1
|
Balzi E, Goffeau A. Multiple or pleiotropic drug resistance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:241-52. [PMID: 2009277 DOI: 10.1016/0304-4165(91)90128-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- E Balzi
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
2
|
Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45464-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
3
|
Isolation and characterization of an uncoupler-resistant mutant of Saccharomyces cerevisiae. Curr Genet 1984; 8:507-16. [DOI: 10.1007/bf00410437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1984] [Indexed: 10/26/2022]
|
4
|
Li M, Tzagoloff A, Underbrink-Lyon K, Martin NC. Identification of the paromomycin-resistance mutation in the 15 S rRNA gene of yeast mitochondria. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)83867-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Johnston PA, Coddington A. Multiple drug resistance in the fission yeast Schizosaccharomyces pombe: evidence for the existence of pleiotropic mutations affecting dependent transport systems. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:311-4. [PMID: 6953308 DOI: 10.1007/bf00330803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The uptake of L-tyrosine into wild type and antibiotic resistant strains of Schizosaccharomyces pombe requires an energy source, is initially linear with respect to time, is inhibited by 2,4-dinitrophenol and sodium azide and is saturable. However the initial uptake rates and the amount of L-tyrosine accummulated by antibiotic resistant strains are much less than wild type. Comparison of the kinetic constants of uptake shows that mutant strains have a reduced maximum velocity of uptake compared to wild type and a larger Km. Since the three mutant strains possess a permeability barrier to L-tyrosine as well as being drug resistant this is an indication that antibiotic resistance may be caused by a decrease in plasma membrane permeability.
Collapse
|
6
|
Kuhns MC, Eisenstadt JM. Nuclear inheritance of oligomycin resistance in mouse L cells. SOMATIC CELL GENETICS 1981; 7:737-50. [PMID: 6459654 DOI: 10.1007/bf01538761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The inheritance of oligomycin resistance was studied in three mouse L-cell mutants, OLI 2, OLI 4, and OLI 14. All three mutants had previously been shown to have oligomycin-resistant mitochondrial ATPase activity. In addition, OLI 14 has DCCD-resistant mitochondrial ATPase activity and an altered DCCD-binding protein. Oligomycin-resistant cells were enucleated and fused with oligomycin-sensitive cells under a variety of selective regimes designed to allow growth of oligomycin-resistant cybrids. No transfer of oligomycin resistance via the cytoplasm of OLI 2, OLI 4, or OLI 14 was detected. In contrast, oligomycin resistance was transferred with the karyoplasts of OLI 14 in karyoplast-cell fusions. Fusions between OLI 14 cells and oligomycin-sensitive cells also produced oligomycin-resistant hybrids. Transfer of oligomycin resistance in the karyoplast-cell and cell-cell fusions were demonstrated at the level of the mitochondrial ATPase. These results indicate that oligomycin resistance in OLI 14 is most likely under nuclear control. Furthermore, nuclear inheritance of oligomycin resistance in a mutant with a modified DCCD-binding protein suggests that the gene for the DCCD-binding protein is encoded in the nucleus of mammalian cells.
Collapse
|
7
|
Sriprakash KS, Batum C. Segregation and transmission of mitochondrial markers in fusion products of the asporogenous yeast Torulopsis glabrata. Curr Genet 1981; 4:73-80. [DOI: 10.1007/bf00376789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1981] [Indexed: 11/27/2022]
|
8
|
Murphy M, Roberts H, Choo WM, Macreadie I, Marzuki S, Lukins HB, Linnane AW. Biogenesis of mitochondria. oli2 Mutations affecting the coupling of oxidation to phosphorylation in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 592:431-44. [PMID: 6251866 DOI: 10.1016/0005-2728(80)90090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Two oligomycin-resistant strains of Saccharomyces cerevisiae have been isolated and shown to have mutations in the oli2 region of the mitochondrial DNA. On solid media containing a non-fermentable energy source, the mutant strains were able to grow only slowly at 28 degrees C and not at all at 18 degrees C or 36 degrees C. 2. When grown in a glucose-limited chemostat at 28 degrees C, the mutant strains were almost completely defective in oxidative metabolism. The mutant mitochondria contained significant levels of all respiratory enzymes, and an active, oligomycin-sensitive ATPase, but the ATP-32Pi exchange activity and P : O ratio were very low. 3. The mutations in these strains are genetically closely linked to mit mutations which have been shown to affect a 20 000-dalton ATPase subunit (Roberts, H., Choo, W.M., Murphy, M., Marzuki, S., Lukins, H.B. and Linnane, A.W. (1979) FEBS Lett. 108, 501-504). Since the mitochondrial ATPase in these mutant strains appears to be fully assembled, the defect in the coupling mechanism is probably a result of a small alteration in the structure of the 20 000-dalton ATPase subunit. 4. When the mutant strains were grown at 18 degrees C, the mitochondria had very low cytochrome oxidase activities, and reduced levels of cytochrome aa3. The largest subunit (Mr 40 000) of this enzyme was not synthesized.
