1
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Stevens LM, Kim G, Koromila T, Steele JW, McGehee J, Stathopoulos A, Stein DS. Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster. PLoS Genet 2021; 17:e1009544. [PMID: 33999957 PMCID: PMC8158876 DOI: 10.1371/journal.pgen.1009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/27/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo. Much of what we know about biological processes has come from the analysis of mutants whose loss-of-function phenotypes provide insight into their normal functions. However, for genes that are required for viability and which have multiple functions in the life of a cell or organism one can only observe mutant phenotypes produced up to the time of death. Normal functions performed in wild-type individuals later than the time of death of mutants cannot be observed. In one approach to overcoming this limitation, a class of peptide degradation signals (degrons) have been developed, which when fused to proteins-of-interest, can target those proteins for degradation in response to various stimuli (temperature, chemical agents, co-expressed proteins, or light). Here we describe a new inducible degron (the photo-N-degron or PND), which when fused to the N-terminus of a protein, can induce N-end rule-mediated degradation in response to blue-light illumination and have validated its use in both yeast and Drosophila embryos. Moreover, using the Drosophila embryonic patterning protein Cactus, we show that like the PND, the previously-described B-LID domain, but not the previously-described photosensitive degron (psd), can produce detectable light-inducible phenotypes in Drosophila embryos that are consistent with the role of Cactus in dorsal-ventral patterning.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Goheun Kim
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Theodora Koromila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - John W. Steele
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - James McGehee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AS); (DSS)
| | - David S. Stein
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AS); (DSS)
| |
Collapse
|
3
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Tokumoto T, Hossain MF, Jyoti MMS, Ali MH, Hossain MB, Acharjee M, Rezanujjaman M, Tokumoto M. Two-Step Mechanism of Cyclin B Degradation Initiated by Proteolytic Cleavage with the 26 S Proteasome in Fish. Sci Rep 2020; 10:8924. [PMID: 32488101 PMCID: PMC7265292 DOI: 10.1038/s41598-020-65009-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
To complete meiosis II, cyclin B is degraded in a short period by the inactivation of M-phase promoting factor (MPF). Previously, we showed that the destruction of cyclin B was initiated by the ubiquitin-independent proteolytic activity of the 26 S proteasome through an initial cut in the N-terminus of cyclin (at K57 in the case of goldfish cyclin B). We hypothesized that this cut allows cyclin to be ubiquitinated for further destruction by the ubiquitin-dependent proteolytic pathway, which leads to MPF inactivation. In this study, we aimed to identify the ubiquitination site for further degradation. The destruction of cyclin B point mutants in which lysine residues in a lysine-rich stretch following the cut site of cyclin B had been mutated was analyzed. All the lysine point mutants except K57R (a point mutant in which K57 was substituted with arginine) were susceptible to proteolytic cleavage by the 26 S proteasome. However, the degradation of the K77R and K7677R mutants in Xenopus egg extracts was significantly slower than the degradation of other mutants, and a 42 kDa truncated form of cyclin B was detected during the onset of the degradation of these mutants. The truncated form of recombinant cyclin B, an N-terminal truncated cyclin BΔ57 produced as cut by the 26 S proteasome, was not further cleaved by the 26 S proteasome but rather degraded in Xenopus egg extracts. The injection of the K57R, K77R and K7677R cyclin B proteins stopped cleavage in Xenopus embryos. From the results of a series of experiments, we concluded that cyclin B degradation involves a two-step mechanism initiated by initial ubiquitin-independent cleavage by the 26 S proteasome at lysine 57 followed by its ubiquitin-dependent destruction by the 26 S proteasome following ubiquitination at lysine 77.
