1
|
Wlodarczyk B, Durko L, Walczak K, Talar-Wojnarowska R, Malecka-Wojciesko E. Select Endocrine Disorders and Exosomes in Early PDAC Diagnosis. Int J Mol Sci 2024; 25:12159. [PMID: 39596226 PMCID: PMC11594802 DOI: 10.3390/ijms252212159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Disturbances in carbohydrate metabolism are suggested to be the early symptoms of pancreatic ductal adenocarcinoma (PDAC). The accumulated data suggests that endocrine function-related biomarkers may represent a breakthrough in the early detection of PDAC. Factors which may predispose one to the development of PDAC are insulin resistance and hyperinsulinemia. Elevated insulin levels induce the onset of carcinogenesis by altering the differentiation and function of islet cells through stimulating growth factors, including insulin-like growth factors (IGFs). Impaired β cell function, along with the impact of PDAC-released factors (e.g., adrenomedullin (ADM), IGF-1, and macrophage inhibitory factor (MIF) on pancreatic islets, may contribute to the induction of diabetes associated with PDAC. Recently, exosomes have attracted worldwide attention due to their role in varied features of cell function, particularly in cancer progression. Exosomes comprise of small extracellular vesicles produced by almost all cells. These vesicles contain a vast array of biomolecules, including proteins and microRNAs. Exosomes participate in cancer growth and promote angiogenesis. They promote tumorigenesis and metastasis, and are associated with the acquisition of cancer cells resistant to chemotherapy. Data have been accumulating recently on the role of exosomes in the rapid recognition, prognosis and potential therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Lukasz Durko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Konrad Walczak
- Department of Internal Diseases and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | | | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
2
|
Omori K, Qi M, Salgado M, Gonzalez N, Hui LT, Chen KT, Rawson J, Miao L, Komatsu H, Isenberg JS, Al-Abdullah IH, Mullen Y, Kandeel F. A scalable human islet 3D-culture platform maintains cell mass and function long-term for transplantation. Am J Transplant 2024; 24:177-189. [PMID: 37813189 DOI: 10.1016/j.ajt.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained β cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.
Collapse
Affiliation(s)
- Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lauren T Hui
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kuan-Tsen Chen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lynn Miao
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hirotake Komatsu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Viability and Functionality of Neonatal Porcine Islet-like Cell Clusters Bioprinted in Alginate-Based Bioinks. Biomedicines 2022; 10:biomedicines10061420. [PMID: 35740440 PMCID: PMC9220255 DOI: 10.3390/biomedicines10061420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
The transplantation of pancreatic islets can prevent severe long-term complications in diabetes mellitus type 1 patients. With respect to a shortage of donor organs, the transplantation of xenogeneic islets is highly attractive. To avoid rejection, islets can be encapsulated in immuno-protective hydrogel-macrocapsules, whereby 3D bioprinted structures with macropores allow for a high surface-to-volume ratio and reduced diffusion distances. In the present study, we applied 3D bioprinting to encapsulate the potentially clinically applicable neonatal porcine islet-like cell clusters (NICC) in alginate-methylcellulose. The material was additionally supplemented with bovine serum albumin or the human blood plasma derivatives platelet lysate and fresh frozen plasma. NICC were analysed for viability, proliferation, the presence of hormones, and the release of insulin in reaction to glucose stimulation. Bioprinted NICC are homogeneously distributed, remain morphologically intact, and show a comparable viability and proliferation to control NICC. The number of insulin-positive cells is comparable between the groups and over time. The amount of insulin release increases over time and is released in response to glucose stimulation over 4 weeks. In summary, we show the successful bioprinting of NICC and could demonstrate functionality over the long-term in vitro. Supplementation resulted in a trend for higher viability, but no additional benefit on functionality was observed.