Collapse
|
9
|
Berlani RE, Pentella C, Macino G, Tzagoloff A. Assembly of the mitochondrial membrane system: isolation of mitochondrial transfer ribonucleic acid mutants and characterization of transfer ribonucleic acid genes of Saccharomyces cerevisiae. J Bacteriol 1980; 141:1086-97. [PMID: 6245059 PMCID: PMC293786 DOI: 10.1128/jb.141.3.1086-1097.1980] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A method is described for isolating cytoplasmic mutants of Saccharomyces cerevisiae with lesions in mitochondrial transfer ribonucleic acids (tRNA's). The mutants were selected for slow growth on glycerol and for restoration of wild-type growth by cytoplasmic "petite" testers that contain regions of mitochondrial deoxyribonucleic acid (DNA) with tRNA genes. The aminoacylated mitochondrial tRNA's of several presumptive tRNA mutants were analyzed by reverse-phase chromatography on RPC-5. Two mutant strains, G76-26 and G76-35, were determined to carry mutations in the cysteine and histidine tRNA genes, respectively. The cysteine tRNA mutant was used to isolate cytoplasmic petite mutants whose retained segments of mitochondrial DNA contain the cysteine tRNA gene. The segment of one such mutant (DS504) was sequenced and shown to have the cysteine, histidine, and threonine tRNA genes. The structures of the three mitochondrial tRNA's were deduced from the DNA sequence.
Collapse
|
10
|
Roberts H, Choo WM, Murphy M, Marzuki S, Lukins HB, Linnane SW. mit- Mutations in the oli2 region of mitochondrial DNA affecting the 20 000 dalton subunit of the mitochondrial ATPase in Saccharomyces cerevisiae. FEBS Lett 1979; 108:501-4. [PMID: 230092 DOI: 10.1016/0014-5793(79)80597-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sebald W, Wachter E, Tzagoloff A. Identification of amino acid substitutions in the dicyclohexylcarbodiimide-binding subunit of the mitochondrial ATPase complex from oligomycin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 100:599-607. [PMID: 159820 DOI: 10.1111/j.1432-1033.1979.tb04207.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Partis MD, Bertoli E, Zanders ED, Griffiths DE. A modified subunit of mitochondrial ATPase in mutants of Saccharomyces cerevisiae with decreased sensitivity to dicyclohexylcarbodiimide. FEBS Lett 1979; 105:167-70. [PMID: 226406 DOI: 10.1016/0014-5793(79)80910-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Turner G, Imam G, Küntzel H. Mitochondrial ATPase complex of Aspergillus nidulans and the dicyclohexylcarbodiimide-binding protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 97:565-71. [PMID: 157278 DOI: 10.1111/j.1432-1033.1979.tb13145.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dicyclohexylcarbodiimide-binding protein of Aspergillus nidulans has been identified as the smallest subunit of the mitochondrial ATPase complex, and has a molecular weight of approximately 8000. It is extractable from whole mitochondria and from the purified enzyme in neutral chloroform/methanol, contains 30% polar amino acids, and the N-terminal amino acid has been identified as tyrosine. Using a double-labelling technique in the absence and presence of cycloheximide, followed by immunoprecipitation of the enzyme complex with antiserum against Neuospora crassa F1 ATPase, it has been shown that this subunit is synthesized on cytoplasmic ribosomes.