Collapse
Affiliation(s)
- Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan. .,Biological Science Course, Graduate School of Science, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Forhad Hossain
- Biological Science Course, Graduate School of Science, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Maisum Sarwar Jyoti
- Biological Science Course, Graduate School of Science, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Babul Hossain
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Mrityunjoy Acharjee
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Rezanujjaman
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mika Tokumoto
- CREST Research Project, Japan Science and Technology Corporation, Shizuoka, Japan
| |
Collapse
|
5
|
Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A. Charge‐mediated proteasome targeting. FASEB J 2019; 33:6852-6866. [DOI: 10.1096/fj.201802237r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ekaterina S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Oleg Zubenko
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Kazan Federal UniversityKazanRussian Federation
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Department of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussian Federation
| |
Collapse
|
6
|
Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2017; 473:4551-4558. [PMID: 27941031 DOI: 10.1042/bcj20160519c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.
Collapse
|
7
|
Joshi RG, Ratna Prabha C. Degrons of yeast and mammalian ornithine decarboxylase enzymes make potent combination for regulated targeted protein degradation. Appl Microbiol Biotechnol 2016; 101:2905-2917. [DOI: 10.1007/s00253-016-8023-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
8
|
Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta Gen Subj 2015; 1850:2452-63. [DOI: 10.1016/j.bbagen.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
9
|
Erales J, Coffino P. Ubiquitin-independent proteasomal degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:216-21. [PMID: 23684952 DOI: 10.1016/j.bbamcr.2013.05.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Most proteasome substrates are marked for degradation by ubiquitin conjugation, but some are targeted by other means. The properties of these exceptional cases provide insights into the general requirements for proteasomal degradation. Here the focus is on three ubiquitin-independent substrates that have been the subject of detailed study. These are Rpn4, a transcriptional regulator of proteasome homeostasis, thymidylate synthase, an enzyme required for production of DNA precursors and ornithine decarboxylase, the initial enzyme committed to polyamine biosynthesis. It can be inferred from these cases that proteasome association and the presence of an unstructured region are the sole prerequisites for degradation. Based on that inference, artificial substrates have been designed to test the proteasome's capacity for substrate processing and its limitations. Ubiquitin-independent substrates may in some cases be a remnant of the pre-ubiquitome world, but in other cases could provide optimized regulatory solutions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Jenny Erales
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94127, USA
| | | |
Collapse
|
10
|
Lao T, Chen S, Sang N. Two mutations impair the stability and function of ubiquitin-activating enzyme (E1). J Cell Physiol 2012; 227:1561-8. [PMID: 21678405 DOI: 10.1002/jcp.22870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein ubiquitination plays critical roles in the regulation of multiple cellular processes including cell proliferation, signal transduction, oncogenesis, and hypoxic response. TS20 is a Balb3T3-derived cell line in which ubiquitination is inhibited by restrictive temperature. While TS20 has been used to elucidate the degradation of many important proteins including p53, p27, HIF-1α, and ornithine decarboxylase, the molecular basis of its temperature sensitivity has not been fully determined. We cloned full-length E1 cDNA from TS20. Sequencing analysis revealed two point mutations (nt736G to A and nt2313G to C) that lead to substitution of aa189A to T and aa714W to C, respectively. Transient transfection assays revealed that mutant E1 was less stable than its wild-type counterpart, and restrictive temperature (39°C) accelerated its degradation. Under permissive temperature, reverting aa714C to W significantly improved E1 stability and activity. Under restrictive temperature, reverting of both substitutions was required to fully restore E1 stability. Similar results were observed when the mutants were expressed in non-TS20 cells, indicating the mutations are sufficient for its temperature sensitive degradation observed in TS20 cells. Functionally, reverting aa714C to W was sufficient to facilitate the monoubiquitination of H2A and to support TS20 growth at 39°C. It also significantly improved the ubiquitination-dependent disposal of HIF-1α. Our data conclusively demonstrate that mutations introgenic to UVBE1 cause E1 instability, which leads to deficiency of E1 function. Our data establish the molecular basis for unambiguous interpretation of experimental data based on TS20 cells, and provide new insight into the structural determinants of E1 stability.
