes that convert polyalcohols into sugars. Mannitol oxidase was previously investigated in terrestrial snails and slugs, being also present in a few aquatic gastropods. However, the overall distribution of this enzyme in the Gastropoda was not known. Polyol dehydrogenases are also poorly studied in gastropods and other mollusks. In this study, polyalcohol oxidase and dehydrogenase activities were assayed in the digestive gland of 26 species of gastropods, representing the clades Patellogastropoda, Neritimorpha, Vetigastropoda, Caenogastropoda and Heterobranchia. Marine, freshwater and terrestrial species, including herbivores and carnivores were analyzed. Ultrastructural observations were undertake in species possessing mannitol oxidase, in order to investigate the correlation between this enzyme and the presence of tubular structures known to be associated with it. Mannitol oxidase activity was detected in the digestive gland of herbivores from the clades Caenogastropoda and Heterobranchia, but not in any carnivores or in herbivores from the clades Patellogastropoda, Neritimorpha and Vetigastropoda. In most of the species used in this study, dehydrogenase activities were detected using both D-mannitol and D-sorbitol as substrates. Nevertheless, in some carnivores these activities were not detected with both polyalcohols. Ultrastructural observations revealed tubular structures in digestive gland cells of some species having mannitol oxidase activity, but they were not observed in others. Based on our results, we suggest that mannitol oxidase first occurred in a herbivorous or omnivorous ancestor of Apogastropoda, the clade formed by caenogastropods and heterobranchs, being subsequently lost in those species that shifted towards a carnivorous diet.
Collapse
Affiliation(s)
- Alexandre Lobo-da-Cunha
- Departamento de Microscopia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Matosinhos, Portugal
- * E-mail:
| | - Diogo Amaral-de-Carvalho
- Departamento de Microscopia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Elsa Oliveira
- Departamento de Microscopia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ângela Alves
- Departamento de Microscopia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Vítor Costa
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Gonçalo Calado
- Departamento de Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- MARE NOVA, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Departamento de Ciências e Engenharia do Ambiente, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
4
|
Houen G. Mammalian Cu-containing amine oxidases (CAOs): New methods of analysis, structural relationships, and possible functions. APMIS 2017; 107:5-46. [DOI: 10.1111/apm.1999.107.s96.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Morvay PL, Baes M, Van Veldhoven PP. Differential activities of peroxisomes along the mouse intestinal epithelium. Cell Biochem Funct 2017; 35:144-155. [PMID: 28370438 DOI: 10.1002/cbf.3255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
Abstract
The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid-related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α-, β-oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D-specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β-oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment.
Collapse
Affiliation(s)
- Petruta L Morvay
- Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
6
|
Nardacci R, Falciatori I, Moreno S, Stefanini S. Immunohistochemical Localization of Peroxisomal Enzymes During Rat Embryonic Development. J Histochem Cytochem 2016; 52:423-36. [PMID: 15033994 DOI: 10.1177/002215540405200401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxisomes are cytoplasmic organelles involved in a variety of metabolic pathways. Thus far, the morphological and biochemical features of peroxisomes have been extensively characterized in adult tissues. However, the existence of congenital peroxisomal disorders, primarily affecting tissue differentiation, emphasizes the importance of these organelles in the early stages of organogenesis. We investigated the occurrence and tissue distribution of three peroxisomal enzymes in rat embryos at various developmental stages. By means of a highly sensitive biotinyl-tyramide protocol, catalase, acyl-CoA oxidase, and ketoacyl-CoA thiolase were detected in embryonic tissues where peroxisomes had not thus far been recognized, i.e., adrenal and pancreatic parenchyma, choroid plexus, neuroblasts of cranial and spinal ganglia and myenteric plexus, and chondroblasts of certain skeletal structures. In other tissues, i.e., gut epithelium and neuroblasts of some CNS areas, they were identified earlier than previously. In select CNS areas, ultrastructural catalase cytochemistry allowed identification of actively proliferating organelles at early developmental stages in several cell types. Our data show that in most organs maturation of peroxisomes parallels the acquirement of specific functions, mainly related to lipid metabolism, thus supporting an involvement of the organelles in tissue differentiation.