Collapse
|
14
|
Cosson J, Tzagoloff A. Sequence homologies of (guanosine + cytidine)-rich regions of mitochondrial DNA of Saccharomyces cerevisiae. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)30268-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Coruzzi G, Trembath MK, Tzagoloff A. Assembly of the mitochondrial membrane system: mutations in the pho2 locus of the mitochondrial genome of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 92:279-87. [PMID: 153229 DOI: 10.1111/j.1432-1033.1978.tb12746.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two mutants of Saccharomyces cerevisiae which show a loss of mitochondrial rutamycin-sensitive ATPase activity are described. Although phenotypically similar to mutants of the mitochondrial locus pho1 [F. Foury and A. Tzagoloff (1976) Eur. J. Biochem. 68, 113-119], these mutants define a second ATPase locus on the mitochondrial DNA (designated pho2), which is genetically unlinked to pho1. Analysis of recombination in crosses involving multiple antibiotic resistance markers indicates that the locus is in the segment of the genome between ery1 and oli2, very close to oli1. In fact it is proposed that the oli1 and pho2 mutations are in the same gene. Supporting evidence for this proposal includes: 1. The analysis of marker retention in petite mutants shows that the oli1 and pho2 loci were either retained or lost together in all cases. 2. Recombination frequencies of 0.05% or less are observed in crosses between the oli1 and pho2 loci. 3. When rho+ revertants are isolated from the pho2 mutants they frequently are oligomycin resistant. 4. pho2 mutants have an altered subunit 9 of the ATPase complex.
Collapse
|
16
|
Linnane AW, Nagley P. Mitochondrial genetics in perspective: the derivation of a genetic and physical map of the yeast mitochondrial genome. Plasmid 1978; 1:324-45. [PMID: 372968 DOI: 10.1016/0147-619x(78)90049-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
|
18
|
Kruszewska A, Szcześniak B. Janus green resistance in Saccharomyces cerevisiae: interaction of nuclear and cytoplasmic factors. MOLECULAR & GENERAL GENETICS : MGG 1978; 160:171-81. [PMID: 349352 DOI: 10.1007/bf00267479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Janus green B was found to be a specific inhibitor of mitochondrial function in yeast. This is consistent with the Janus green specificity in supravital staining of mitochondria. A mutant of S. Cerevisiae resistant to Janus green B was isolated. It shows cross resistance to oligomycin, ethidium bromide and a weak resistance to chlormaphenicol. The mutant was found to be sensitive to cycloheximide and erythromycin. Genetic analysis of this mutant showed that mitochondrial genes are not involved in the determination of Janus Green resistance. Tetrad analysis suggested that two more more nuclear genes are concerned, but many unusal genetic features suggestive of the involvement of a cytoplasmic element remain to be explained.
Collapse
|
19
|
Rowlands RT, Turner G. Nuclear-extranuclear interactions affecting oligomycin resistance in Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1977; 154:311-8. [PMID: 144864 DOI: 10.1007/bf00571288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extranuclear mitochondrial oligomycin-resistant mutation of Aspergillus nidulans, (oliA1), was transferred asexually into four nuclear oligomycin-resistant strains of different phenotypes. In all four cases, the possession of the nuclear plus extranuclear mutation led to an increase in the in vivo level of oligomycin resistance. In two cases, the altered cytochrome spectrum and impaired growth ability determined by (oliA1) were suppressed by the nuclear mutations. In the third case, the in vitro oligomycin resistance of the double mutant ATPase was dramatically increased above that of either of the component single mutant strains, indicating a synergystic interaction between the nuclear and extranuclear gene products. In the fourth case, the double mutant became cold-sensitive. A new extranuclear mitochondrial oligomycin-resistant mutation (oliB332) is described. This mutant is phenotypically similar to, though not identical with, (oliA1) but is separable by recombination. A range of nuclear oligomycin-resistant mutants have been mapped. Despite presenting five distinctly different phenotypes, they all map at the same locus.
