1
|
Guerra LHA, da Costa Castro NF, Jubilato FC, Marques LA, Leonel ECR, Junior SB, Campos SGP, Rahal P, Taboga SR, Calmon MF, Vilamaior PSL. Coconut Oil Mitigates the Effects of Aging on the Mongolian Gerbil Prostate. Prostate 2025; 85:395-406. [PMID: 39718211 DOI: 10.1002/pros.24842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a disease linked to the hormonal imbalance that occurs during aging and over the last decades, complementary and alternative medicines have come on the scene as a treatment option for BPH, such as herbal medicines. Coconut oil has been shown to be capable of interfering in testosterone-induced BPH. However, until now there is no study of the effect of coconut oil during aging. The present study evaluated the effect of the intake of coconut oil on the prostate of aging gerbils (Meriones unguiculatus). METHODS Two experimental groups were assigned: Gavage control (GC-animals subjected to gavage with water for 1 year, n = 11) and coconut oil (CO-animals subjected to gavage with coconut oil for 1 year, n = 11). Testosterone, and estradiol serum levels were determined by ELISA assay and histopathological analysis employed Hematoxylin-Eosin. Cell proliferation index was determined by PHH3 immunohistochemistry and TUNEL assay and receptors of androgen (AR) and estrogen (ERα and ERβ) were evaluated on the prostate. RESULTS The CO group exhibited a lower prostate weight (↓16.62%), decreased thickness of the prostate muscle stroma (↓18.27%), reduced expression of both AR (↓51.32) and ERα (↓14.26%) and reduced the percentage of BPH (↓1.53%) and intraepithelial neoplasms in the prostate (↓14.24%). Coconut oil intake mitigated age-related changes and increased the rate of apoptosis in prostatic cells (↑54.32). CONCLUSIONS Coconut oil treatment throughout aging helped counteract the negative effects of aging on prostate health.
Collapse
Affiliation(s)
- Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Nayara Fernanda da Costa Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Fernanda Costa Jubilato
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Letícia Aparecida Marques
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Ellen Cristina Rivas Leonel
- Animal Molecular and Celular Biology Unit, Ecole de médecine vétérinaire, Faculté des Sciences, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanislau Bogusz Junior
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Marilia Freitas Calmon
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Mogheiseh A, Derakhshandeh N, Divar MR, Nazifi S, Ahmadi I. Effects of short-term oral letrozole on fresh semen parameters, endocrine balance, and prostate gland dimensions in domestic dogs. BMC Vet Res 2024; 20:416. [PMID: 39289700 PMCID: PMC11406820 DOI: 10.1186/s12917-024-04278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Aromatase inhibitors improve male fertility by modifying the hormonal control of spermatogenesis. The present study aimed to investigate the effects of oral administration of letrozole on testosterone and estradiol concentrations and their ratios in blood serum, seminal plasma, prostatic fluid, sperm quality in fresh semen, and prostate gland dimensions. Seven adult male intact mixed-breed dogs were selected. The animals received letrozole (72 µg/kg, PO) daily for four weeks. Blood samplings and semen collections were carried out on days 0 (control), 14 (treatment), 28 (treatment), and 42 (post-treatment). RESULTS Our results showed that letrozole administration resulted in a 4.3 fold significant increase in serum, seminal plasma, and prostatic fluid testosterone levels after 14 days. This remained high until the end of the study. Serum and prostatic fluid estradiol levels did not change significantly over the study period. However, the seminal plasma estradiol level showed a significant increase on day 14. The estradiol: testosterone ratio was significantly reduced on day 14 in serum, seminal plasma, and prostatic fluid samples. Letrozole significantly improved the ejaculated spermatozoa viability and concentration after 28 days of oral administration. However, the sperm plasma membrane functional integrity and kinematic parameters were not significantly affected by the treatment. Transabdominal ultrasound examination revealed a significant increase in the height, width, and volume of the prostate gland after 28 days of treatment. CONCLUSIONS According to the present research, oral administration of letrozole for 28 days affects local and systemic sex hormone balance leading to an improvement of the ejaculated canine spermatozoa viability and concentration concurrent with an increase in the prostate gland dimensions.
Collapse
Affiliation(s)
- Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran.
| | - Nooshin Derakhshandeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| | - Mohammad-Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| | - Iman Ahmadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| |
Collapse
|
3
|
Guerra LHA, Campos SGP, Taboga SR, Vilamaior PSL. Prostatic morphological changes throughout life: Cytochemistry as a tool to reveal tissue aging markers. Microsc Res Tech 2024; 87:1020-1030. [PMID: 38186358 DOI: 10.1002/jemt.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
The prostate undergoes normal or pathological morphological changes throughout life. An understanding of these changes is fundamental for the comprehension of aging-related pathological processes such as benign prostatic hyperplasia (BPH) and cancer. In the present study, we show some of these morphological changes, as well as histochemical techniques like Weigert's resorcin-fuchsin method, Picrosirius Red, and Gömöri's reticulin for use as tools in the study of prostate tissue under light microscopy. For this purpose, prostates of the Mongolian gerbil (n = 9), an experimental model that develops BPH spontaneously, were analyzed at three life stages: young (1 month old), adult (3 months old), and old (15 months old). The results showed that fibrillar components such as collagen, and reticular and elastic fibers, change throughout life. In young animals, the prostate has cuboidal epithelium surrounded by thin layers of smooth muscle, continuous collagen fibers, winding reticular fibers, and sporadic elastic fibers. With adulthood, the epithelium becomes columnar, encircled by compacted muscle cells among slender collagen fibers, elongated reticular fibers, and linear elastic fibers. In aging individuals, the prostate's epithelium stratifies, surrounded by thick muscle layers among dense collagen fibers, disordered reticular fibers, and elastic fibers in different planes. We also identified a few accumulations of lipid droplets and lipofuscin granules in adult animals and high accumulation in old animals evidenced by Oil red O and Gömöri-Halmi techniques, respectively. The histochemical techniques presented here have been demonstrated to be useful and accessible tools in prostate studies. RESEARCH HIGHLIGHTS: Cytochemical techniques to study prostate morphology. The prostate changes with age.
Collapse
Affiliation(s)
- Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Nascimento-Gonçalves E, Seixas F, Palmeira C, Martins G, Fonseca C, Duarte JA, Faustino-Rocha AI, Colaço B, Pires MJ, Neuparth MJ, Moreira-Gonçalves D, Fardilha M, Henriques MC, Patrício D, Pelech S, Ferreira R, Oliveira PA. Lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of prostate carcinogenesis. GeroScience 2024; 46:817-840. [PMID: 37171559 PMCID: PMC10828357 DOI: 10.1007/s11357-023-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
This work aimed to understand how lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of PCa. Fifty-five male Wistar rats were divided into four groups: control sedentary, control exercised, induced PCa sedentary and induced PCa exercised. Exercised animals were trained in a treadmill for 53 weeks. Pca induction consisted on the sequential administration of flutamide, N-methyl-N-nitrosourea and testosterone propionate implants. Serum concentrations of C-reactive protein (CRP) and tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) were not different among groups. Peripheral levels of γδ T cells were higher in Pca exercised group than in the PCa sedentary group (p < 0.05). Exercise training also induced Oestrogen Receptor (ESR1) upregulation and Mitogen-activated Protein Kinase 13 (MAPK13) downregulation, changed the content of the phosphorylated (at Ser-104) form of this receptor (coded by the gene ESR1) and seemed to increase Erα phosphorylation and activity in exercised PCa rats when compared with sedentary PCa rats. Our data highlight the exercise-induced remodelling of peripheral lymphocyte subpopulations and lymphocyte infiltration in prostate tissue. Moreover, exercise training promotes the remodelling prostate signalome in this rat model of prostate carcinogenesis.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro (UA), 3810-193, Aveiro, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, UTAD, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Carlos Palmeira
- Clinical Pathology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
- School of Health Science Fernando Pessoa and FP-i3iD, 4200-253, Porto, Portugal
| | - Gabriela Martins
- Clinical Pathology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Carolina Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
| | - José Alberto Duarte
- CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516, Évora, Portugal
- Comprehensive Health Research Centre, 7004-516, Évora, Portugal
| | - Bruno Colaço
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, UTAD, 5000-801, Vila Real, Portugal
- Department of Zootechnics, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL)-Faculty of Sports-University of Porto (FADEUP), Portugal and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Daniel Moreira-Gonçalves
- Research Center in Physical Activity, Health and Leisure (CIAFEL)-Faculty of Sports-University of Porto (FADEUP), Portugal and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Magda C Henriques
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Patrício
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, B.C, Canada
- Kinexus Bioinformatics Corporation, Suite 1 - 8755 Ash Street, Vancouver, BC, V6P 6T3, Canada
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal.