Collapse
|
4
|
Tse HM, Gardner G, Dominguez-Bendala J, Fraker CA. The Importance of Proper Oxygenation in 3D Culture. Front Bioeng Biotechnol 2021; 9:634403. [PMID: 33859979 PMCID: PMC8042214 DOI: 10.3389/fbioe.2021.634403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cell culture typically employs inexpensive, disposable plasticware, and standard humidified CO2/room air incubators (5% CO2, ∼20% oxygen). These methods have historically proven adequate for the maintenance of viability, function, and proliferation of many cell types, but with broad variation in culture practices. With technological advances it is becoming increasingly clear that cell culture is not a “one size fits all” procedure. Recently, there is a shift toward comprehension of the individual physiological niches of cultured cells. As scale-up production of single cell and 3D aggregates for therapeutic applications has expanded, researchers have focused on understanding the role of many environmental metabolites/forces on cell function and viability. Oxygen, due to its role in cell processes and the requirement for adequate supply to maintain critical energy generation, is one such metabolite gaining increased focus. With the advent of improved sensing technologies and computational predictive modeling, it is becoming evident that parameters such as cell seeding density, culture media height, cellular oxygen consumption rate, and aggregate dimensions should be considered for experimental reproducibility. In this review, we will examine the role of oxygen in 3D cell culture with particular emphasis on primary islets of Langerhans and stem cell-derived insulin-producing SC-β cells, both known for their high metabolic demands. We will implement finite element modeling (FEM) to simulate historical and current culture methods in referenced manuscripts and innovations focusing on oxygen distribution. Our group and others have shown that oxygen plays a key role in proliferation, differentiation, and function of these 3D aggregates. Their culture in plastic consistently results in core regions of hypoxia/anoxia exacerbated by increased media height, aggregate dimensions, and oxygen consumption rates. Static gas permeable systems ameliorate this problem. The use of rotational culture and other dynamic culture systems also have advantages in terms of oxygen supply but come with the caveat that these endocrine aggregates are also exquisitely sensitive to mechanical perturbation. As recent work demonstrates, there is a strong rationale for the use of alternate in vitro systems to maintain physio-normal environments for cell growth and function for better phenotypic approximation of in vivo counterparts.
Collapse
Affiliation(s)
- Hubert M Tse
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Graeme Gardner
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Juan Dominguez-Bendala
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States.,Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
5
|
In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:553-576. [PMID: 32504388 DOI: 10.1007/5584_2020_536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment. Summary of this review.
Collapse
|
6
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Bouckenooghe T, Vandewalle B, Lukowiak B, Kerr-Conte J, Belaïch S, Gmyr V, Dubois M, Riachy R, Pattou F. Modulation of Specific Beta Cell Gene (Re)Expression during In Vitro Expansion of Human Pancreatic Islet Cells. Cell Transplant 2017; 12:799-807. [PMID: 14653626 DOI: 10.3727/000000003108747271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The need for transplantable beta cells with a stable phenotype has given rise to several strategies including the expansion of existing pancreatic islets and/or growth of new ones. In vitro studies of beta cell proliferation on extracellular matrices plus growth factors have highlighted a possible cell expansion technique; however, the technique was accompanied with loss of insulin secretion. Herein we showed that human islet cell proliferation was marked by a decreased expression of specific differentiation markers, particularly insulin, insulin promoting factor-1 (IPF-1), and glucokinase. After a 6-day expansion period, we tried to reexpress the beta cell differentiation markers with compounds known for their differentiation and/or insulin-secreting properties. Sodium butyrate was a potent factor of IPF-1, insulin, and glucokinase gene reexpression; it also clearly induced secretion of gastrin, a known neogenic factor. Other compounds, namely TGF-β, calcitriol, GLP-1, and activin A, efficiently enhanced the glucose sensor machinery, particularly Glut-1 and glucokinase, thus triggering glucose responsiveness. Our results indicate that specific beta cell gene expression may be induced after expansion and dedifferentiation. This rekindles interest in human beta cell expansion. The possible stabilization of specialized genes needed by beta cells to fulfill their role as nutrient sensors and metabolic regulators may also be of interest to ensure graft maintenance and efficiency.