Collapse
Affiliation(s)
- Roberta Nardacci
- Department of Cellular and Developmental Biology, University La Sapienza, Italy.
| | | | | | | |
Collapse
|
7
|
Batista-Pinto C, Lobo-da-Cunha A, Malhão F, Resende AD, Rocha MJ, Rocha E. Kinetics of the Metabolic and Morphological Alterations in Brown Trout Hepatic Peroxisomes Under Estradiol Influence. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21 Suppl 5:61-62. [PMID: 26227711 DOI: 10.1017/s1431927615014117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Carla Batista-Pinto
- 1CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra,1317,4585-116 Gandra PRD,Portugal
| | - Alexandre Lobo-da-Cunha
- 2Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR),U.Porto,Rua dos Bragas 289,4050-123 Porto,Portugal
| | - Fernanda Malhão
- 2Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR),U.Porto,Rua dos Bragas 289,4050-123 Porto,Portugal
| | - Albina D Resende
- 1CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra,1317,4585-116 Gandra PRD,Portugal
| | - Maria J Rocha
- 1CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra,1317,4585-116 Gandra PRD,Portugal
| | - Eduardo Rocha
- 2Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR),U.Porto,Rua dos Bragas 289,4050-123 Porto,Portugal
| |
Collapse
|
8
|
Urbatzka R, Galante-Oliveira S, Rocha E, Lobo-da-Cunha A, Castro LFC, Cunha I. Effects of the PPARα agonist WY-14,643 on plasma lipids, enzymatic activities and mRNA expression of lipid metabolism genes in a marine flatfish, Scophthalmus maximus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 164:155-162. [PMID: 25974001 DOI: 10.1016/j.aquatox.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Fibrates and other lipid regulator drugs are widespread in the aquatic environment including estuaries and coastal zones, but little is known on their chronic effects on non-target organisms as marine fish. In the present study, turbot juveniles were exposed to the PPARα model agonist WY-14,643 for 21 days by repeated injections at the concentrations of 5mg/kg (lo-WY) and 50mg/kg (hi-WY), and samples taken after 7 and 21 days. Enzyme activity and mRNA expression of palmitoyl-CoA oxidase and catalase in the liver were analyzed as first response, which validated the experiment by demonstrating interactions with the peroxisomal fatty acid oxidation and oxidative stress pathways in the hi-WY treatment. In order to get mechanistic insights, alterations of plasma lipids (free cholesterol, FC; HDL associated cholesterol, C-HDL; triglycerides, TG; non-esterified fatty acids, NEFA) and hepatic mRNA expression of 17 genes involved in fatty acid and lipid metabolism were studied. The exposure to hi-WY reduced the quantity of plasma FC, C-HDL, and NEFA. Microsomal triglyceride transfer protein and apolipoprotein E mRNA expression were higher in hi-WY, and indicated an increased formation of VLDL particles and energy mobilization from liver. It is speculated that energy depletion by PPARα agonists may contribute to a higher susceptibility to environmental stressors.
Collapse
Affiliation(s)
- R Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U.Porto), Portugal.
| | - S Galante-Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U.Porto), Portugal; Department of Biology & CESAM, University of Aveiro, Portugal
| | - E Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U.Porto), Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Portugal
| | - A Lobo-da-Cunha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U.Porto), Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Portugal
| | - L F C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U.Porto), Portugal
| | - I Cunha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U.Porto), Portugal
| |
Collapse
|
9
|
Roberts JC. Stereoisomers of cysteine and its analogs Potential effects on chemo- and radioprotection strategies. Amino Acids 2013; 8:113-24. [PMID: 24186322 DOI: 10.1007/bf00806486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1994] [Accepted: 11/03/1994] [Indexed: 12/12/2022]
Abstract
The thiol-containing amino acid, cysteine, and its analogs are useful for a variety of protective applications, including protecting normal tissues against the unwanted side effects of cancer chemotherapeutic agents and radiation treatment. The protection can result from both direct action of the amino acid and/or after its conversion to glutathione (GSH), sulfate, or other sulfur-based protective substances. Unfortunately, high GSH levels have been implicated in the problematic development of tumor cells' resistance to therapy. Due to numerous differences in the metabolic processing of the cysteine stereoisomers, chemo- and radioprotective strategies might be developed using the D-form of the amino acid, which can participate in protection directly, but which cannot be used to support GSH biosynthesis. In this way, protection of normal tissue may be achieved, while the potential development of resistance in tumor cells is minimized. Greatly enhanced therapeutic efficacy of cancer treatment regimens may be the result.