Collapse
|
20
|
|
21
|
Carignani G, Lancashire WE, Griffiths DE. Extra-chromosomal inheritance of rhodamine 6G resistance in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1977; 151:49-56. [PMID: 325367 DOI: 10.1007/bf00446912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodamine 6G was found to be a specific inhibitor of aerobic growth of yeast, having no effect on fermentative growth. A single step spontaneous mutant of S. cerevisiae resistant to rhodamine 6G was isolated, which showed cross-resistance to the ATPase inhibitors venturicidin and triethyltin, to the uncoupler 1799, to bongkrekic acid and to cycloheximide, but not to oligomycin or to the inhibitors of mito chondrial protein synthesis, chloramphenicol and erythromycin. The genetic analysis of this mutant showed that both nuclear and cytoplasmic (but apparently not mitochondrial) factors may be involved in the determination of the mutation. The behaviour is discussed as a possible function for 2 micron circular (omicron) DNA.
Collapse
|
22
|
|
23
|
Nagley P, Sriprakash KS, Linnane AW. Structure, synthesis and genetics of yeast mitochondrial DNA. Adv Microb Physiol 1977; 16:157-277. [PMID: 343546 DOI: 10.1016/s0065-2911(08)60049-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Foury F, Tzagoloff A. Localization on mitochondrial DNA of mutations leading to a loss of rutamycin-sensitive adenosine triphosphatase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1976; 68:113-9. [PMID: 134892 DOI: 10.1111/j.1432-1033.1976.tb10769.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four cytoplasmic mutants of Saccharomyces cerevisiae showing loss of mitochondrial rutamycin-sensitive ATPase activity but having significant cytochrome oxidase and NADH-cytochrome c reductase have been isolated. Genetic studies indicate the mutations to be closely linked to each other and have been assigned to a new locus, PHO1. The mutations show a low frequency of recombination with the OL12 locus, suggesting a linkage to this marker. They are not, however, linked to the OLI1 locus. Linkage of the ATPase mutations to the OLI2 locus is also indicated by restoration of wild-type diploids by sigma- clones that retain the segment of mitochondrial DNA carrying OLI2. Based on the recombinants issued from crosses of the mutants with a triple drug-resistant strain and an analysis of the resistance markers present in sigma- clones that are effective in restoring a wild-type phenotype, the PHO1 locus has been placed in the segment of DNA located between PAR1 and OLI2.
Collapse
|
25
|
Tzagoloff A, Akai A, Foury F. Assembly of the mitochondrial membrane system XVI. Modified form of the ATPase proteolipid in oligomycin-resistant mutants of Saccharomyces cerevisiae. FEBS Lett 1976; 65:391-5. [PMID: 133820 DOI: 10.1016/0014-5793(76)80154-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Trembath MK, Molloy PL, Sriprakash KS, Cutting GJ, Linnane AW, Lukins HB. Biogenesis of mitochondria 44. comparative studies and mapping of mitochondrial oligomycin resistance mutations in yeast based on gene recombination and petite deletion analysis. MOLECULAR & GENERAL GENETICS : MGG 1976; 145:43-52. [PMID: 1272251 DOI: 10.1007/bf00331556] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A comparative study of eight independently isolated mitochondrial oligomycin resistant mutants obtained from three laboratories show a variety of phenotypes based on cross resistance to venturicidin and sensitivity to low temperature. Analysis of recombination between pairs of markers indicate the existence of at least three genetic classes; class A, cross resistant to venturicidin and including the mutations OIII, [olil-r], [olgi-R], [tso-r]; class B, mutations OI, [olil7-r], [OLG2-R]; and class C, the mutation O11. The recombination data is consistent with mutations of each class residing in three separate genes, although mutations of class A and B show very close linkage. Recombination in non-polar crosses had demonstrated that markers of all three classes are linked to the mikl locus in the configuration (AB)-mikl-C. The mapping of this segment with respect to other markers of the mitochondrial genome and the order of classes A and B was established by analysis of co-retention frequenceis of markers in primary petite isolates as well as by analysis of marker overlap of genetically and physically defined petite genomes. The unambiguous order eryl-A-B-mik1-C-par was obtained. DNA-DNA hybridization studies using mtDNA isolated from selected petites confirms this map and estimates the physical separation of markers. A resonable correlation exists in this region of th genome between distances estimated physically by hybridization and genetically by frequencey of recombination in non-polar crosses. It is potulated that the oligomycin-mikamycin linkage group represents a cluster of genes involved in determing a number of mitochondrial membrane proteins associated with the mitochondrial ATPase and respiratory complex III.