Collapse
Affiliation(s)
- Taotao Lao
- Department of Biology and Graduate Program of Biological Sciences, College of Arts & Sciences, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
11
|
D'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson R, Linder S. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 2011; 17:1636-40. [PMID: 22057347 DOI: 10.1038/nm.2536] [Citation(s) in RCA: 394] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 09/27/2011] [Indexed: 11/09/2022]
Abstract
Ubiquitin-tagged substrates are degraded by the 26S proteasome, which is a multisubunit complex comprising a proteolytic 20S core particle capped by 19S regulatory particles. The approval of bortezomib for the treatment of multiple myeloma validated the 20S core particle as an anticancer drug target. Here we describe the small molecule b-AP15 as a previously unidentified class of proteasome inhibitor that abrogates the deubiquitinating activity of the 19S regulatory particle. b-AP15 inhibited the activity of two 19S regulatory-particle-associated deubiquitinases, ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14), resulting in accumulation of polyubiquitin. b-AP15 induced tumor cell apoptosis that was insensitive to TP53 status and overexpression of the apoptosis inhibitor BCL2. We show that treatment with b-AP15 inhibited tumor progression in four different in vivo solid tumor models and inhibited organ infiltration in an acute myeloid leukemia model. Our results show that the deubiquitinating activity of the 19S regulatory particle is a new anticancer drug target.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ben-Gedalya T, Lyakhovetsky R, Yedidia Y, Bejerano-Sagie M, Kogan NM, Karpuj MV, Kaganovich D, Cohen E. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments. J Cell Sci 2011; 124:1891-902. [PMID: 21558416 DOI: 10.1242/jcs.077693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite the activity of cellular quality-control mechanisms, subsets of mature and newly synthesized polypeptides fail to fold properly and form insoluble aggregates. In some cases, protein aggregation leads to the development of human neurodegenerative maladies, including Alzheimer's and prion diseases. Aggregates of misfolded prion protein (PrP), which appear in cells after exposure to the drug cyclosporin A (CsA), and disease-linked PrP mutants have been found to accumulate in juxtanuclear deposition sites termed 'aggresomes'. Recently, it was shown that cells can contain at least two types of deposition sites for misfolded proteins: a dynamic quality-control compartment, which was termed 'JUNQ', and a site for terminally aggregated proteins called 'IPOD'. Here, we show that CsA-induced PrP aggresomes are dynamic structures that form despite intact proteasome activity, recruit chaperones and dynamically exchange PrP molecules with the cytosol. These findings define the CsA-PrP aggresome as a JUNQ-like dynamic quality-control compartment that mediates the refolding or degradation of misfolded proteins. Together, our data suggest that the formation of PrP aggresomes protects cells from proteotoxic stress.
Collapse
Affiliation(s)
- Tziona Ben-Gedalya
- Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gödderz D, Schäfer E, Palanimurugan R, Dohmen RJ. The N-Terminal Unstructured Domain of Yeast ODC Functions as a Transplantable and Replaceable Ubiquitin-Independent Degron. J Mol Biol 2011; 407:354-67. [DOI: 10.1016/j.jmb.2011.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 01/01/2023]
|
14
|
Park MJ, Kim EK, Han JY, Cho HW, Sohn HJ, Kim SY, Kim TG. Fusion of the Human Cytomegalovirus pp65 antigen with both ubiquitin and ornithine decarboxylase additively enhances antigen presentation to CD8(+) T cells in human dendritic cells. Hum Gene Ther 2011; 21:957-67. [PMID: 20218861 DOI: 10.1089/hum.2009.216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antigenic molecules are modified for targeting to the proteasome by ubiquitin (Ub) or by a Ub-independent system such as ornithine decarboxylase (ODC) to be presented by MHC class I molecules. In this study, we compared the immunogenicity of human cytomegalovirus pp65 antigen fused with Ub and/or ODC, using RNA electroporation of human dendritic cells. Among the C-terminal mutants of Ub (G76, A76, and V76), Ub(G) showed the best ability to enhance the degradation of a target protein and stimulate T cells. The pp65 antigens fused with either Ub(G) or ODC enhanced the stimulation to CD8(+) T cells, and the effects of Ub(G) and ODC were similar. Furthermore, the fusion of both Ub and ODC additively increased immunogenicity compared with the single-fusion proteins. The fusion of Ub(G) and ODC enhanced primarily the stimulation of CD8(+) rather than CD4(+) T cells and more efficiently induced pp65-specific T cells in vitro. These additive effects of Ub and ODC in antigen processing may provide improved strategies to stimulate CD8(+) T cells for the development of immunotherapies against the variety of viral diseases and cancers.