Collapse
Affiliation(s)
- Thomas Bouckenooghe
- Thérapie Cellulaire du Diabète, INSERM, ERIM 0106, Faculté de Médecine, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barnett MJ, McGhee-Wilson D, Shapiro AMJ, Lakey JRT. Variation in Human Islet Viability Based on Different Membrane Integrity Stains. Cell Transplant 2017; 13:481-8. [PMID: 15565860 DOI: 10.3727/000000004783983701] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Membrane integrity fluorescent staining is used routinely to evaluate islet viability. Results are used as one of the determining factors in islet product release criteria, and are used to assess the efficacy of different culture conditions. Recently, it has been observed that there is variation in the viability staining of freshly isolated islets based on which viability assay is used. This investigation compares three membrane integrity stains for the viability assessment of isolated human islets. Fluorescein diacetate/propidium iodide (FDA/PI), the current standard method for assessing islet viability, demonstrates intense extracellular fluorescence, reducing the differential staining of intact islets. We further evaluated SYTO-13/ethidium bromide (SYTO/EB) and calcein AM/ethidium homodimer (C/EthD) as alternative viability assays, and found considerable variation between FDA/PI and either SYTO/EB or C/EthD staining. Preparations of human islets were obtained from cadaveric pancreata after collagenase digestion, mechanical separation, and purification by continuous Ficoll gradient centrifugation. For each preparation, two replicate samples of 50 islets were counted for each stain, and the percent viability calculated. The results for SYTO/EB and C/EthD were nearly identical [57.6 ± 7.3% and 57.9 ± 7.2%, respectively (mean ± SEM), N = 11]. FDA/PI-stained islets, however, showed consistently elevated values when compared to SYTO/EB. Accurate assessment of islet viability remains a critical determinant of islet product release. The discrepancies found between FDA/PI scoring and visual quality, compared with alternative stains, suggests that the FDA/PI stain may not be the optimal approach to assess islet viability.
Collapse
Affiliation(s)
- M J Barnett
- Clinical Islet Program, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
9
|
Reproducible preparation of spheroids of pancreatic hormone positive cells from human iPS cells: An in vitro study. Biochim Biophys Acta Gen Subj 2016; 1860:2008-16. [DOI: 10.1016/j.bbagen.2016.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 01/13/2023]
|
10
|
Truong W, Shapiro AMJ. Progress in islet transplantation in patients with type 1 diabetes mellitus. ACTA ACUST UNITED AC 2016; 5:147-58. [PMID: 16677057 DOI: 10.2165/00024677-200605030-00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 500 patients with type 1 diabetes mellitus have now received islet transplants at over 50 institutions worldwide in the past 5 years. Rates of insulin independence at 1 year with current protocols are impressive. However, inexorable decay of islet function over time indicates that there are many opportunities for improvement. Improved control of glycosylated hemoglobin and reduced risk of recurrent hypoglycemia are seen as important benefits of islet transplantation, irrespective of the status regarding insulin independence. For the use of islet transplantation to expand it is essential that the donor-to-recipient ratio be reliably reduced to 1 : 1. Enormous opportunities lie ahead for the development of successful living donor islet transplantation, single donor protocols, improved engraftment, islet proliferation in vitro and in the recipient, alternative islet sources, and novel tolerizing drugs. With these emerging opportunities, islet transplantation may expand to include more patients with type 1 diabetes, including children, and will not be restricted to the most unstable forms of the disease, as it is today.