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
- University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
5
|
Yang T, Yuan J, Peng Y, Pang J, Qiu Z, Chen S, Huang Y, Jiang Z, Fan Y, Liu J, Wang T, Zhou X, Qian S, Song J, Xu Y, Lu Q, Yin X. Metformin: A promising clinical therapeutical approach for BPH treatment via inhibiting dysregulated steroid hormones-induced prostatic epithelial cells proliferation. J Pharm Anal 2024; 14:52-68. [PMID: 38352949 PMCID: PMC10859540 DOI: 10.1016/j.jpha.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 02/16/2024] Open
Abstract
The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met's anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jiayu Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yuting Peng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jiale Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhen Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Pharmacy, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222061, China
| | - Yuhan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yilin Fan
- School of Life Sciences, University of Essex, Essex CO4 3SQ, United Kingdom
| | - Junjie Liu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Tao Wang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jinfang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Yi Xu
- Department of Pharmacy, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222061, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
6
|
Pan L, Su S, Li Y, Liu D, Shen L, Wang H, Wen J, Hu H, Zheng R. The effect of acupuncture on oestrogen receptors in rats with benign prostatic hyperplasia. J Steroid Biochem Mol Biol 2023; 234:106402. [PMID: 37734284 DOI: 10.1016/j.jsbmb.2023.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The effects of acupuncture on the protein and gene expression of oestrogen receptors (ERs) alpha (α) and beta (β) in testosterone-induced benign prostatic hyperplasia (BPH) in rats remains unclear. In this study, rats were randomly divided into four groups (n = 10 per group). The rats in the blank group did not receive any treatment, while the rats in the model group were injected intraperitoneally with testosterone propionate for 28 days to establish the BPH model and then randomly sub-divided into a control group, an acupuncture group and a finasteride group (positive control group). Dissections were performed after rats were anesthetized with isoflurane, and then the weight and volume of the prostate were then measured. The expression of ERs was detected via immunohistochemistry, western blot and real-time polymerase chain reaction. The results showed that ERα was discontinuously distributed in epithelial cells and expressed in large quantities in stromal cells, and ERβ was aggregated and expressed in hyperplastic nodules. Acupuncture and finasteride could significantly improve the distribution of ERα and ERβ which suggested that acupuncture and finasteride could improve BPH. There was no significant difference in ERα messenger ribonucleic acid (mRNA) expression among the groups, but the ERβ mRNA expression in the finasteride group showed a significant difference compared with the control and acupuncture groups. The mechanism of the acupuncture treatment of BPH may be related to the increased transcription level of ERβ mRNA in prostate tissues, the improved distribution of ERα expression in epithelial cells and the aggregation expression of ERs in hyperplastic nodules.
Collapse
Affiliation(s)
- Liang Pan
- Department of Acupuncture, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Shiyu Su
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Li
- Department of Acupuncture, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Di Liu
- Department of Acupuncture, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Lingyu Shen
- Department of Acupuncture, Shunyi Hospital of Beijing Hospital Chinese Medicine, Beijing 101300, China
| | - Haiying Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiayu Wen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Hu
- Department of Acupuncture, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Ruwen Zheng
- Department of Acupuncture, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
7
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
8
|
Abdalkareem Jasim S, Kzar HH, Haider Hamad M, Ahmad I, Al-Gazally ME, Ziyadullaev S, Sivaraman R, Abed Jawad M, Thaeer Hammid A, Oudaha KH, Karampoor S, Mirzaei R. The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Hamzah H Kzar
- Veterinary medicine college, Al-Qasim green University, Al-Qasim, Iraq
| | - Mohammed Haider Hamad
- Medical Laboratory Techniques Department, Al Mustaqbal University college, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Shukhrat Ziyadullaev
- Professor, Doctor of Medical Sciences, No.1 Department of Internal Diseases, Vice-rector for Scientific Affairs and Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - R Sivaraman
- Department of Mathematics, Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, University of Madras, Chennai, India
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University Thi-Qar, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Emond JP, Lacombe L, Caron P, Turcotte V, Simonyan D, Aprikian A, Saad F, Carmel M, Chevalier S, Guillemette C, Lévesque E. Urinary oestrogen steroidome as an indicator of the risk of localised prostate cancer progression. Br J Cancer 2021; 125:78-84. [PMID: 33828256 PMCID: PMC8257651 DOI: 10.1038/s41416-021-01376-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common cancer in North American men. Beyond the established contribution of androgens to disease progression, growing evidence suggest that oestrogen-related pathways might also be of clinical importance. The aim of this study was to explore the association of urinary oestrogen levels with clinical outcomes. METHODS Urine samples from the prospective multi-institutional PROCURE cohort were collected before RP for discovery (n = 259) and validation (n = 253). Urinary total oestrogens (unconjugated + conjugated), including oestrone and oestradiol, their bioactive and inactive catechol and methyl derivatives (n = 15), were measured using mass spectrometry (MS). RESULTS The median follow-up time for the discovery and replication cohorts was 7.6 and 6.5 years, respectively. Highly significant correlations between urinary oestrogens were observed; however, correlations with circulating oestrogens were modest. Our findings indicate that higher levels of urinary oestriol and 16-ketoestradiol were associated with lower risk of BCR. In contrast, higher levels of 2-methoxyestrone were associated with an increased risk of development of metastasis/deaths. CONCLUSIONS Our data suggest that urinary levels of oestriol and 16-ketoestradiol metabolites are associated with a more favourable outcome, whereas those of 2-methoxyestrone are associated with an elevated risk of metastasis after RP. Further studies are required to better understand the impact of oestrogens on disease biology and as easily accessible urine-based risk-stratification markers.
Collapse
Affiliation(s)
- Jean-Philippe Emond
- Centre Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | - Louis Lacombe
- Centre Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | - Patrick Caron
- CHU de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Véronique Turcotte
- CHU de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center, Québec, Canada
| | - Armen Aprikian
- McGill University Health Center, McGill University, Faculty of Medicine, Québec, Canada
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada
| | - Michel Carmel
- Université de Sherbrooke, Faculty of Medicine, Québec, Canada
| | - Simone Chevalier
- McGill University Health Center, McGill University, Faculty of Medicine, Québec, Canada
| | - Chantal Guillemette
- CHU de Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada.
| | - Eric Lévesque
- Centre Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Medicine, Laval University, Québec, Canada.
| |
Collapse
|
10
|
Ramos JG, de Assis Silva JP, Manso LA, Rodrigues GA, Taboga SR, de Carvalho HF, dos Santos FCA, Biancardi MF. Developmental changes induced by exogenous testosterone during early phases of prostate organogenesis. Exp Mol Pathol 2020; 115:104473. [DOI: 10.1016/j.yexmp.2020.104473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 05/21/2020] [Indexed: 01/07/2023]
|
11
|
Xu D, Wu Y, Shen H, Qian S, Qi J. High serum concentration of estradiol may be a risk factor of prostate enlargement in aging male in China. Aging Male 2020; 23:1-6. [PMID: 29912660 DOI: 10.1080/13685538.2018.1481027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objective: Assess the association between serum sex hormone level and prostate volume in men with benign prostatic hyperplasia (BPH).Material and methods: The study involved 239 BPH patients from January 2013 to June 2015 in our hospital. Each patient collected age, medical history, height, weight, body mass index, as well as a full examination of sex hormones, and transrectal ultrasound results.Results: Estradiol (E2) was significantly associated with prostate volume (r = 0.151, p = .02) and transitional zone volume (r = 0.136, p = .035). The association was more significant after adjusting age and BMI (r = 0.253 and 0.250, p <.001). Patients were divided into two groups according to prostate volume and E2, respectively. E2 in patients with prostate volume ≤50 ml was significantly lower than those with prostate volume >50 ml. Prostate volume, transitional zone volume and age were all significantly higher in the patients with E2 ≥ 160 umol/l than those in the patients with E2 < 160 umol/l. Through logistics regression, E2 (p = .012, OR = 1.004) are the only independent risk factor for prostate volume.Conclusions: E2 is significantly associated with prostate volume. High concentrations of E2 may be a risk factor for the large volume of prostate.
Collapse
Affiliation(s)
- Ding Xu
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wu
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Ultrasound, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Qi
- Department of Urology, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Loffredo LF, Coden ME, Berdnikovs S. Endocrine Disruptor Bisphenol A (BPA) Triggers Systemic Para-Inflammation and is Sufficient to Induce Airway Allergic Sensitization in Mice. Nutrients 2020; 12:nu12020343. [PMID: 32012983 PMCID: PMC7071314 DOI: 10.3390/nu12020343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Allergic airway diseases are accompanied by increased permeability and an inflammatory state of epithelial barriers, which are thought to be susceptible to allergen sensitization. Although exogenous drivers (proteases, allergens) of epithelial barrier disruption and sensitization are well studied, endogenous contributors (diet, xenobiotics, hormones, and metabolism) to allergic sensitization are much less understood. Xenoestrogens are synthetic or natural chemical compounds that have the ability to mimic estrogen and are ubiquitous in the food and water supply of developed countries. By interfering with the estrogen produced by the endocrine system, these compounds have the systemic potential to disrupt the homeostasis of multiple tissues. Our study examined the potential of prototypical xenoestrogen bisphenol A (BPA) to disrupt epithelial homeostasis in vitro and promote allergic responses in vivo. We found that BPA exposure in epithelial cultures in vitro significantly inhibited epithelial cell proliferation and wound healing, as well as promoted the expression of the innate alarmin cytokine TSLP in a time-and dose-dependent manner. In vivo, the exposure to BPA through water supply or inhalation induced a systemic para-inflammatory response by promoting the expression of innate inflammatory mediators in the skin, gut, and airway. In a murine tolerogenic antigen challenge model, chronic systemic exposure to BPA was sufficient to induce airway sensitization to innocuous chicken egg ovalbumin in the complete absence of adjuvants. Mechanistic studies are needed to test conclusively whether endocrine disruptors may play an upstream role in allergic sensitization via their ability to promote a para-inflammatory state.