Collapse
Affiliation(s)
- J C Roberts
- Department of Medicinal Chemistry, University of Utah, 308 Skaggs Hall, 84112, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Islinger M, Cardoso MJR, Schrader M. Be different--the diversity of peroxisomes in the animal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:881-97. [PMID: 20347886 DOI: 10.1016/j.bbamcr.2010.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins.
Collapse
Affiliation(s)
- M Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
11
|
Turan A, Gill R, Dudeja PK, Mohan H, Mahmood A. Effect of fat feeding on pro-oxidant and anti-oxidant enzyme systems in rat intestine: possible role in the turnover of enterocytes. Dig Dis Sci 2009; 54:1229-36. [PMID: 18989782 PMCID: PMC2679095 DOI: 10.1007/s10620-008-0490-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/22/2008] [Indexed: 12/31/2022]
Abstract
Immature epithelial cells generated in the crypt base undergo differentiation while progressing to the villus tip, where the cells upon apoptosis are detached from the underlying muscular tissue. We previously reported that lipid peroxidation might be involved in the turnover of enterocytes across the crypt-villus axis in rat intestine (Dig Dis Sci 52:1840-1844, 2007). To examine whether long-term feeding of fat with different fatty-acid composition influences this process, in the present study we investigated the effect of feeding fish oil (n - 3) and corn oil (n - 6) polyunsaturated fatty acids on lipid per-oxidation and anti-oxidant systems in different epithelial cell fractions isolated in rat intestine. Feeding fish oil or corn oil markedly enhanced lipid per-oxidation levels of enterocytes throughout villus height compared with control, but there was no difference in the distribution profile of pro- and anti-oxidant enzyme systems and lipid per-oxidation across the crypt-villus axis under these conditions. Analysis of lipid peroxidation levels in different cell fractions revealed that the thiobarbituric acid reactive substance were 9- to 11-fold higher at the villus tip compared with at the crypt base. The activities of glutathione reductase and glutathione-S-transferase were 2- to 5-fold higher in villus tip compared to the crypt region. However, the activities of superoxide dismutase and catalase were 6- to 8-fold high at the crypt base compared with at villus tip cells. Immunocytolocalization of superoxide dismutase showed high staining in crypt base compared with that in villus, tip cells. These findings further suggest that generation of reactive oxygen species in enterocytes across the crypt-villus axis may be involved in turnover of enterocytes across the crypt-villus unit in rat intestine.
Collapse
Affiliation(s)
- Aasma Turan
- Department of Biochemistry, Panjab University, Chandigarh 160014, India, e-mail:
| | - Ravinder Gill
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Pradeep K. Dudeja
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Harsh Mohan
- Department of Pathology, Government Medical College, Chandigarh 160032, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh 160014, India, e-mail:
| |
Collapse
|
12
|
Baumgart E, Fahimi HD, Steininger H, Grabenbauer M. A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 2003; 61:121-38. [PMID: 12740819 DOI: 10.1002/jemt.10322] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the era of application of molecular biological gene-targeting technology for the generation of knockout mouse models to study human genetic diseases, the availability of highly sensitive and reliable methods for the morphological characterization of the specific phenotypes of these mice is of great importance. In the first part of this report, the role of morphological techniques for studying the biology and pathology of peroxisomes is reviewed, and the techniques established in our laboratories for the localization of peroxisomal proteins and corresponding mRNAs in fetal and newborn mice are presented and discussed in the context of the international literature. In the second part, the literature on the ontogenetic development of the peroxisomal compartment in mice, with special emphasis on liver and intestine is reviewed and compared with our own data reported recently. In addition, some recent data on the pathological alterations in the liver of the PEX5(-/-) mouse with a peroxisomal biogenesis defect are briefly discussed. Finally, the methods developed during these studies for the localization of mitochondrial proteins (respiratory chain complexes and MnSOD) are presented and their advantages and pitfalls discussed. With the help of these techniques, it is now possible to identify and distinguish unequivocally peroxisomes from mitochondria, two classes of cell organelles giving by light microscopy a punctate staining pattern in microscopical immunohistochemical preparations of paraffin-embedded mouse tissues.