Collapse
Affiliation(s)
- Wayne Truong
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
11
|
Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials 2012; 33:6691-7. [PMID: 22766242 DOI: 10.1016/j.biomaterials.2012.06.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/14/2012] [Indexed: 01/06/2023]
Abstract
Pancreatic islet encapsulation within biosynthetic materials has had limited clinical success due to loss of islet function and cell death. As an alternative encapsulation material, a silk-based scaffold was developed to reestablish the islet microenvironment lost during cell isolation. Islets were encapsulated with ECM proteins (laminin and collagen IV) and mesenchymal stromal cells (MSCs), known to have immunomodulatory properties or to enhance islet cell graft survival and function. After a 7 day in vitro encapsulation, islets remained viable and maintained insulin secretion in response to glucose stimulation. Islets encapsulated with collagen IV, or laminin had increased insulin secretion at day 2 and day 7, respectively. A 3.2-fold synergistic improvement in islet insulin secretion was observed when islets were co-encapsulated with MSCs and ECM proteins. Furthermore, encapsulated islets had increased gene expression of functional genes; insulin I, insulin II, glucagon, somatostatin, and PDX-1, and lower expression of the de-differentiation genes cytokeratin 19 and vimentin compared to non-encapsulated cells. This work demonstrates that encapsulation in silk with both MSCs and ECM proteins enhances islet function and with further development may have potential as a suitable platform for islet delivery in vivo.
Collapse
|
12
|
Maillard E, Juszczak MT, Langlois A, Kleiss C, Sencier MC, Bietiger W, Sanchez-Dominguez M, Krafft MP, Johnson PRV, Pinget M, Sigrist S. Perfluorocarbon Emulsions Prevent Hypoxia of Pancreatic β-Cells. Cell Transplant 2012; 21:657-69. [DOI: 10.3727/096368911x593136] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As oxygen carriers, perfluorocarbon emulsions might be useful to decrease hypoxia of pancreatic islets before transplantation. However, their hydrophobicity prevents their homogenisation in culture medium. To increase the surface of contact between islets and Perfluorooctyl bromide (PFOB), and consequently oxygen delivery, we tested effect of a PFOB emulsion in culture medium on β-cell lines and rat pancreatic islets. RINm5F β-cell line or pancreatic rat islets were incubated for 3 days in the presence of PFOB emulsion in media (3.5% w/v). Preoxygenation of the medium was performed before culture. Cell viability was assessed by apoptotic markers (Bax and Bcl-2) and by staining (fluoresceine diacetate and propidium iodide). β-Cell functionality was determined by insulin release during a glucose stimulation test and. Hypoxia markers, HIF-1α and VEGF, were studied at days 1 and 3 using RT-PCR, Western blotting, and ELISA. PFOB emulsions preserved viability and functionality of RINm5F cells with a decrease of HIF-1α and VEGF expression. Islets viability was preserved during 3 days of culture. Secretion of VEGF was higher in untreated control (0.09 ± 0.041 μg VEGF/mg total protein) than in PFOB emulsion incubated islets (0.02 ± 0.19 μg VEGF/mg total protein, n = 4, p < 0.05) at day 1. At day 3, VEGF secretion was increased as compared to day 1 in control (0.23 ± 0.04 μg VEGF/mg total protein) but it was imbalance by the presence of PFOB emulsion (0.09 ± 0.03 μg VEGF/mg total protein, n = 5, p < 0.05). While insulin secretion was maintained in response to a glucose stimulation test until day 3 when islets were incubated in the presence of PFOB emulsion preoxygenated (0.81 ± 0.16 at day 1 vs. 0.75 ± 0.24 at day 3), the ability to secrete insulin in the presence of high glucose concentration was lost in islets controls (0.51 ± 0.18 at day 1 vs. 0.21 ± 0.13 at day 3). Atmospheric oxygen delivery by PFOB emulsion might be sufficient to decrease islets hypoxia. However, to improve islets functionality, overoxygenation is needed. Finally, maintenance of islet viability and functionality for several days after isolation could improve the outcome of islets transplantation.