Collapse
|
13
|
Meng J, Liu Y, Guan SY, Ma H, Zhang X, Fan S, Hu H, Zhang M, Liang C. Age, height, BMI and FBG predict prostate volume in ageing benign prostatic hyperplasia: Evidence from 5285 patients. Int J Clin Pract 2019; 73:e13438. [PMID: 31633263 DOI: 10.1111/ijcp.13438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 12/26/2022] Open
Abstract
AIMS Several studies have reported a potential association between prostate volume (PV) and prostate disease. Here, we classified the risk factors for PV among benign prostatic hyperplasia (BPH) patients. METHODS In all, 4293 BPH patients with available clinical information were enrolled. Body mass index (BMI) was obtained as weight divided by height squared. PV was calculated as length × width × height (cm) × π/6. Mann-Whitney U tests were used to determine the differences between PV subgroups. Univariate and multiple linear regression tests were performed to uncover the connection between clinical features and PV. The differences in the age, BMI, height and fasting blood glucose (FBG) of the subgroups were evaluated by Kruskal-Wallis tests and adjusted with Bonferroni post hoc correction. A nomogram was created to directly illustrate the mutual interaction of amalgamator parameters. RESULTS PV did not influence the incidence of kidney stones (P = .815), whereas prostate calculi were positively associated with an enlarged prostate (>30 mL) (P < .001). Age (adjusted R = 0.363, P < .001), height (adjusted R = 0.088, P < .001), BMI (adjusted R = 0.039, P = .013) and FBG (adjusted R = -0.034, P = .027) were the independent risk/protective factors related to enlarged PV among BPH patients. The nomogram illustrated the predictive risk of an enlarged prostate (>30 mL) in men. The area under the ROC curve value was 0.659 in the training cohort and 0.677 in an internal validation cohort. CONCLUSIONS Age, height and BMI were positive independent risk factors of enlarged PV in BPH patients, and FBG had a protective role.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
- Department of Health Examination Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Shi-Yang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Huiya Ma
- Department of Health Examination Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyu Zhang
- Department of Health Examination Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Hu
- Department of Health Examination Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Gomes FDC, Chuffa LGDA, Fávaro WJ, Scarano WR, Melo‐Neto JS, Pinheiro PFF, Domeniconi RF. Nandrolone decanoate and resistance exercise affect prostate morphology and hormone receptor interface in adult rats with implications for the aging process. Andrology 2019; 8:211-220. [DOI: 10.1111/andr.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- F. de C. Gomes
- Department of Anatomy Institute of Biosciences University of Estadual Paulista (UNESP) Botucatu SP Brazil
- Genetics and Molecular Biology Research Unit (UPGEM) São José do Rio Preto Medical School (FAMERP) São José do Rio Preto SP Brasil
| | - L. G. de A. Chuffa
- Department of Anatomy Institute of Biosciences University of Estadual Paulista (UNESP) Botucatu SP Brazil
| | - W. J. Fávaro
- Department of Structural and Functional Biology Institute of Biology University of Campinas (UNICAMP) Campinas SP Brazil
| | - W. R. Scarano
- Department of Morphology Institute of Biosciences University of Estadual Paulista (UNESP) Botucatu SP Brazil
| | - J. S. Melo‐Neto
- Faculty of Medicine of Marília (FAMEMA) Marília SP Brazil
- Institute of Health Sciences Federal University of Pará (UFPA) Belém PA Brazil
| | - P. F. F. Pinheiro
- Department of Anatomy Institute of Biosciences University of Estadual Paulista (UNESP) Botucatu SP Brazil
| | - R. F. Domeniconi
- Department of Anatomy Institute of Biosciences University of Estadual Paulista (UNESP) Botucatu SP Brazil
| |
Collapse
|
15
|
Da Silva MHA, De Souza DB. Current evidence for the involvement of sex steroid receptors and sex hormones in benign prostatic hyperplasia. Res Rep Urol 2019; 11:1-8. [PMID: 30662879 PMCID: PMC6327899 DOI: 10.2147/rru.s155609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathology that affects 50% of men over 50 years of age and 90% of men develop BPH in their eighth decade of life. In 2018, more than 1 billion men will be affected by this disease worldwide. However, the progression of BPH is highly complex and has been debated and studied for approximately four decades. Recent studies indicate that BPH can originate from the alteration of different hormone synthesis pathways, and that it is also linked to the function of hormone receptors. There is a close relationship between the progression of BPH and sexual hormones, such as progesterone, testosterone, dihydrotestosterone, and estrogen. The focus of this study was to characterize the interactions of these hormones and investigate the direct or indirect role of each sex hormone receptor in the progression of BPH. Although several studies have described the effects of these hormones on BPH, no conclusions have been drawn regarding their role in disease progression. Here, we present a literature review on the sexual receptors possibly involved in the progression of BPH.
Collapse
|
16
|
Zhou C, Yu C, Guo L, Wang X, Li H, Cao Q, Li F. In Vivo Study of the Effects of ER β on Apoptosis and Proliferation of Hormone-Independent Prostate Cancer Cell Lines PC-3M. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1439712. [PMID: 30018975 PMCID: PMC6029510 DOI: 10.1155/2018/1439712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate the in vivo therapeutic effects of attenuated Salmonella carrying PCDNA3.1-ERβ plasmid in hormone-independent prostatic cancer in nude mice and to clarify the mechanism by which estrogen receptor β (ERβ) induces apoptosis and proliferation in prostatic cancer cells in mice. METHODS The orthotopic prostatic cancer models of mice were randomly divided as follows: MOCK group, treated with PBS, PQ group, treated with attenuated Salmonella alone, PQ-PCDNA3.1 group, treated with attenuated Salmonella carrying PCDNA3.1 plasmid, and PQ-PCDNA3.1-ERβ group, treated with the attenuated Salmonella carrying PCDNA3.1-ERβ plasmid. Then, 10 μl of the plasmid-containing solution, comprising 1 × 107 cfu of the bacteria, was administered via intranasal delivery to each group except the MOCK group. The experimental methods included flow cytometry and terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay, immunohistochemistry, and western blotting. RESULTS Compared with the MOCK, PQ, and PQ-PCDNA3.1 groups, the weights of tumors in the PQ-PCDNA3.1-ERβ group were significantly reduced. The results of flow cytometry and TUNEL assay revealed that the number of apoptotic cells in the PQ-PCDNA3.1-ERβ group significantly increased. Compared with PQ-PCDNA3.1 group, the protein expression levels of ERβ, Bad, p-caspase 9, p-caspase 3, and cleaved PARP in the PQ-PCDNA3.1-ERβ group were significantly increased, while the expression levels of Akt, p-Akt, and Bcl-xl were decreased (P < 0.05). CONCLUSION The attenuated Salmonella carrying PCDNA3.1-ERβ plasmid could inhibit the growth of orthotopic prostatic cancer in mice by increasing the expression of ERβ.
Collapse
Affiliation(s)
- Changli Zhou
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, Jilin 130020, China
| | - Chunyu Yu
- Basic Medical School, Jilin University, 126 Xinmin Street, Changchun, Jilin 130020, China
| | - Lirong Guo
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, Jilin 130020, China
| | - Xige Wang
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, Jilin 130020, China
| | - Huimin Li
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, Jilin 130020, China
| | - Qinqin Cao
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, Jilin 130020, China
| | - Feng Li
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, Jilin 130020, China
| |
Collapse
|
17
|
Igongsan reduces testosterone-induced benign prostate hyperplasia by regulating 5α-reductase in rats. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0023-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Di Lorenzo M, Forte M, Valiante S, Laforgia V, De Falco M. Interference of dibutylphthalate on human prostate cell viability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:565-573. [PMID: 28918339 DOI: 10.1016/j.ecoenv.2017.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Dibutylphthalate (DBP) is an environmental pollutant widely used as plasticizer in a variety of industrial applications worldwide. This agent can be found in personal-care products, children's toy, pharmaceuticals, food products. Exposure to DBP can occur via ingestion and inhalation as well as intravenous or skin contact. DBP belongs to the family of endocrine disrupting chemicals (EDCs) and its effects on reproductive system were demonstrated both in vivo and in vitro. In the present study we evaluated the effects of DBP on human prostate adenocarcinoma epithelial cells (LNCaP) in order to highlight xenoestrogens influence on human prostate. Moreover, we have compared DBP effects with 17β-estradiol action in order to investigate possible mimetical behaviour. We have assessed the effects of both compounds on the cell viability. After then, we have evaluated the expression of genes and proteins involved in cell cycle regulation. Furthermore, we have observed the expression and the cell localization of estrogen (ERs) and androgen (AR) receptors. In conclusion, we have demonstrated that DBP interacts with estrogen hormonal receptor pathway but differently from E2. DBP alters the normal gland physiology and it is involved in the deregulation of prostate cell cycle.