Collapse
Affiliation(s)
- Min-Ji Park
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Kahana C. Identification, assay, and functional analysis of the antizyme inhibitor family. Methods Mol Biol 2011; 720:269-78. [PMID: 21318879 DOI: 10.1007/978-1-61779-034-8_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polyamines are small aliphatic polycations present in all living cells. Polyamines are involved in regulating fundamental cellular functions and are absolutely essential for the process of cellular proliferation. Because they fulfill essential cellular functions, their intracellular concentration is tightly regulated via a unique autoregulatory circuit that responds to the intracellular concentration of polyamines. In the heart of this circuit is a small protein called antizyme (Az), whose synthesis is stimulated by polyamines. Az inactivates Ornithine decarboxylase [(ODC), the first key enzyme in the polyamine biosynthetic pathway] and marks it for ubiquitin-independent degradation by the 26S proteasome. In addition, Az inhibits uptake of polyamines via a yet unresolved mechanism. Az itself is subjected to regulation by an ODC-related protein termed antizyme inhibitor (AzI). AzI is highly homologous to ODC, but it lacks ornithine decarboxylating activity. Since its affinity to Az is greater than the affinity Az has for ODC, it rescues ODC from degradation and enables polyamines uptake into the cell.
Collapse
Affiliation(s)
- Chaim Kahana
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Abstract
Antiapoptotic myeloid cell leukemia 1 (MCL-1) is an essential modulator of survival during the development and maintenance of a variety of cell lineages. Its turnover, believed to be mediated by the ubiquitin-proteasome system, facilitates apoptosis induction in response to cellular stress. To investigate the contribution of ubiquitinylation in regulating murine MCL-1 turnover, we generated an MCL-1 mutant lacking the lysine residues required for ubiquitinylation (MCL-1(KR)). Here, we demonstrate that despite failing to be ubiquitinylated, the MCL-1(KR) protein is eliminated at a rate similar to that of wild-type MCL-1 under basal and stressed conditions. Moreover, the degradation of wild-type MCL-1 is not affected when ubiquitin-activating enzyme E1 activity is blocked. Likewise, both wild-type and MCL-1(KR) proteins are similarly degraded when expressed in primary lymphocytes. Supporting these findings, unmodified, in vitro-translated MCL-1 can be degraded in a cell-free system by the 20S proteasome. Taken together, these data demonstrate that MCL-1 degradation can occur independently of ubiquitinylation.
Collapse
|
17
|
Kilroy GE, Zhang X, Floyd ZE. PPAR-gamma AF-2 domain functions as a component of a ubiquitin-dependent degradation signal. Obesity (Silver Spring) 2009; 17:665-73. [PMID: 19148122 PMCID: PMC2750041 DOI: 10.1038/oby.2008.616] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) functions as the "master switch" in adipocyte development and is important in regulating glucose metabolism. PPAR-gamma is rapidly degraded in adipocytes by the ubiquitin proteasome pathway under basal and ligand-activated conditions. Proteasome inhibition increases PPAR-gamma activity, indicating disposal of PPAR-gamma by the ubiquitin proteasome system regulates PPAR-gamma activity. However, the signals and factors required for recognition of PPAR-gamma by the ubiquitin proteasome pathway are unknown. To begin understanding how the ubiquitin-proteasome pathway interacts with PPAR-gamma, we designed a series of constructs containing each PPAR-gamma domain expressed as a fusion protein with the GAL4 DNA-binding domain. The ability of each PPAR-gamma domain to alter the stability of the GAL4 DNA-binding domain and to undergo ubiquitylation was assessed via western blot analysis. In addition, luciferase reporter assays were used to assay PPAR-gamma transcriptional activity. Using this approach, we determined that the AF-1 and ligand-binding domains (LBDs) of PPAR-gamma are targeted to the proteasome for degradation. However, only the LBD is conjugated to ubiquitin. The AF-2 helix of the LBD is required for maximum ubiquitylation, but is not essential for ligand-dependent ubiquitin conjugation. Finally, luciferase reporter assays show a fully functional ubiquitin system is required for PPAR-gamma activation. These results indicate that the ubiquitin-proteasome pathway is an integral determinant of PPAR-gamma activity, targeting PPAR-gamma for proteasomal degradation via ubiquitin independent and ubiquitin dependent mechanisms.