Collapse
Affiliation(s)
- E. Maillard
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - M. T. Juszczak
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - A. Langlois
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | - C. Kleiss
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | - M. C. Sencier
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | - W. Bietiger
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| | | | | | - P. R. V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - M. Pinget
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
- University de Strasbourg (UdS), Strasbourg, France
| | - S. Sigrist
- Centre Européen d'Etude du Diabète (CeeD), Strasbourg, France
| |
Collapse
|
13
|
Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 2011; 33:837-45. [PMID: 22054535 DOI: 10.1016/j.biomaterials.2011.10.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022]
Abstract
In this study, we suggest in situ islet spheroid formation and encapsulation on a single platform without replating as a method for producing mono-disperse spheroids and minimizing damage to spheroids during encapsulation. Using this approach, the size of spheroid can be controlled by modulating the size of the concave well. Here, we used 300 μm concave wells to reduce spheroid size and thereby eliminating the central necrosis caused by large volume. As the encapsulation material, we used alginate and collagen-alginate composite (CAC), and evaluated their suitability through diverse in vitro tests, including measurements of viability, oxygen consumption rate (OCR), hypoxic damage to encapsulated spheroids, and insulin secretion. For in situ encapsulation, alginate or CAC was spread over a concave microwell array containing spheroids, and CaCl(2) solution was diffused through a nano-porous dialysis membrane to achieve uniform polymerization, forming convex structures. By this process, the formation of uniform-size islet spheroids and their encapsulation without an intervening replating step was successfully performed. As a control, intact islets were evaluated concurrently. The in vitro test demonstrated excellent performance of CAC-encapsulated spheroids, and on the basis of these results, we transplanted the islet spheroids-encapsulated with CAC into the intraperitoneal cavity of mice with induced diabetes for 4 weeks, and evaluated subsequent glucose control. Intact islets were also transplanted as control to investigate the effect of encapsulation. Transplanted CAC-encapsulated islet spheroids maintained glucose levels below 200 mg/dL for 4 weeks, at which they were still active. At the end of the implantation experiment, we carried out intraperitoneal glucose tolerance test (IPGTT) in mice to investigate whether the implanted islets remained responsive to glucose. The glucose level in mice with CAC-encapsulated islet spheroids dropped below 200 mg/dL 60 min after glucose injection and was stably maintained. In conclusion, the proposed encapsulation method enhances the viability and function of islet spheroids, and protects these spheroids from immune attack.
Collapse
Affiliation(s)
- Bo Ram Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-703, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Daoud J, Rosenberg L, Tabrizian M. Pancreatic Islet Culture and Preservation Strategies: Advances, Challenges, and Future Outlook. Cell Transplant 2010; 19:1523-35. [DOI: 10.3727/096368910x515872] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Postisolation islet survival is a critical step for achieving successful and efficient islet transplantation. This involves the optimization of islet culture in order to prolong survival and functionality in vitro. Many studies have focused on different strategies to culture pancreatic islets in vitro through manipulation of culture media, surface modified substrates, and the use of various techniques such as encapsulation, embedding, scaffold, and bioreactor culture strategies. This review aims to present and discuss the different methodologies employed to optimize pancreatic islet culture in vitro as well as address their respective advantages and drawbacks.
Collapse
Affiliation(s)
- Jamal Daoud
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Gundersen SI, Chen G, Powell HM, Palmer AF. Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactor. Biotechnol Bioeng 2010; 107:582-92. [DOI: 10.1002/bit.22830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Blau A, Neumann T, Ziegler C, Benfenati F. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures. J Biosci 2009; 34:59-69. [PMID: 19430119 DOI: 10.1007/s12038-009-0009-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity over time. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37 degrees C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness,pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60 degrees C yielded a 10-fold reduced water vapour flux of 1.75 g/day/ dm 2 through PDMS lids as compared with 18.69 g/day/dm 2 with conventional Petri dishes. Using such PDMS lids,about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these,the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.