Collapse
Affiliation(s)
| | | | - Salvatore Valiante
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| | - Vincenza Laforgia
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| |
Collapse
|
19
|
Domińska K, Kowalski A, Ochędalski T, Rębas E. Effects of testosterone and 17β‑estradiol on angiotensin‑induced changes in tyrosine kinase activity in the androgen‑independent human prostate cancer cell line, DU145. Int J Mol Med 2017; 40:1573-1581. [PMID: 28949385 DOI: 10.3892/ijmm.2017.3149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (AngII), the main peptide of the renin‑angiotensin system (RAS), is involved in the proliferation of different types of cells, normal and pathological as well. The protein tyrosine kinases (PTKs) play an important role in the growth, differentiation and apoptosis of cells. AngII action depends on the hormonal milieu of the cell, and on sex steroid influence. Angiotensin 1‑7 (Ang1‑7), metabolite of AngII, shows opposite action to AngII in cells. The present study aimed to examine the influence of 17β‑estradiol and testosterone on AngII and Ang1‑7 action on PTK activity in androgen‑independent humane prostate cancer cell line DU145. Cell cultures of human prostate cancer DU145 cells were used as a source of PTKs. Cultures were exposed to different concentrations of AngII (5x10‑11 to 5x10‑9 M). The incubation with hormones lasted 15 min to limit the genomic effects of steroids. In the phosphorylation reaction, we used γ32P‑ATP as a donor of phosphate and a synthetic peptide, Poly(Glu, Tyr) (4:1), as a substrate. The specific activities of PTKs were defined as pmol of 32P incorporated into 1 mg of exogenous Poly(Glu, Tyr) per minute (pmol/mg/min). Our findings suggest that testosterone and 17β‑estradiol may change the effects of angiotensins in a rapid non‑genomic way, probably via membrane‑located receptors. The most significant change was caused by testosterone, whose effect was most significant on changes caused by Ang1‑7. AngII‑induced changes in phosphorylation appeared to be insensitive to the presence of testosterone, but were modified by 17β‑estradiol.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Antoni Kowalski
- Department of Molecular Neurochemistry, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, 92‑215 Lodz, Poland
| | - Elżbieta Rębas
- Department of Molecular Neurochemistry, Medical University of Lodz, 92‑215 Lodz, Poland
| |
Collapse
|
20
|
Antoniassi JQ, Fochi RA, Góes RM, Vilamaior PSL, Taboga SR. Corticosterone influences gerbil (Meriones unguiculatus) prostatic morphophysiology and alters its proliferation and apoptosis rates. Int J Exp Pathol 2017; 98:134-146. [PMID: 28664583 PMCID: PMC5573771 DOI: 10.1111/iep.12232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/30/2017] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) are hormones that are widely used in medicine; but although side effects are generally recognised, little is known about the precise mechanisms that is implicated in many of these side effects. Furthermore, GCs are highly correlated with stress and behaviour disorders. This study evaluated the effects of the glucocorticoid corticosterone on the ventral prostate of the Mongolian gerbil. Male gerbils (Meriones unguiculatus) (n = 5) received intraperitoneal injections of saline or corticosterone in doses of 0.5 mg/kg/day and 1.5 mg/kg/day for 5 days; while some of the animals were killed immediately after the treatment, the others were killed 5 days after the treatment period. The data show that corticosterone influences the structure and functionality of this organ. This hormone has anti-proliferative and anti-apoptotic properties in the prostate. In addition, the frequencies of the androgen (AR), oestrogen (ERα, ERβ) and glucocorticoid (GR) receptors changed. The frequencies of AR, GR and ERβ decreased in the Ct1/5 group; in the groups with rest period, the frequencies of GR increased and ERβ decreased in the epithelium. Changes in the proliferative index, apoptotic index and receptor activity may have contributed to the emergence of prostatic morphological alterations, such as the presence of cellular debris and inflammatory cells. Different doses of corticosterone had variable effects on the prostate, with a higher dose showing subtler effects and a lower dose showing more striking effects. The corticosterone effects on nuclear receptors were reverted or attenuated after a rest period, which was not observed for proliferation and apoptosis. In summary, we have demonstrated that corticosterone might influence the prostatic morphophysiology and that these changes may be linked in some way to the altered receptor distribution.
Collapse
Affiliation(s)
- Julia Quilles Antoniassi
- Department of Structural and Functional BiologyInstitute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Ricardo Alexandre Fochi
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE)University Estadual Paulista (UNESP)São PauloBrazil
| | - Rejane Maira Góes
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE)University Estadual Paulista (UNESP)São PauloBrazil
| | - Patricia Simone Leite Vilamaior
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE)University Estadual Paulista (UNESP)São PauloBrazil
| | - Sebastião Roberto Taboga
- Department of Structural and Functional BiologyInstitute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE)University Estadual Paulista (UNESP)São PauloBrazil
| |
Collapse
|
21
|
Raza S, Meyer M, Goodyear C, Hammer KDP, Guo B, Ghribi O. The cholesterol metabolite 27-hydroxycholesterol stimulates cell proliferation via ERβ in prostate cancer cells. Cancer Cell Int 2017; 17:52. [PMID: 28503095 PMCID: PMC5425984 DOI: 10.1186/s12935-017-0422-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND For every six men, one will be diagnosed with prostate cancer (PCa) in their lifetime. Estrogen receptors (ERs) are known to play a role in prostate carcinogenesis. However, it is unclear whether the estrogenic effects are mediated by estrogen receptor α (ERα) or estrogen receptor β (ERβ). Although it is speculated that ERα is associated with harmful effects on PCa, the role of ERβ in PCa is still ill-defined. The cholesterol oxidized metabolite 27-hydroxycholesterol (27-OHC) has been found to bind to ERs and act as a selective ER modulator (SERM). Increased 27-OHC levels are found in individuals with hypercholesterolemia, a condition that is suggested to be a risk factor for PCa. METHODS In the present study, we determined the extent to which 27-OHC causes deleterious effects in the non-tumorigenic RWPE-1, the low tumorigenic LNCaP, and the highly tumorigenic PC3 prostate cancer cells. We conducted cell metabolic activity and proliferation assays using MTS and CyQUANT dyes, protein expression analyses via immunoblots and gene expression analyses via RT-PCR. Additionally, immunocytochemistry and invasion assays were performed to analyze intracellular protein distribution and quantify transepithelial cell motility. RESULTS We found that incubation of LNCaP and PC3 cells with 27-OHC significantly increased cell proliferation. We also demonstrate that the ER inhibitor ICI 182,780 (fulvestrant) significantly reduced 27-OH-induced cell proliferation, indicating the involvement of ERs in proliferation. Interestingly, ERβ levels, and to a lesser extent ERα, were significantly increased following incubation of PCa cells with 27-OHC. Furthermore, in the presence of the ERβ specific inhibitor, PHTPP, 27-OHC-induced proliferation is attenuated. CONCLUSIONS Altogether, our results show for the first time that 27-OHC, through ER activation, triggers deleterious effect in prostate cancer cell lines. We propose that dysregulated levels of 27-OHC may trigger or exacerbate prostate cancer via acting on ERβ.