Collapse
Affiliation(s)
- Gail E Kilroy
- Ubiquitin Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | |
Collapse
|
18
|
Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem J 2009; 419:99-103, 1 p following 103. [PMID: 19076071 DOI: 10.1042/bj20081874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Azs (antizymes) are small polyamine-induced proteins that function as feedback regulators of cellular polyamine homoeostasis. They bind to transient ODC (ornithine decarboxylase) monomeric subunits, resulting in inhibition of ODC activity and targeting ODC to ubiquitin-independent proteasomal degradation. Az3 is a mammalian Az isoform expressed exclusively in testicular germ cells and therefore considered as a potential regulator of polyamines during spermatogenesis. We show here that, unlike Az1 and Az2, which efficiently inhibit ODC activity and stimulate its proteasomal degradation, Az3 poorly inhibits ODC activity and fails to promote ODC degradation. Furthermore, Az3 actually stabilizes ODC, probably by protecting it from the effect of Az1. Its inhibitory effect is revealed only when it is present in excess compared with ODC. All three Azs efficiently inhibit the ubiquitin-dependent degradation of AzI (Az inhibitor) 1 and 2. Az3, similar to Az1 and Az2, efficiently inhibits polyamine uptake. The potential significance of the differential behaviour of Az3 is discussed.
Collapse
|
19
|
Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta Rev Cancer 2008; 1786:153-77. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/08/2023]
Abstract
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here.
Collapse
Affiliation(s)
- Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier, F-34293, France
| | | | | |
Collapse
|
20
|
Porat Z, Landau G, Bercovich Z, Krutauz D, Glickman M, Kahana C. Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme. J Biol Chem 2007; 283:4528-34. [PMID: 18089576 DOI: 10.1074/jbc.m708088200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian antizyme (mAz) is a central element of a feedback circuit regulating cellular polyamines by accelerating ornithine decarboxylase (ODC) degradation and inhibiting polyamine uptake. Although yeast antizyme (yAz) stimulates the degradation of yeast ODC (yODC), we show here that it has only a minor effect on polyamine uptake by yeast cells. A segment of yODC that parallels the Az binding segment of mammalian ODC (mODC) is required for its binding to yAz. Although demonstrating minimal homology to mAz, our results suggest that yAz stimulates yODC degradation via a similar mechanism of action. We demonstrate that interaction with yAz provokes degradation of yODC by yeast but not by mammalian proteasomes. This differential recognition may serve as a tool for investigating proteasome functions.
Collapse
Affiliation(s)
- Ziv Porat
- Department of Molecular Genetics, The Weizmann Institute of Science, 1 Hertzel St., Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Keren-Paz A, Bercovich Z, Kahana C. Antizyme inhibitor: a defective ornithine decarboxylase or a physiological regulator of polyamine biosynthesis and cellular proliferation. Biochem Soc Trans 2007; 35:311-3. [PMID: 17371267 DOI: 10.1042/bst0350311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ODC (ornithine decarboxylase) is a central regulator of cellular polyamine synthesis. ODC is a highly regulated enzyme stimulated by a variety of growth-promoting stimuli. ODC overexpression leads to cellular transformation. Cellular ODC levels are determined at transcriptional and translational levels and by regulation of its degradation. Here we review the mechanism of ODC degradation with particular emphasis on AzI (antizyme inhibitor), an ODC homologous protein that appears as a central regulator of ODC stability, cellular polyamine homoeostasis and cellular proliferation.