Collapse
|
27
|
Michaelis G, Somlo M. Genetic analysis of mitochondrial biogenesis and function in Saccharomyces cerevisiae. J Bioenerg Biomembr 1976; 8:93-107. [PMID: 134034 DOI: 10.1007/bf01558631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Different mitochondrial mutants have been isolated that affect mitochondrial ribosome function. These mutants were used to establish most of the known methods and principles of mitochondrial genetics in yeast. Another class of mitochondrial mutants have been shown to affect mitochondrial ATPase and, more specifically, the "membrane factor" of mitochondrial ATPase. These mutants might be very useful in studying the energy-conserving function, and the interaction between the hydrophobic and hydrophylic parts, of the ATPase complex. New types of mitochondrial point mutations, concerning cytochrome a-a3 or b, will soon open up new fields of investigation. The biochemical and genetic analysis of numerous mutants belonging to that category and recently obtained [31] is being currently pursued in Tzagoloff's and Slonimski's laboratories.
Collapse
|
28
|
Trembath MK, Monk BC, Kellerman GM, Linnane AW. Biogenesis of mitochondria 36, The genetic and biochemical analysis of a mitochondrially determined cold sensitive oligomycin resistant mutant of Saccharomyces cerevisiae with affected mitochondrial ATPase assembly. MOLECULAR & GENERAL GENETICS : MGG 1975; 141:9-22. [PMID: 129672 DOI: 10.1007/bf00332375] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The isolation and characterisation of a mutant affecting the assembly of mitochondrial ATPase is reported. The mutation confers resistance to oligomycin and venturicidin and sensitivity of growth on nonfermentable substrates to low temperature (19degrees). Genetic analysis indicates that the phenotype is due to a single mutation located on the mitochondrial DNA which is probably allelic with the independently isolated oligomycin resistance mutation [oli1-r]. Growth of the mutant at the non-restrictive temperature (28degrees) yields mitochondria in which the ATPase appears more sensitive to oligomycin than that of the sensitive parental strain. However, when the enzyme is isolated free from the influence of the membrane strong resistance to oligomycin is evident. These data suggest that the component responsible for the oligomycin resistance of the ATPase is part of or subject to interaction with the mitochondrial inner membrane. Measurements of the ATPase content of mitochondria indicate that ATPase production is impaired during growth at 19degreesC. In addition, studies of the maximum inhibition of mitochondrial ATPase activity by high concentrations of oligomycin suggest a selective lesion in ATPase assembly at low temperature. The nett result is that during growth at 19degrees only about 10% of the normal level of ATPase is produced of which less than half is membrane integrated and thus capable of oxidative energy production. We propose that the mutation affects a mitochondrially synthesised membrane sector peptide of the ATPase which defines the interaction of F1ATPase with specific environments on the mitochondrial inner membrane.