Collapse
Affiliation(s)
- Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| | - Megan Meyer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| | - Casey Goodyear
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| | - Kimberly D P Hammer
- Department of Veteran Affairs, Fargo VA Health Care System, Fargo, ND 58102 USA
| | - Bin Guo
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202 USA
| |
Collapse
|
22
|
Biancardi MF, dos Santos FCA, de Carvalho HF, Sanches BDA, Taboga SR. Female prostate: historical, developmental, and morphological perspectives. Cell Biol Int 2017; 41:1174-1183. [DOI: 10.1002/cbin.10759] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Manoel F. Biancardi
- Department of Histology, Embryology, and Cell Biology, Federal University of Goiás, Av. Esperança; Campus Samambaia; Goiânia, Goiás 74690-900 Brazil
| | - Fernanda C. A. dos Santos
- Department of Histology, Embryology, and Cell Biology, Federal University of Goiás, Av. Esperança; Campus Samambaia; Goiânia, Goiás 74690-900 Brazil
| | - Hernandes F. de Carvalho
- Department of Structural and Functional Biology, State University of Campinas; Av. Bertrand Russel; Campinas São Paulo 13084864 Brazil
| | - Bruno D. A. Sanches
- Department of Structural and Functional Biology, State University of Campinas; Av. Bertrand Russel; Campinas São Paulo 13084864 Brazil
| | - Sebastião R. Taboga
- Department of Biology, State University of São Paulo; R. Cristóvão Colombo 2265; São José do Rio Preto São Paulo 15054000 Brazil
| |
Collapse
|
23
|
Perez APS, Biancardi MF, Caires CRS, Falleiros LR, Góes RM, Santos FCA, Taboga SR. Pubertal exposure to ethinylestradiol promotes different effects on the morphology of the prostate of the male and female gerbil during aging. ENVIRONMENTAL TOXICOLOGY 2017; 32:477-489. [PMID: 26945824 DOI: 10.1002/tox.22252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
In rodents, the final growth and maturation of the prostate occur at puberty, a crucial period for prostate development. The present study is a serological, morphological, morphometric, and immunohistochemical analysis of the effects of exposure to ethinylestradiol (EE) (15 µg/kg/day) during puberty (EE/PUB group) on the male ventral and female prostate in senile gerbils. In the study, male and female gerbils (Meriones unguiculatus) (42 days) received by gavage 15 μg/kg/day of EE (a component of the contraceptive pill), diluted in 100 µL of Nujol® for 1 week (EE/PUB group). In the control group, males and females were not treated. Animals were killed (n = 5) after 12 months in the experimental groups. In the senile male in the EE/PUB group, we observed a reduction in testosterone levels and a decrease in the prostatic epithelial thickness, as well as in the thickness of the muscle layer. In addition, an increase in PIN multiplicity and prostatic inflammation was observed. In the senile female in the EE/PUB group, we observed increased testosterone and estradiol levels, an enhanced prostatic epithelial thickness and an increase in the thickness of the muscle layer. Immunohistochemical analysis revealed an increase in positive cells (%) for AR and PCNA in the male prostate and an increase in positive basal cells for p63 in the female prostate of the EE/PUB group. Exposure to EE during puberty resulted in an inhibitory action on the male ventral prostate and an anabolic effect on the female prostate in senile gerbils. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 477-489, 2017.
Collapse
Affiliation(s)
- Ana P S Perez
- Department of Structural and Functional Biology, Institute of Biology, UNICAMP, CP 6109, Campinas, São Paulo, 13084-864, Brazil
- Special Institute of Health Sciences, Medicine Course, Federal University of Goiás, Jataí, Goiás, 75804-020
| | - Manoel F Biancardi
- Department of Structural and Functional Biology, Institute of Biology, UNICAMP, CP 6109, Campinas, São Paulo, 13084-864, Brazil
| | - Cássia R S Caires
- Department of Biology, Laboratory of Microscopy and Microanalysis, IBILCE, University of Estadual Paulista-UNESP, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Luiz R Falleiros
- Department of Biology, Laboratory of Microscopy and Microanalysis, IBILCE, University of Estadual Paulista-UNESP, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Rejane M Góes
- Department of Structural and Functional Biology, Institute of Biology, UNICAMP, CP 6109, Campinas, São Paulo, 13084-864, Brazil
- Department of Biology, Laboratory of Microscopy and Microanalysis, IBILCE, University of Estadual Paulista-UNESP, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Fernanda C A Santos
- Department of Morphology, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, UNICAMP, CP 6109, Campinas, São Paulo, 13084-864, Brazil
- Department of Biology, Laboratory of Microscopy and Microanalysis, IBILCE, University of Estadual Paulista-UNESP, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
24
|
Rodríguez DAO, de Lima RF, Campos MS, Costa JR, Biancardi MF, Marques MR, Taboga SR, Santos FCA. Intrauterine exposure to bisphenol A promotes different effects in both neonatal and adult prostate of male and female gerbils (Meriones unguiculatus). ENVIRONMENTAL TOXICOLOGY 2016; 31:1740-1750. [PMID: 26443714 DOI: 10.1002/tox.22176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 06/05/2023]
Abstract
Substances that mimic endogenous hormones may alter the cell signaling that govern prostate development and predispose it to developing lesions in adult and senile life. Bisphenol A is able to mimic estrogens, and studies have demonstrated that low levels of exposure to this compound have caused alterations during prostate development. The aim of this study was to describe the prostate development in both male and female neonatal gerbils in normal conditions and under exposure to BPA during intrauterine life, and also to analyze whether the effects of intrauterine exposure to BPA remain in adulthood. Morphological, stereological, three-dimensional reconstruction, and immunohistochemical methods were employed. The results demonstrated that in 1-day-old normal gerbils, the female paraurethral glands and the male ventral lobe are morphologically similar, although its tissue components-epithelial buds (EB), periurethral mesenchyme (PeM), paraurethral mesenchyme (PaM) or ventral mesenchymal pad (VMP), and smooth muscle (SM)-have presented different immunolabeling pattern for androgen receptor (AR), and for proliferating cell nuclear antigen (PCNA). Moreover, we observed a differential response of male and female prostate to intrauterine BPA exposure. In 1-day-old males, the intrauterine exposure to BPA caused a decrease of AR-positive cells in the PeM and SM, and a decrease of the proliferative status in the EB. In contrast, no morphological alterations were observed in ventral prostate of adult males. In 1-day-old females, BPA exposure promoted an increase of estrogen receptor alpha (ERα) positive cells in PeM and PaM, a decrease of AR-positive cells in EB and PeM, besides a reduction of cell proliferation in EB. Additionally, the adult female prostate of BPA-exposed animals presented an increase of AR- and PCNA-positive cells. These results suggest that the prostate of female gerbils were more susceptible to the intrauterine BPA effects, since they became more proliferative in adult life. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1740-1750, 2016.
Collapse
Affiliation(s)
- Daniel A O Rodríguez
- Institute of Biological Sciences, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Campus II Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Rodrigo F de Lima
- Institute of Biological Sciences, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Campus II Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Mônica S Campos
- Department of Biology, Laboratory of Microscopy and Microanalysis, University Estadual Paulista - UNESP, Rua Cristóvão Colombo, 2265, São José Do Rio Preto, São Paulo, 15054000, Brazil
| | - Janaína R Costa
- Institute of Biological Sciences, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Campus II Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Manoel F Biancardi
- Institute of Biological Sciences, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Campus II Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Mara R Marques
- Institute of Biological Sciences, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Campus II Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, University Estadual Paulista - UNESP, Rua Cristóvão Colombo, 2265, São José Do Rio Preto, São Paulo, 15054000, Brazil
| | - Fernanda C A Santos
- Institute of Biological Sciences, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Campus II Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
25
|
Biancardi MF, Perez APS, Góes RM, Santos FCA, Vilamaior PSL, Taboga SR. Prenatal testosterone exposure as a model for the study of endocrine-disrupting chemicals on the gerbil prostate. Exp Biol Med (Maywood) 2016; 237:1298-309. [DOI: 10.1258/ebm.2012.012051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the prostate depends on a precise androgenic control, so sensible interferences may predispose this gland to develop prostatic diseases during life. These aspects are of interest and preoccupation, since human beings are exposed to a growing number of endocrine-disrupting chemicals with androgenic potential. Therefore, our aim was to evaluate the prostates of adult gerbils exposed to testosterone during intrauterine life. Serological, morphological, morphometric-stereologic, immunohistochemical and three-dimensional reconstruction analyses were used. We found that the testosterone effects were dose-dependent and more harmful to females, leading to the development of masculine characteristics, evidenced by an increased anogenital distance, and absence of vaginal opening and the ectopic development of prostatic tissue. Moreover, premalignant lesions, such as prostatic intraepithelial neoplasia, were observed in addition to inflammatory foci in the prostate. The results showed that the prenatal exposure to testosterone may affect the reproductive system, disrupting developmental processes and increasing susceptibility to the development of prostatic diseases in the Mongolian gerbil.
Collapse
Affiliation(s)
- Manoel F Biancardi
- Department of Cell Biology, Institute of Biology, UNICAMP, Campinas, São Paulo, CP 6109, 13084-864
| | - Ana PS Perez
- Department of Cell Biology, Institute of Biology, UNICAMP, Campinas, São Paulo, CP 6109, 13084-864
| | - Rejane M Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, IBILCE, São Paulo State University, São José do Rio Preto, São Paulo 15054-000
| | - Fernanda CA Santos
- Department of Morphology, Federal University of Goiás, Goiânia, Goiás 74001-970
| | - Patrícia SL Vilamaior
- Biological Sciences and Veterinary Medicine School, Rio Preto Universitary Center - UNIRP, São José do Rio Preto, São Paulo 15025-400, Brazil
| | - Sebastião R Taboga
- Department of Cell Biology, Institute of Biology, UNICAMP, Campinas, São Paulo, CP 6109, 13084-864
- Laboratory of Microscopy and Microanalysis, Department of Biology, IBILCE, São Paulo State University, São José do Rio Preto, São Paulo 15054-000
| |
Collapse
|
26
|
Re: The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer. Eur Urol 2016; 71:302-303. [PMID: 27638091 DOI: 10.1016/j.eururo.2016.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 11/21/2022]
|
27
|
Perez APS, Biancardi MF, Caires CRS, Falleiros-Junior LR, Góes RM, Vilamaior PSL, Santos FCA, Taboga SR. Prenatal exposure to ethinylestradiol alters the morphologic patterns and increases the predisposition for prostatic lesions in male and female gerbils during ageing. Int J Exp Pathol 2016; 97:5-17. [PMID: 26852889 DOI: 10.1111/iep.12153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
Ethinylestradiol (EE) is an endocrine disruptor (ED) which acts as an oestrogen agonist; this compound is known as an oral contraceptive. Male and female rodents exposed to EE during critical time points of development, such as in the prenatal period, show alterations in their reproductive tract during adulthood. Few studies have placed an emphasis on the effects of EE during ageing. Thus, this study had as it's objective the analysis of the morphological and immunohistochemical effects of exposure to EE in the prenatal period on ventral male prostate and female prostate of gerbils (Meriones unguiculatus) during ageing. The animals were exposed to EE (15 μg/kg/day) during the 18-22th days of prenatal life (EE/PRE group), and the analyses were performed when the male and female reached 12 months of age. Our results showed an increase in the development of prostatic intraepithelial neoplasia (PIN), which was observed in the male and female prostate of EE/PRE groups. Immunohistochemistry showed a rise in prostatic epithelial and basal cells immunoreactivity, respectively, and to AR and p63 in the male EE/PRE. There were alterations in the morphological pattern of the prostatic glands and increase in predisposition to emergence of prostatic lesions of both sexes during ageing. Despite male and female having been exposed to the same doses of EE, the "exposure to EE promoted modifications" more accentuated in the male prostate. Thus the male gland is more sensitive to the action of this synthetic oestrogen than the female prostate.