Collapse
Affiliation(s)
- Axel Blau
- The Italian Institute of Technology, Department of Neuroscience and Brain Technologies, Via Morego 30, 16163 Genoa, Italy.
| | | | | | | |
Collapse
|
17
|
Barbaro B, Kuechle J, Salehi P, Rodriguez L, Qi M, Gangemi A, Benedetti E, Oberholzer J. Increased albumin concentration reduces apoptosis and improves functionality of human islets. ACTA ACUST UNITED AC 2008; 36:74-81. [PMID: 18293163 DOI: 10.1080/10731190701857819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Providing sufficient islet mass is important for successful islet transplantation. Apoptosis plays a major role in post-isolation islet cell death, and prevention of apoptosis could improve transplant outcomes. The purpose of this study was to determine whether increased concentration of human albumin (HA) in pre-transplantation culture of human islets would reduce apoptosis. Human islets were cultured in CMRL with 1.5 or 5% of HA for 24 h and apoptosis was evaluated indirectly by measuring caspase 3 activity and tetramethylrhodamine-ethyl-ester (TMRE) in dissociated islets. Islet function and viability were evaluated. Islets cultured in higher albumin concentration presented with lower caspase 3 activity (43.9 +/- 3.9 vs. 67.4 +/- 11.1, p = 0.011), and had increased insulin secretory capacity (Stimulation index 3.76 +/- 0.91 vs 1.23 +/- 0.21, p = 0.023). We conclude that an increase in albumin concentration can prevent apoptosis in isolated human islets. These findings may have implications for islet transplant outcomes.
Collapse
Affiliation(s)
- Barbara Barbaro
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Leite AR, Corrêa-Giannella ML, Dagli MLZ, Fortes MAZ, Vegas VMT, Giannella-Neto D. Fibronectin and laminin induce expression of islet cell markers in hepatic oval cells in culture. Cell Tissue Res 2006; 327:529-37. [PMID: 17149594 DOI: 10.1007/s00441-006-0340-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 08/31/2006] [Indexed: 01/06/2023]
Abstract
Hepatic oval cells (OC) are considered to be facultative liver stem cells and, because they may undergo differentiation into a variety of cell lineages, they might have the potential to be used in cellular therapy. Signals delivered by extracellular matrix (ECM) proteins take part in cellular differentiation in cooperation with signals from growth factors; indeed, some ECM proteins, such as laminin (LAM) and fibronectin (FN), have been shown to contribute to beta-cell differentiation and islet development, respectively. Since no previous studies have investigated the effect of ECM proteins on the expression of islet cell markers by cultured OC, the purpose of the present study was to evaluate whether FN and LAM modulate the expression of genes related to the endocrine pancreas in these liver cells. OC proliferation was induced in Wistar rats by prolonged treatment with 2-acetoaminofluorene/allyl alcohol and confirmed by reverse transcription/polymerase chain reaction and hepatic immunocytochemical and histopathological analyses. OC isolation was performed by Ficoll gradient and magnetic-activated cell sorting. OC were cultured for 1 and 2 months under several conditions with specific growth factors, over a FN or LAM substrate or in high glucose, nicotinamide and fetal calf serum. OC cultured on FN substrate expressed Pdx-1, Pax-6, insulin 2 and glucagon. LAM also induced the expression of Pdx-1, insulin 1 and insulin 2, glucagon, somatostatin and GLUT-2. Our results suggest that these ECM proteins can be used in protocols of OC transdifferentiation aimed at reducing the period necessary for complete transdifferentiation.