Collapse
Affiliation(s)
- Eveline Baumgart
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Giessen, Germany.
| | | | | | | |
Collapse
|
13
|
Grabenbauer M, Fahimi HD, Baumgart E. Detection of peroxisomal proteins and their mRNAs in serial sections of fetal and newborn mouse organs. J Histochem Cytochem 2001; 49:155-64. [PMID: 11156684 DOI: 10.1177/002215540104900203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present a protocol for detection of peroxisomal proteins and their corresponding mRNAs on consecutive serial sections of fetal and newborn mouse tissues by immunohistochemistry (IHC) and nonradioactive in situ hybridization (ISH). The use of perfusion-fixation with depolymerized paraformaldehyde combined with paraffin embedding and digoxigenin-labeled cRNA probes provided a highly sensitive ISH protocol, which also permitted immunodetection with high optical resolution by light and/or fluorescence microscopy. Signal enhancement was achieved by the addition of polyvinyl alcohol (PVA) for ISH color development. For IHC, signal amplification was obtained by antigen retrieval combined with biotin-avidin-HRP and Nova Red as substrate or by the catalyzed reporter deposition of fluorescent tyramide. Using this protocol, we studied the developmental changes in localization of the peroxisomal marker enzymes catalase (CAT) and acyl-CoA oxidase 1 (AOX), the key regulatory enzyme of peroxisomal beta-oxidation, at the protein and mRNA levels in mice from embryonic Day 14.5 to birth (P0.5). The mRNA signals for CAT and AOX were detected in sections of complete fetuses, revealing organ- and cell-specific variations. Here we focus on the localization patterns in liver, intestine, and skin, which showed increasing mRNA amounts during development, with the strongest signals in newborns (P0.5). Immunolocalization of the corresponding proteins revealed, in close correlation with the mRNAs, a distinct punctate staining pattern corresponding to the distribution of peroxisomes. (J Histochem Cytochem 49:155-164, 2001)
Collapse
Affiliation(s)
- M Grabenbauer
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Cimini AM, Singh I, Farioli-Vecchioli S, Cristiano L, Cerú MP. Presence of heterogeneous peroxisomal populations in the rat nervous tissue. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:13-26. [PMID: 9813222 DOI: 10.1016/s0304-4165(98)00049-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Peroxisomes were purified from the nervous tissue of 14-day-old rats by means of a Nycodenz gradient. Peroxisomal enzymes exhibited different sedimentation patterns: dihydroxyacetone phosphate acyl-transferase equilibrates at 1.142 g/ml together with the first peak of catalase; palmitoyl-CoA oxidase and D-amino acid oxidase activities are mainly recovered at 1.154 g/ml; the second peak of catalase is found at 1.175 g/ml. Morphological and semi-quantitative analyses of immunogold-labelled peroxisomes reveal profound heterogeneity of the particles. Very small (=0.2 microm diameter), electron dense vesicles containing catalase or thiolase, but devoid of other tested enzymes, are preferentially found in the light region, together with larger ( > 0.2 < 0.3 microm) and less electron dense palmitoyl-CoA oxidase-positive peroxisomes. At intermediate density (1.154 g/ml) peroxisomes of more uniform size (0.25-0.27 microm), containing palmitoyl-CoA oxidase or thiolase with or without catalase are preferentially found. This population extends toward the densest region of the gradient, where very large D-amino acid oxidase-containing peroxisomes are also found. In this region, smaller peroxisomes, often polymorphic, which are catalase- and thiolase-positive and D-amino acid oxidase/palmitoyl-CoA oxidase-negative, are also observed. The possibility that the heterogeneity of neural peroxisomes may reflect both cellular heterogeneity and ongoing peroxisomal biogenesis is discussed.
Collapse
Affiliation(s)
- A M Cimini
- Department of Basic and Applied Biology, University of L'Aquila, Coppito L'Aquila, Italy
| | | | | | | | | |
Collapse
|
15
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|