Collapse
Affiliation(s)
- Ana P S Perez
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil
| | - Manoel F Biancardi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil
| | - Cássia R S Caires
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Luiz R Falleiros-Junior
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Fernanda C A Santos
- Department of Morphology, Federal University of Goiás - UFG, Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
28
|
Rago V, Romeo F, Giordano F, Ferraro A, Carpino A. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland. Andrology 2015; 4:121-7. [PMID: 26714890 DOI: 10.1111/andr.12131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements.
Collapse
Affiliation(s)
- V Rago
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - F Romeo
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - F Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - A Ferraro
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - A Carpino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| |
Collapse
|
29
|
de Lima RF, Rodriguez DAO, Campos MS, Biancardi MF, dos Santos IFFR, de Oliveira WD, Cavasin GM, Marques MR, Taboga SR, Santos FCA. Bisphenol-A promotes antiproliferative effects during neonatal prostate development in male and female gerbils. Reprod Toxicol 2015; 58:238-45. [PMID: 26529182 DOI: 10.1016/j.reprotox.2015.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the development of male and female neonatal gerbil prostate under normal conditions and exposed to bisphenol-A (BPA). Normal postnatal development of the female gerbil prostate occurs earlier than and is morphologically distinct from that occurring in males. In BPA-exposed PND8 gerbils, we have not observed evidence of alterations in the ductal branching in either gender. However, the exposure to BPA alters the immunolabeling pattern of AR, ERα, and PCNA. In males, the exposure to high dosages of BPA resulted in a decrease in the proliferative status of the developing ventral prostate. In females, both high and low dosages were sufficient to decrease the proliferation of paraurethral buds in the branching process by more than 50%. Therefore, the obtained data indicate that BPA promotes antiproliferative effects during the neonatal development of the gerbil prostate, with more sensitivity to this endocrine disruptor in females.
Collapse
Affiliation(s)
- Rodrigo Fernandes de Lima
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Daniel Andrés Osório Rodriguez
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Mônica Souza Campos
- São Paulo State University - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054000, Brazil
| | - Manoel Francisco Biancardi
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | | | - Wendyson Duarte de Oliveira
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Gláucia Maria Cavasin
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Mara Rubia Marques
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Sebastião Roberto Taboga
- São Paulo State University - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054000, Brazil
| | | |
Collapse
|
30
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
31
|
Kim SK, Chung JH, Park HC, Kim JH, Ann JH, Park HK, Lee SH, Yoo KH, Lee BC, Kim YO. Association between polymorphisms of estrogen receptor 2 and benign prostatic hyperplasia. Exp Ther Med 2015; 10:1990-1994. [PMID: 26640585 DOI: 10.3892/etm.2015.2755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 08/20/2015] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen receptors (ESRs) have been implicated in the stimulation of aberrant prostate growth and the development of prostate diseases. The aim of the present study was to investigate four single nucleotide polymorphisms (SNPs) of the ESR2 gene in order to examine whether ESR2 is a susceptibility gene for benign prostatic hyperplasia (BPH). In order to evaluate whether an association exists between ESR2 and BPH risk, four polymorphisms [rs4986938 (intron), rs17766755 (intron), rs12435857 (intron) and rs1256049 (Val328Val)] of the ESR2 gene were genotyped by direct sequencing. A total of 94 patients with BPH and 79 control subjects were examined. SNPStats and Haploview version 4.2 we used for the genetic analysis. Multiple logistic regression models (codominant1, codominant2, dominant, recessive and log-additive) were produced in order to obtain the odds ratio, 95% confidence interval and P-value. Three SNPs (rs4986938, rs17766755 and rs12435857) showed significant associations with BPH (rs4986938, P=0.015 in log-additive model; rs17766755, P=0.033 in codominant1 model, P=0.019 in dominant model and P=0.020 in log-additive model; rs12435857, P=0.023 in dominant model and P=0.011 in log-additive model). The minor alleles of these SNPs increased the risk of BPH, and the AAC haplotype showed significant association with BPH (χ2=6.34, P=0.0118). These data suggest that the ESR2 gene may be associated with susceptibility to BPH.
Collapse
Affiliation(s)
- Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun Chul Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jun Ho Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jae Hong Ann
- Department of Biomedical Engineering and Healthcare Industry Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hun Kuk Park
- Department of Biomedical Engineering and Healthcare Industry Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang Hyup Lee
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Koo Han Yoo
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Byung-Cheol Lee
- Department of Internal Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Young Ock Kim
- Herbal Crop Utilization Research Team, Department of Medicinal Crop Research, Rural Administration, Soi-myeon, Eumseong-gun 369-873, Republic of Korea
| |
Collapse
|
32
|
Keil KP, Vezina CM. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate. Epigenomics 2015; 7:413-25. [PMID: 26077429 DOI: 10.2217/epi.15.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.
Collapse
Affiliation(s)
- Kimberly P Keil
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| | - Chad M Vezina
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| |
Collapse
|
33
|
Morais-Santos M, Nunes AEB, Oliveira AG, Moura-Cordeiro JD, Mahecha GAB, Avellar MCW, Oliveira CA. Changes in Estrogen Receptor ERβ (ESR2) Expression without Changes in the Estradiol Levels in the Prostate of Aging Rats. PLoS One 2015; 10:e0131901. [PMID: 26147849 PMCID: PMC4492744 DOI: 10.1371/journal.pone.0131901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 12/04/2022] Open
Abstract
Although the prostate is androgen-dependent, it is also influenced by estrogens, which act via the estrogen receptors ERα and ERβ. In the prostate, ERβ is highly expressed in the epithelium and appears to participate in the regulation of cell proliferation, apoptosis and differentiation. Evidence shows that ERβ is decreased in malignant prostate, suggesting that it plays an important role in protecting this tissue. Despite the relationship between reductions in ERβ and abnormal growth of the gland, little is known about the age-dependent variation of this receptor. Therefore, we aimed to investigate ERβ expression in the prostatic lobes of aging Wistar rats (3 to 24 months). Histopathological alterations, including hyperplasia, intraluminal concretions, nuclear atypia and prostate intraepithelial neoplasias (PIN), were observed in the prostates of aging rats. Epithelial proliferation led to cribriform architecture in some acini, especially in the ventral prostate (VP). In the VP, areas of epithelial atrophy were also observed. Furthermore, in the lateral prostate, there was frequent prostatitis. Immunohistochemistry revealed that the expression of ERβ is reduced in specific areas related to PIN, atrophic abnormalities and cellular atypia in the prostate epithelium of senile rats. Corroborating the involvement of the receptor with proliferative activity, the punctual reduction in ERβ paralleled the increase in cell proliferation especially in areas of PIN and nuclear atypies. The decrease in ERβ reactivity occurred in a hormonal milieu characterized by a constant concentration of estradiol and decreased plasmatic and tissue DHT. This paper is a pioneering study that reveals focal ERβ reduction in the prostate of aging rats and indicates a potential disorder in the ERβ pathway. These data corroborate previous data from humans and dogs that silencing of this receptor may be associated with premalignant or malignant conditions in the prostate.