Collapse
Affiliation(s)
- A Keren-Paz
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
22
|
Camus S, Menéndez S, Cheok CF, Stevenson LF, Laín S, Lane DP. Ubiquitin-independent degradation of p53 mediated by high-risk human papillomavirus protein E6. Oncogene 2007; 26:4059-70. [PMID: 17224909 PMCID: PMC2742713 DOI: 10.1038/sj.onc.1210188] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022]
Abstract
In vitro, high-risk human papillomavirus E6 proteins have been shown, in conjunction with E6-associated protein (E6AP), to mediate ubiquitination of p53 and its degradation by the 26S proteasome by a pathway that is thought to be analogous to Mdm2-mediated p53 degradation. However, differences in the requirements of E6/E6AP and Mdm2 to promote the degradation of p53, both in vivo and in vitro, suggest that these two E3 ligases may promote p53 degradation by distinct pathways. Using tools that disrupt ubiquitination and degradation, clear differences between E6- and Mdm2-mediated p53 degradation are presented. The consistent failure to fully protect p53 protein from E6-mediated degradation by disrupting the ubiquitin-degradation pathway provides the first evidence of an E6-dependent, ubiquitin-independent, p53 degradation pathway in vivo.
Collapse
Affiliation(s)
- S Camus
- Department of Cell Cycle Control, Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | | | | | | | | | |
Collapse
|
23
|
Nasizadeh S, Thiman L, Persson L. Sequence elements essential for the rapid turnover of Crithidia fasciculata ornithine decarboxylase. Amino Acids 2007; 34:421-8. [PMID: 17514492 DOI: 10.1007/s00726-007-0552-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/30/2007] [Indexed: 11/25/2022]
Abstract
Ornithine decarboxylase (ODC) has a very fast turnover in mammalian cells, but is a stable enzyme in T. brucei and other trypanosmatid parasites like Leishmania donovani. However, Crithidia fasciculata, which is a phylogenetically closely related trypanosomatid to L. donovani, has an ODC with a rapid turnover. Interestingly, C. fasciculata ODC, but not L. donovani ODC, is rapidly degraded also in mammalian systems. In order to obtain information on what sequences are important for the rapid degradation of C. fasciculata ODC, we produced a variety of C. fasciculata/L. donovani ODC hybrid proteins and characterized their turnover using two different mammalian expression systems. The results obtained indicate that C. fasciculata ODC contains several sequence elements essential for the rapid turnover of the protein and that these regions are mainly located in the central part of the enzyme.
Collapse
Affiliation(s)
- S Nasizadeh
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
24
|
Abstract
Overexpression of Aurora-A oncogene has been shown to induce genomic instability and tumorigenesis. Cellular levels of Aurora-A are regulated by multiple mechanisms including the proteasome-dependent degradation of Aurora-A protein. Cell-cycle-dependent turnover of Aurora-A protein is mediated by cdh1 through ubiquitin (Ub)- and proteasome-dependent pathway. However, Aurora-A kinase interacting protein 1 (AURKAIP1), a negative regulator of Aurora-A, also promotes proteasome-dependent Aurora-A degradation through an Ub-independent mechanism. In an attempt to understand how AURKAIP1 promotes Aurora-A degradation through Ub-independent pathway, we demonstrate here that antizyme1 (Az1), a well-studied mediator of Ub-independent protein degradation pathway, regulates Aurora-A protein stability. We show that ectopic or polyamine-induced expression of Az1 can lower the steady-state levels of Aurora-A. The effect of Az1 on Aurora-A turnover was shown to be proteasome-dependent, but Ub-independent. Az1 interacts with Aurora-A in vivo and the interaction between Aurora-A and Az1 is essential for the Az1-mediated Aurora-A degradation. Furthermore, we observed that AURKAIP1 could not promote degradation of Aurora-A mutant, which is defective in Az1 interaction. Coexpression of the Az inhibitor (AzI), which downregulates Az1 functions, also abrogated AURKAIP1-mediated degradation of Aurora-A. We further demonstrated that AURKAIP1, Az1 and Aurora-A could exist as a ternary complex and AURKAIP1 enhances the interaction between Az1 and Aurora-A. We propose that AURKAIP1 might function upstream of the Az1 by enhancing the binding affinity of Az1 to Aurora-A to promote recognition, targeting to proteasome and subsequent degradation.