Collapse
Affiliation(s)
- Adriana Ribeiro Leite
- Laboratory for Cellular and Molecular Endocrinology LIM-25, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455 s/4307, 01246-903, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Korbutt GS, Mallett AG, Ao Z, Flashner M, Rajotte RV. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following transplantation. Diabetologia 2004; 47:1810-8. [PMID: 15517151 DOI: 10.1007/s00125-004-1531-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/13/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether a simple alginate capsule can prolong islet survival and function during long-term tissue culture. We also wanted to observe the ability of these encapsulated islets to restore glucose responsiveness to diabetic recipients, along with the quantity of islets required to do so. METHODS We compared the recovery and metabolic function of encapsulated canine islets with that of non-encapsulated canine islets following 1, 2 or 3 weeks of tissue culture. These culture preparations were also transplanted into diabetic nude mice and compared for their ability to reverse diabetes. Furthermore, short-term cultured encapsulated and non-encapsulated islets were transplanted in varying numbers to determine the minimum dose required to normalise blood glucose and prolong recipient survival. RESULTS Islet recovery following 1, 2 and 3 weeks of tissue culture was significantly higher when islets were encapsulated. When these islets were recovered at 1, 2 and 3 weeks and transplanted into diabetic nude mice, survival at 100 days was 100% for all encapsulated groups, versus 66%, 33% and 33% respectively for the non-encapsulated islets. Additionally, substantially fewer short-term cultured islets were required to normalise blood glucose when the islets were encapsulated. Recipients of encapsulated islets also had significantly longer survival times than recipients of non-encapsulated preparations. CONCLUSIONS/INTERPRETATION This study demonstrates that encapsulation of islets with purified alginate improves islet survival and function in vitro and in vivo.
Collapse
Affiliation(s)
- G S Korbutt
- Surgical-Medical Research Institute, Dentistry/Pharmacy Building, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
20
|
Gaber AO, Fraga D. Advances in long-term islet culture. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Pour PM, Schmied BM, Ulrich AB, Friess H, Andrén-Sandberg A, Büchler MW. Abnormal differentiation of islet cells in pancreatic cancer. Pancreatology 2002; 1:110-6. [PMID: 12120188 DOI: 10.1159/000055802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer in many patients is associated with altered glucose metabolism and abnormalities in pancreatic islet hormones at serum and tissue levels. Our previous studies have indicated a tendency of islet cells to differentiate toward ductal cell lineage, but the specificity of these findings for pancreatic cancer was not investigated. In the present study, we examined the immunoreactivity of pancreatic islets to antibodies against tumor-associated antigens DU-PAN-2, TAG-72 and CA19-9 in tissues from the normal pancreas, chronic pancreatitis and pancreatic cancer. Although no immunoreactive islet cells were found in the 12 normal pancreases and 20 chronic pancreatitis patients, 25 of 37 pancreatic cancer tissues showed the expression of these antigens, primarily CA19-9 and TAG-72, where the number of immunoreactive cells varied considerably from case to case. In 4 cases over 50% and in 2 of them more than 75% of the islets showed positive staining of 60-70% of islet cells within each islet. The presence of intrainsular ductular structures expressing the same antigen as the surrounding islet cells suggested transformation of antigen expressing islet cells to ductal cells. All but four islets were within or around the cancer favoring the notion that factors produced by cancer cells are responsible for the altered islet cell differentiation.
Collapse
Affiliation(s)
- P M Pour
- UNMC Eppley Cancer Center, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebr., USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zhao M, Christie MR, Heaton N, George S, Amiel S, Cai Huang G. Amelioration of streptozotocin-induced diabetes in mice using human islet cells derived from long-term culture in vitro. Transplantation 2002; 73:1454-60. [PMID: 12023624 DOI: 10.1097/00007890-200205150-00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Long-term maintenance of the phenotype of beta cells in vitro is difficult. The objective of this study was to examine an in vitro method for preserving the capacity of adult human beta cells to express insulin. We evaluated the use of long-term cultured islet cells for the treatment of diabetic SCID mice. METHODS Human islets were isolated from cadaveric donors. The islets were cultured as monolayers and clusters in repeating cycles for 4 months. Thereafter, the cells were tested in vitro for their capacity to express insulin and to secrete insulin in response to glucose challenge. Finally, the cluster-cultured cells were transplanted under the kidney capsule and into the kidney tissue in streptozotocin (STZ)-induced diabetic SCID mice. RESULTS Approximately 3.6% of cultured islet cells in cluster phase expressed insulin at 4 months and this was confirmed using immuno-gold-labeling electron microscopy. The cultured islet cells secreted insulin in response to glucose challenge in a dose-dependent manner. After transplantation, the islet cells redifferentiated and generated >20% insulin positive cells. The 4-month cultured cells rendered the blood glucose level near normal in mild diabetic mice (7.25 mM+/-1.595 vs. 15.225 mM+/-2.55, P<0.0025). CONCLUSION It is possible to preserve the capacity of adult human islets to express insulin over a 4-month period in vitro, and this capacity was enhanced significantly by transplantation into SCID mice. The described system will be useful in studies of beta cell proliferation and differentiation.