Collapse
Affiliation(s)
- Mônica Morais-Santos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aryane E. B. Nunes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André G. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júnia Dayrell Moura-Cordeiro
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A. B. Mahecha
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Christina W. Avellar
- Department of Pharmacology, Section of Experimental Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Cleida A. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
34
|
Campos MS, Galvão ALV, Rodríguez DAO, Biancardi MF, Marques MR, Vilamaior PSL, Santos FCA, Taboga SR. Prepubertal exposure to bisphenol-A induces ERα upregulation and hyperplasia in adult gerbil female prostate. Int J Exp Pathol 2015; 96:188-95. [PMID: 26098999 DOI: 10.1111/iep.12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022] Open
Abstract
Prostate physiology is highly dependent on oestrogenic and androgenic homeostasis. Interferences in this equilibrium, especially in early periods of life, may disrupt the prostate and increase the susceptibility to the development of diseases with ageing. Taking this into account, and considering the increase of environmental chemicals with endocrine-disrupting potential such as bisphenol-A (BPA), this study aimed to evaluate the prostates of adult female gerbils exposed to BPA and BPA plus testosterone from pubertal to adult periods. Morphological, stereological and chemical analyses revealed that long-term BPA exposure, even in environmental dosages, increases the proliferative status of the prostate, increases the number of ERα-positive stromal cells and elicits the development of prostatic hyperplasia in adult female gerbils. Moreover, we also observed that the association with testosterone did not increase the proliferative status of the gland, which shows that low levels of BPA are enough to cause an oestrogenic disruption of the prostate in young adults. This evidence suggests that this oestrogenic endocrine disruptor may increase the susceptibility to prostatic disorders with ageing.
Collapse
Affiliation(s)
- Mônica S Campos
- Department of Biology, Laboratory of Microscopy and Microanalysis, University Estadual Paulista - UNESP, São José do Rio Preto, Brazil
| | - André L V Galvão
- Department of Histology, Embriology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | - Daniel A O Rodríguez
- Department of Histology, Embriology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | - Manoel F Biancardi
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Mara R Marques
- Department of Histology, Embriology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | - Patrícia S L Vilamaior
- Department of Biology, Laboratory of Microscopy and Microanalysis, University Estadual Paulista - UNESP, São José do Rio Preto, Brazil
| | - Fernanda C A Santos
- Department of Histology, Embriology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, University Estadual Paulista - UNESP, São José do Rio Preto, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
35
|
Saffarini CM, McDonnell-Clark EV, Amin A, Boekelheide K. A human fetal prostate xenograft model of developmental estrogenization. Int J Toxicol 2015; 34:119-28. [PMID: 25633637 PMCID: PMC4409475 DOI: 10.1177/1091581815569364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer is a common disease in older men. Rodent models have demonstrated that an early and later-life exposure to estrogen can lead to cancerous lesions and implicated hormonal dysregulation as an avenue for developing future prostate neoplasia. This study utilizes a human fetal prostate xenograft model to study the role of estrogen in the progression of human disease. Histopathological lesions were assessed in 7-, 30-, 90-, 200-, and 400-day human prostate xenografts. Gene expression for cell cycle, tumor suppressors, and apoptosis-related genes (ie, CDKN1A, CASP9, ESR2, PTEN, and TP53) was performed for 200-day estrogen-treated xenografts. Glandular hyperplasia was observed in xenografts given both an initial and secondary exposure to estradiol in both 200- and 400-day xenografts. Persistent estrogenic effects were verified using immunohistochemical markers for cytokeratin 10, p63, and estrogen receptor α. This model provides data on the histopathological state of the human prostate following estrogenic treatment, which can be utilized in understanding the complicated pathology associated with prostatic disease and early and later-life estrogenic exposures.
Collapse
Affiliation(s)
- Camelia M Saffarini
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | - Ali Amin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
36
|
Spade DJ, McDonnell EV, Heger NE, Sanders JA, Saffarini CM, Gruppuso PA, De Paepe ME, Boekelheide K. Xenotransplantation models to study the effects of toxicants on human fetal tissues. ACTA ACUST UNITED AC 2014; 101:410-22. [PMID: 25477288 DOI: 10.1002/bdrb.21131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mahawong P, Sinclair A, Li Y, Schlomer B, Rodriguez E, Ferretti MM, Liu B, Baskin LS, Cunha GR. Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains. Differentiation 2014; 88:51-69. [PMID: 25449352 PMCID: PMC4254634 DOI: 10.1016/j.diff.2014.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/04/2014] [Accepted: 09/19/2014] [Indexed: 11/28/2022]
Abstract
Potential trans-generational influence of diethylstilbestrol (DES) exposure emerged with reports of effects in grandchildren of DES-treated pregnant women and of reproductive tract tumors in offspring of mice exposed in utero to DES. Accordingly, we examined the trans-generational influence of DES on development of external genitalia (ExG) and compared effects of in utero DES exposure in CD-1 and C57BL/6 mice injected with oil or DES every other day from gestational days 12 to 18. Mice were examined at birth, and on 5-120 days postnatal to evaluate ExG malformations. Of 23 adult (>60 days) prenatally DES-exposed males, features indicative of urethral meatal hypospadias (see text for definitions) ranged from 18% to 100% in prenatally DES-exposed CD-1 males and 31% to 100% in prenatally DES-exposed C57BL/6 males. Thus, the strains differed only slightly in the incidence of male urethral hypospadias. Ninety-one percent of DES-exposed CD-1 females and 100% of DES-exposed C57BL/6 females had urethral-vaginal fistula. All DES-exposed CD-1 and C57BL/6 females lacked an os clitoris. None of the prenatally oil-treated CD-1 and C57BL/6 male and female mice had ExG malformations. For the second-generation study, 10 adult CD-1 males and females, from oil- and DES-exposed groups, respectively, were paired with untreated CD-1 mice for 30 days, and their offspring evaluated for ExG malformations. None of the F1 DES-treated females were fertile. Nine of 10 prenatally DES-exposed CD-1 males sired offspring with untreated females, producing 55 male and 42 female pups. Of the F2 DES-lineage adult males, 20% had exposed urethral flaps, a criterion of urethral meatal hypospadias. Five of 42 (11.9%) F2 DES lineage females had urethral-vaginal fistula. In contrast, all F2 oil-lineage males and all oil-lineage females were normal. Thus, prenatal DES exposure induces malformations of ExG in both sexes and strains of mice, and certain malformations are transmitted to the second-generation.
Collapse
Affiliation(s)
- Phitsanu Mahawong
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Adriane Sinclair
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Yi Li
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Bruce Schlomer
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Esequiel Rodriguez
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Max M Ferretti
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Baomei Liu
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Laurence S Baskin
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, United States.
| |
Collapse
|
38
|
Abstract
Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research.
Collapse
Affiliation(s)
- Adam W Nelson
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - Wayne D Tilley
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - David E Neal
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - Jason S Carroll
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
39
|
Sanches BDA, Biancardi MF, Santos FCAD, Góes RM, Vilamaior PSL, Taboga SR. Budding process during the organogenesis of the ventral prostatic lobe in Mongolian gerbil. Microsc Res Tech 2014; 77:458-66. [PMID: 24753302 DOI: 10.1002/jemt.22370] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/07/2022]
Abstract
The prostate is a mammalian gland that shows a complex process of organogenesis. Here, a morphological study to characterize the organogenesis of the ventral prostate lobe in male gerbils was conducted. The urogenital sinus (UGS) was dissected out and processed for paraffin embedding. Histological sections were subjected to cytochemical, immunofluorescence, immunohistochemical, and three-dimensional reconstruction techniques. We found that the first ventral buds emerged from the ventral urethral epithelium between the days 20 and 21 of prenatal life, reaching the ventral mesenchymal pad and initiating the branching process on the first day of postnatal life. The buds presented a V-shaped elongation, suggesting that the smooth muscle layer (SML) plays an important role during budding events. Indeed, whereas the androgen receptor (AR) was preferentially found in the UGS mesenchyme (UGM), estrogen receptor alpha (ERα) was localized in both the UGM and in the emerging buds. This study characterized the morphological aspects of the budding process in a different rodent from rat and mice, serving as a new model for future studies on developmental biology of the prostate.
Collapse
Affiliation(s)
- Bruno Domingos Azevedo Sanches
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Rua Cristóvão Colombo, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, Davis KJ, Patton RE, Gamboa da Costa G, Woodling KA, Bryant MS, Chidambaram M, Trbojevich R, Juliar BE, Felton RP, Thorn BT. Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci 2014; 139:174-97. [PMID: 24496637 DOI: 10.1093/toxsci/kfu022] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is a high production volume industrial chemical to which there is widespread human oral exposure. Guideline studies used to set regulatory limits detected adverse effects only at doses well above human exposures and established a no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day. However, many reported animal studies link BPA to potentially adverse effects on multiple organ systems at doses below the NOAEL. The primary goals of the subchronic study reported here were to identify adverse effects induced by orally (gavage) administered BPA below the NOAEL, to characterize the dose response for such effects and to determine doses for a subsequent chronic study. Sprague Dawley rat dams were dosed daily from gestation day 6 until the start of labor, and their pups were directly dosed from day 1 after birth to termination. The primary focus was on seven equally spaced BPA doses (2.5-2700 μg/kg bw/day). Also included were a naïve control, two doses of ethinyl estradiol (EE2) to demonstrate the estrogen responsiveness of the animal model, and two high BPA doses (100,000 and 300,000 μg/kg bw/day) expected from guideline studies to produce adverse effects. Clear adverse effects of BPA, including depressed gestational and postnatal body weight gain, effects on the ovary (increased cystic follicles, depleted corpora lutea, and antral follicles), and serum hormones (increased serum estradiol and prolactin and decreased progesterone), were observed only at the two high doses of BPA. BPA-induced effects partially overlapped those induced by EE2, consistent with the known weak estrogenic activity of BPA.