Collapse
|
29
|
Griffiths DE, Lancashire WE, Zanders ED. Evidence for an extra-chromosomal element involved in mitochondrial function: a mitochondrial episome? FEBS Lett 1975; 53:126-30. [PMID: 1095409 DOI: 10.1016/0014-5793(75)80002-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Mitochondrial genetics X: Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 1975. [DOI: 10.1007/bf00332539] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Griffiths DE, Houghton RL, Lancashire WE, Meadows PA. Studies on energy-linked reactions: isolation and properties of mitochondrial venturicidin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 51:393-402. [PMID: 238835 DOI: 10.1111/j.1432-1033.1975.tb03939.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Venturicidin is a specific inhibitor of aerobic growth of yeast and has no effect on fermentative growth, a result which is consistent with its known mode of action on mitochondrial oxidative phosphorylation. Venturicidin-resistant mutants of Saccharomyces cerevisiae have been isolated and form two general classes: class 1, nuclear mutants which are resistant to a variety of mitochondrial inhibitors and uncouplers, and class 2, mitochondrial mutants of phenotype VENR OLYR and VENR TETR in vivo. VENR OLYR mutants show a high degree of resistance to venturicidin and oligomycin at the whole cell and mitochondrial ATPase level but, in contrast, no resistance at the mitochondrial level is observed with VENR TETR mutants. Venturicidin resistance/sensitivity can be correlated with two binding sites on mitochondrial ATPase, one of which is common to the oligomycin binding site and the other is common to the triethyl tin binding site. Biochemical genetic studies indicate that two mitochondrial genes specify venturicidin resistance/sensitivity and that the mitochondrial gene products are components of the mitochondrial ATPase complex.
Collapse
|
32
|
Lancashire WE, Griffiths DE. Studies on energy-linked reactions: isolation, characterisation and genetic analysis of trialkyl-tin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 51:377-92. [PMID: 125200 DOI: 10.1111/j.1432-1033.1975.tb03938.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutants of Saccharomyces cerevisiae resistant to triethyl tin sulphate have been isolated and are cross-resistant to other trialkyl tin salts. Triethyl-tin-resistant mutants fall into two general phenotypic classes: class 1 and class 2. Class 1 mutants are cross-resistant to a variety of inhibitors and uncoupling agents which affect mitochondrial membranes (oligomycin, ossamycin, valinomycin, antimycin, erythromycin, chloramphenicol, '1799', tetrachlorotrifluoromethyl benzimidazole carbonylcyanide-m-chlorophenylhydrazone and cycloheximide). Class 2 mutants are specifically resistant to trithyl tin and the uncoupling agent "1799' [bis-(hexafluoroacetonyl)-acetone]. Triethyl tin at neutral pH values is a specific inhibitor of mitochondrial energy conservation reactions and prevents growth on oxidisable substrates such as glycerol and ethanol. Triethyl-tin-resistant mutants grow normally on glucose and ethanol in the presence of triethyl tin (10 muM). Biochemical studies indicate that the mutation involves a modification of the triethyl tin binding site on the mitochondrial inner membrane, probably the ATP-synthetase complex. Triethyl tin resistance/sensitivity in yeast is determined by cytoplasmic (mitochondrial) and nuclear genes. The mutants fall into a nuclear and a cytoplasmic (mitochondrial) class corresponding to the phenotypic cross-resistance classes 1 and 2. In the cytoplasmic mutants the triethyl tin resistance segregates mitotically and the resistance determinat is deleted by the action of ethidium bromide during petite induction. Recombination studies indicate that the triethyl tin mutations are not allelic with the other mitochondrial mutations at the loci RI, RIII and OLI. This indicates that the binding or inhibitory sites of oligomycin and triethyl tin are not identical and that the triethyl tin binding site is located on a different mitochondrial gene product to those which are involved in oligomycin binding. Interaction and cooperative effects between different binding sites on the mitochondrial inner membrane have been demonstrated in studies of the effect of the insertion of the TETr phenotype into mitochondrial oligomycin-resistant mutants and provide an experimental basis for complementation studies at the ATP-synthetase level.