Collapse
Affiliation(s)
- Min Zhao
- Department of Diabetes, Endocrinology, and Internal Medicine and Institutes of Liver Studies, King's College GKT Medical School, London SE5 9PJ, UK
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Pancreatic cancer has an extremely poor prognosis and lacks early diagnostic and therapeutic possibilities, mainly because of its silent course and explosive fatal outcome. The histogenesis of the disease and early biochemical and genetic alterations surrounding carcinogenesis are still controversial. In vitro studies offer a useful tool to study physiologic, pathophysiologic, differentiation, and transformation processes of cells and to understand some of these shortcomings. The extreme difficulties in isolating individual pancreatic cells and their purification by maintaining their native characteristics have limited research in this area. This review is intended to present and discuss the current availability of rodent and pancreatic cell lines, their differences as well as the difficulties, limitations, and characteristics of these cultured cells. Discussed are in vitro models; ductal, islet, and acinar cell culture; cell differentiation; cell transformation, including genetic and chromosomal alterations; as well as tumor cell markers. Also addressed are the advantages and problems associated with the cell culture in humans and rodents. Advancements in tissue culture technique and molecular biology offer steady progress in this important line of research. The improved methods not only promise the establishment of beta-cell cultures for the treatment of diabetes, but also for studying sequential genetic alterations during pancreatic carcinogenesis and in understanding the tumor cell origin.
Collapse
Affiliation(s)
- Alexis B Ulrich
- Eppley Cancer Center and the Department of Pathology and Microbiology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | | | | | | | | |
Collapse
|
24
|
Schneider MB, Standop J, Ulrich A, Wittel U, Friess H, Andrén-Sandberg A, Pour PM. Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer. J Histochem Cytochem 2001; 49:1205-10. [PMID: 11561004 DOI: 10.1177/002215540104901002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the characteristics of pancreatic cancer is its tendency to invade neural tissue. We hypothesized that the affinity of cancer cells for nerve tissue is related to the presence of growth factors in neural tissue and their receptors in cancer cells. Sections of pancreatic cancer and normal pancreatic tissue were examined by immunohistochemistry for the expression of the neurotrophins NGF, BDNF, NT-3, NT-4, and their receptors TrkA, TrkB, and TrkC, as well as the low-affinity receptor, p75NTR. TrkA expression was found in duct, islet, and cancer cells; TrkB was found in the alpha-cells of the islet only. The anti-pan-Trk antibody (TrkB3), which is presumed to recognize all three receptors, immunoreacted with duct and acinar cells in normal tissue and with cancer cells. The staining with TrkC was similar to that of TrkA. The low-affinity receptor p75NTR was expressed in the neural tissue and in scattered duct cells of the normal tissue only. Duct and acinar cells, as well as neural tissue and cancer cells, showed weak to strong immunoreactivity with NGF. NT-3 expression was noted in capillary endothelia and erythrocytes. NT-4 showed specific staining for ductule cells. The expression and distribution of neurotrophins and their receptors suggest their role in the potential of pancreatic cancer cells for neural invasion.
Collapse
Affiliation(s)
- M B Schneider
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|