Collapse
Affiliation(s)
- K Barry Delclos
- Division of Biochemical Toxicology, 3900 NCTR Road, Jefferson, Arkansas 72079
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Balistreri CR, Candore G, Lio D, Carruba G. Prostate cancer: from the pathophysiologic implications of some genetic risk factors to translation in personalized cancer treatments. Cancer Gene Ther 2014; 21:2-11. [PMID: 24407349 DOI: 10.1038/cgt.2013.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 02/07/2023]
|
42
|
Fochi RA, Santos FCA, Goes RM, Taboga SR. Progesterone as a morphological regulatory factor of the male and female gerbil prostate. Int J Exp Pathol 2013; 94:373-86. [PMID: 24205795 PMCID: PMC3944449 DOI: 10.1111/iep.12050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/17/2013] [Indexed: 01/28/2023] Open
Abstract
Testosterone (T) and oestrogen are the main active steroid hormones in the male and female reproductive system respectively. In female rodents progesterone (P4), together with testosterone and oestrogen, has an essential role in the regulation of the oestrous cycle, which influences the prostate physiology through their oscillations. In this work we investigated how the male and female prostate gland of Mongolian gerbils responds to surgical castration at the start of puberty and what are the effects of T, oestradiol (E2) and P4 replacement, using both quantitative and qualitative methods. We also examined the location of the main steroid receptors present in the prostate. In the castrated animals of both sexes an intense glandular regression, along with disorganization of the stromal compartment, and abundant hyperplasia was observed. The replacement of P4 secured a mild recovery of the glandular morphology, inducing the growth of secretory cells and restoring the androgen receptor (AR) cells. The administration of P4 and E2 eliminated epithelial hyperplasia and intensified gland hypertrophy, favouring the emergence of prostatic intraepithelial neoplasia (PIN). In animals treated with T and P4, even though there are some inflammatory foci and other lesions, the prostate gland revealed morphology closer to that of control animals. In summary, through the administration of P4, we could demonstrate that this hormone has anabolic characteristics, promoting hyperplasia and hypertrophy, mainly in the epithelial compartment. When combined with E2 and T, there is an accentuation of glandular hypertrophy that interrupts the development of hyperplasia and ensures the presence of a less dysplastic glandular morphology.
Collapse
Affiliation(s)
- Ricardo A Fochi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | |
Collapse
|
43
|
Saffarini CM, McDonnell EV, Amin A, Spade DJ, Huse SM, Kostadinov S, Hall SJ, Boekelheide K. Maturation of the developing human fetal prostate in a rodent xenograft model. Prostate 2013; 73:1761-75. [PMID: 24038131 PMCID: PMC4306740 DOI: 10.1002/pros.22713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed nonskin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. METHODS We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate-specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. RESULTS Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture microdissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30- and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. CONCLUSION This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease.
Collapse
Affiliation(s)
- Camelia M. Saffarini
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Elizabeth V. McDonnell
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, USA 02903
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Susan M. Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Stefan Kostadinov
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Providence, Rhode Island, USA 02903
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| |
Collapse
|
44
|
Xu B, Gao L, Wang L, Tang G, He M, Yu Y, Ni X, Sun Y. Effects of platelet-activating factor and its differential regulation by androgens and steroid hormones in prostate cancers. Br J Cancer 2013; 109:1279-86. [PMID: 23949154 PMCID: PMC3778313 DOI: 10.1038/bjc.2013.480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/03/2022] Open
Abstract
Background: Platelet-activating factor (PAF) is an arachidonic acid metabolite that plays an important role in cell proliferation, migration and neoangiogenesis, but whether it is involved in the progression of prostate cancer remains undiscovered. Methods: Clinical prostate specimens were investigated with immunohistochemistry method and in vitro cell experiments referred to MTS cell proliferation assay, invasion and migration experiment, quantitative real-time RT–PCR assay, western blotting analysis and ELISA assay. Results: Platelet-activating factor synthetase, lyso-PAF acetyl transferase (LPCAT1), increased significantly in castration-resistant prostate cancer (CRPC) specimens and CRPC PC-3 cells than that in controls. Intriguingly, PAF induced invasion and migration of PC-3 cells but not LNCaP cells. The PAF receptor antagonist inhibited proliferation of LNCaP and PC-3 cells. Dihydrotestosterone (DHT) treatment caused a decrease in LPCAT1 expression and PAF release in LNCaP cells, which could be blocked by androgen receptor antagonists. Finally, DHT increased LPCAT1 expression and PAF release in PC-3 cells in a Wnt/β-catenin-dependent manner. Conclusion: For the first time, our data supported that PAF might play pivotal roles in the progression of prostate cancer, which might throw a new light on the treatment of prostate cancer and the prevention of the emergence of CRPC.
Collapse
Affiliation(s)
- B Xu
- Department of Urology, Changhai Hospital, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Garg M, Dalela D, Dalela D, Goel A, Kumar M, Gupta G, Sankhwar SN. Selective estrogen receptor modulators for BPH: new factors on the ground. Prostate Cancer Prostatic Dis 2013; 16:226-32. [PMID: 23774084 DOI: 10.1038/pcan.2013.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023]
Abstract
As the current management of BPH/lower urinary tract symptoms by traditionally involved pharmacological agents such as 5alpha-reductase inhibitors and α1-adrenoceptor antagonists is suboptimal, there is definite need of new therapeutic strategies. There is ample evidence in literature that suggests the role of estrogens in BPH development and management through the different tissue and cell-specific receptors. This article reviews the beneficial actions of selective estrogen receptor modulator (SERM) and ERβ-selective ligands, which have been demonstrated through in vitro studies using human prostate cell lines and in vivo animal studies. SERMs have anti-proliferative, anti-inflammatory and pro-apoptotic mechanisms in BPH, and also act by inhibiting various growth factors, and thus represent a unique and novel approach in BPH management directed at estrogen receptors or estrogen metabolism.
Collapse
Affiliation(s)
- M Garg
- Department of Urology, King George Medical University, Lucknow, India.
| | | | | | | | | | | | | |
Collapse
|
46
|
Rochel-Maia SS, Santos FC, Alonso-Magdalena P, Góes RM, Vilamaior PS, Warner M, Gustafsson JÅ, Taboga SR. Estrogen Receptors Alpha and Beta in Male and Female Gerbil Prostates1. Biol Reprod 2013; 88:7. [DOI: 10.1095/biolreprod.112.103614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
47
|
Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res 2012; 28:71-6. [PMID: 22787479 PMCID: PMC3389841 DOI: 10.5625/lar.2012.28.2.71] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/23/2023] Open
Abstract
Estrogens, a class of steroid hormones, regulate the growth, development, and physiology of the human reproductive system. Estrogens also involve in the neuroendocrine, skeletal, adipogenesis, and cardiovascular systems. Estrogen signaling pathways are selectively stimulated or inhibited depending on a balance between the activities of estrogen receptor (ER) α or ERβ in target organs. ERs belong to the steroid hormone superfamily of nuclear receptors, which act as transcription factors after binding to estrogen. The gene expression regulation by ERs is to modulate biological activities, such as reproductive organ development, bone modeling, cardiovascular system functioning, metabolism, and behavior in both females and males. Understanding of the general physiological roles of ERs has been gained when estrogen levels were ablated by ovariectomy and then replenished by treatment with exogenous estrogen. This technique is not sufficient to fully determine the exact function of estrogen signaling in general processes in living tissues. However, a transgenic mouse model has been useful to study gene-specific functions. ERα and ERβ have different biological functions, and knockout and transgenic animal models have distinct phenotypes. Analysis of ERα and ERβ function using knockout mouse models has identified the roles of estrogen signaling in general physiologic processes. Although transgenic mouse models do not always produce consistent results, they are the useful for studying the functions of these genes under specific pathological conditions.
Collapse
|
48
|
Perez AP, Biancardi MF, Vilamaior PS, Góes RM, Santos FC, Taboga SR. Microscopic comparative study of the exposure effects of testosterone cypionate and ethinylestradiol during prenatal life on the prostatic tissue of adult gerbils. Microsc Res Tech 2012; 75:1084-92. [DOI: 10.1002/jemt.22034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/10/2012] [Indexed: 11/08/2022]
|
49
|
Christiansen S, Kortenkamp A, Axelstad M, Boberg J, Scholze M, Jacobsen PR, Faust M, Lichtensteiger W, Schlumpf M, Burdorf A, Hass U. Mixtures of endocrine disrupting contaminants modelled on human high end exposures: an exploratory study in rats. ACTA ACUST UNITED AC 2012; 35:303-16. [DOI: 10.1111/j.1365-2605.2011.01242.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports. Steroids 2012; 77:10-26. [PMID: 22037250 DOI: 10.1016/j.steroids.2011.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 12/24/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.
Collapse
Affiliation(s)
- Laïla El Kihel
- Université de Caen Basse-Normandie, UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, FR CNRS INC3M, Caen, France.
| |
Collapse
|