Collapse
Affiliation(s)
- S K Lim
- Laboratory of Gene Structure and Expression, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
25
|
Kahana C. Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 2007; 33:225-30. [PMID: 17404802 DOI: 10.1007/s00726-007-0519-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/01/2007] [Indexed: 11/30/2022]
Abstract
Protein degradation mediated by the ubiquitin/proteasome system is the major route for the degradation of cellular proteins. In this pathway the ubiquitination of the target proteins is manifested via the concerted action of several enzymes. The ubiquinated proteins are then recognized and degraded by the 26S proteasome. There are few reports of proteins degraded by the 26S protesome without ubiquitination, with ornithine decarboxylase being the most notable representative of this group. Interestingly, while the degradation of ODC is independent of ubiquitination, the degradation of other enzymes of the polyamine biosynthesis pathway is ubiquitin dependent. The present review describes the degradation of enzymes and regulators of the polyamine biosynthesis pathway.
Collapse
Affiliation(s)
- C Kahana
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
26
|
Persson L. Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids. Biochem Soc Trans 2007; 35:314-7. [PMID: 17371268 DOI: 10.1042/bst0350314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of polyamines has been shown to be an effective target for a drug against the West African form of sleeping sickness caused by Trypanosoma brucei gambiense. T. brucei belongs to the group of protozoan parasites classed as trypanosomatids. Parasitic species of this group are the causative agents of various tropical diseases besides African sleeping sickness, e.g. Chagas' disease (Trypanosoma cruzi), cutaneous (Lesihmania spp.) and visceral (Leishmania donovani) leishmaniasis. The metabolism of polyamines in the parasites is a potential target for the development of new drugs for treatment of these diseases. The key steps in polyamine synthesis are catalysed by ODC (ornithine decarboxylase) and AdoMetDC (S-adenosylmethionine decarboxylase). In the present paper, some of the available information on ODC and AdoMetDC in trypanosomatids will be described and discussed.
Collapse
Affiliation(s)
- L Persson
- Department of Experimental Medical Science, Lund University, BMC F:13, S-221 84 Lund, Sweden.
| |
Collapse
|
27
|
Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes. BMC BIOCHEMISTRY 2007; 8:1. [PMID: 17224065 PMCID: PMC1784093 DOI: 10.1186/1471-2091-8-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/15/2007] [Indexed: 02/05/2023]
Abstract
Background In bacteria, the biosynthesis of polyamines is modulated at the level of transcription as well as post-translationally. Antizyme (Az) has long been identified as a non-competitive protein inhibitor of polyamine biosynthesis in E. coli. Az was also revealed to be the product of the atoC gene. AtoC is the response regulator of the AtoS-AtoC two-component system and it functions as the positive transcriptional regulator of the atoDAEB operon genes, encoding enzymes involved in short chain fatty acid metabolism. The antizyme is referred to as AtoC/Az, to indicate its dual function as both a transcriptional and post-translational regulator. Results The roles of polyamines on the transcription of atoS and atoC genes as well as that of atoDAEB(ato) operon were studied. Polyamine-mediated induction was tested both in atoSC positive and negative E. coli backgrounds by using β-galactosidase reporter constructs carrying the appropriate promoters patoDAEB, patoS, patoC. In addition, a selection of synthetic polyamine analogues have been synthesized and tested for their effectiveness in inducing the expression of atoC/Az, the product of which plays a pivotal role in the feedback inhibition of putrescine biosynthesis and the transcriptional regulation of the ato operon. The effects of these compounds were also determined on the ato operon expression. The polyamine analogues were also tested for their effect on the activity of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis and on the growth of polyamine-deficient E. coli. Conclusion Polyamines, which have been reported to induce the protein levels of AtoC/Az in E. coli, act at the transcriptional level, since they cause activation of the atoC transcription. In addition, a series of polyamine analogues were studied on the transcription of atoC gene and ODC activity.