Collapse
|
33
|
Colson AM, Goffeau A, Briquet M, Weigel P, Mattoon JR. Nucleo-cytoplasmic interaction between oligomycin-resistant mutations in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1974; 135:309-26. [PMID: 4618887 DOI: 10.1007/bf00271146] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1.A single-gene nuclear mutant of Saccharomyces cerevisiae, isolated as oligomycin-resistant, exhibits in vivo cross-resistance to venturicidin and collateral sensitivity to Synthalin. All three compounds are inhibitors of mitochondrial oxidative phosphorylation. Oligomycin resistance and Synthalin sensitivity are recessive, while venturicidin resistance is dominant. 2. Acytoplasmic mutant, also isolated as oligomycin-resistant, shows collateral sensitivity to both Synthalin and venturicidin. All three traits undergo mitotic segregation in diploids formed by crossing mutant and normal halpoids. 3. A novel nucleocytoplasmic interaction is observed in diploids formed by crossing haploid strains containing the nuclear and the cytoplasmic mutations, respectively. The dominant venturicidin resistance determined by the nuclear gene undergoes mitotic segregation, which results from a suppression of the nuclear phenotype by the cytoplasmic mutation. When a diploid mitotic segregant contains primarily mutant-type mitochondria, venturicidin resistance is completely suppressed. In haploids containing both the nuclear and cytoplasmic mutations, suppression is only partial. 4. Oxidative phosphorylation and ATPase in mitochondrial fractions isolated fromcytoplasmic mutant cells are less sensitive to inhibition by oligomycin than normal, but in vitro sensitivity to venturicidin is not significantly changed. In similar mitochondrial fractions isolated from normal and nuclear mutant cells, no significant differences in sensitivity to either inhibitor are detected. 5. The molecular basis for the nucleocytoplasmic suppression of venturicidin resistance may involve participation of mitochondrial membrane, plasma membrane or both. Either mitochondria can undergo changes in venturicidin sensitivity upon isolation, or the molecular entity which controls access of venturicidin to the mitochondria resides outside of the organelles. 6. Our data establish that aspects of the response in vivo of both venturicidin and Snythalin are controlled by the mitochondrial genome. 7. The nucleocytoplasmic interaction described here is the first example in which a specific restricted mitochondrial mutation modifies the phenotypic expression of a nuclear gene.
Collapse
|
34
|
|
35
|
Flury U, Mahler HR, Feldman F. A Novel Respiration-deficient Mutant of Saccharomyces cerevisiae. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42230-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Kahn JS. Physiological adaptation of Euglena gracilis to uncouplers and inhibitors of oxidative phosphorylation. Arch Biochem Biophys 1974; 164:266-74. [PMID: 4279625 DOI: 10.1016/0003-9861(74)90031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Griffiths DE, Houghton RL. Studies on energy-linked reactions: modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1974; 46:157-67. [PMID: 4277672 DOI: 10.1111/j.1432-1033.1974.tb03608.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Rowlands RT, Turner G. Physiological and biochemical studies of nuclear and extranuclear oligomycin-resistant mutants of Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1974; 132:73-88. [PMID: 4278766 DOI: 10.1007/bf00268232] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Somlo M, Avner PR, Cosson J, Dujon B, Krupa M. Oligomycin sensitivity of ATPase studied as a function of mitochondrial biogenesis, using mitochondrially determined oligomycin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1974; 42:439-45. [PMID: 4275250 DOI: 10.1111/j.1432-1033.1974.tb03357.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Rowlands RT, Turner G. Nuclear and extranuclear inheritance of oligomycin resistance in Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1973; 126:201-16. [PMID: 4593756 DOI: 10.1007/bf00267531] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Rank GH, Bech-Hansen NT. Single nuclear gene inherited cross resistance and collateral sensitivity to 17 inhibitors of mitochondrial function in S. cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1973; 126:93-102. [PMID: 4599027 DOI: 10.1007/bf00330986] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Goffeau A, Landry Y, Foury F, Briquet M, Colson AM. Oligomycin Resistance of Mitochondrial Adenosine Triphosphatase in a Pleiotropic Chromosomal Mutant of a “Petite-Negative” Yeast, Schizosaccharomyces pombe. J Biol Chem 1973. [DOI: 10.1016/s0021-9258(19)43366-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Avner PR, Coen D, Dujon B, Slonimski PP. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1973; 125:9-52. [PMID: 4590266 DOI: 10.1007/bf00292982] [Citation(s) in RCA: 140] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Wolf K, Dujon B, Slonimski PP. Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1973; 125:53-90. [PMID: 4590264 DOI: 10.1007/bf00292983] [Citation(s) in RCA: 122] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
|
46
|
Avner PR, Griffiths DE. Studies on energy-linked reactions. Genetic analysis of oligomycin-resistant mutants of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1973; 32:312-21. [PMID: 4569078 DOI: 10.1111/j.1432-1033.1973.tb02612.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|