Collapse
|
28
|
Starodubova ES, Isaguliants MG, Karpov VL. Artificial acceleration of HIV-1 reverse transcriptase turnover via the proteasome pathway. Mol Biol 2006. [DOI: 10.1134/s0026893306060069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C. Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 2006; 25:5163-72. [PMID: 16568078 DOI: 10.1038/sj.onc.1209521] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antizyme inhibitor (AzI) is a homolog of ornithine decarboxylase (ODC), a key enzyme of polyamine synthesis. Antizyme inhibitor retains no enzymatic activity, but exhibits high affinity to antizyme (Az), a negative regulator of polyamine homeostasis. As polyamines are involved in maintaining cellular proliferation, and since AzI may negate Az functions, we have investigated the role of AzI in regulating cell growth. We show here that overexpression of AzI in NIH3T3 cells increased growth rate, enabled growth in low serum, and permitted anchorage-independent growth in soft agar, while reduction of AzI levels by AzI siRNA reduced cellular proliferation. Moreover, AzI overproducing cells gave rise to tumors when injected into nude mice. AzI overexpression resulted in elevation of ODC activity and of polyamine uptake. These effects of AzI are a result of its ability to neutralize Az, as overexpression of an AzI mutant with reduced Az binding failed to alter cellular polyamine metabolism and growth properties. We also demonstrate upregulation of AzI in Ras transformed cells, suggesting its relevance to some naturally occurring transformations. Finally, increased uptake activity rendered AzI overproducing and Ras-transformed cells more sensitive to toxic polyamine analogs. Our results therefore imply that AzI has a central and meaningful role in modulation of polyamine homeostasis, and in regulating cellular proliferation and transformation properties.
Collapse
Affiliation(s)
- A Keren-Paz
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Gandre S, Bercovich Z, Kahana C. Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2005; 2:245-56. [PMID: 16120325 DOI: 10.1016/s1567-7249(02)00105-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 11/04/2002] [Accepted: 11/06/2002] [Indexed: 01/11/2023]
Abstract
Ornithine decarboxylase-antizyme (Az), a polyamine-induced protein that targets ornithine decarboxylase (ODC) to rapid degradation, is synthesized as two isoforms. Studies performed in vitro indicated that the 29 and 24.5 kDa isoforms originate from translation initiation at two alternative initiation codons. Using transient transfections we demonstrate here that also in cells the two isoforms are synthesized from two AUG codons with the second being utilized more efficiently. The more efficient utilization of the second AUG is due to its location within a better sequence context for translation initiation. By using immunostaining we demonstrate that only the less expressed long form of Az is localized in the mitochondria. Moreover, this long isoform of Az and not the more efficiently expressed short isoform is imported into mitochondria in an in vitro uptake assay. Our data therefore demonstrate that a single Az transcript gives rise to two Az proteins with different N-terminal sequence and that the longer Az form containing a potential N-terminal mitochondrial localization signal is transported to mitochondria.
Collapse
Affiliation(s)
- Shilpa Gandre
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
31
|
Kar AK, Iwatani N, Roy P. Assembly and intracellular localization of the bluetongue virus core protein VP3. J Virol 2005; 79:11487-95. [PMID: 16103199 PMCID: PMC1193605 DOI: 10.1128/jvi.79.17.11487-11495.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bluetongue virus (BTV) core protein VP3 plays a crucial role in the virion assembly and replication process. Although the structure of the protein is well characterized, much less is known about the intracellular processing and localization of the protein in the infected host cell. In BTV-infected cells, newly synthesized viral core particles accumulate in specific locations within the host cell in structures known as virus inclusion bodies (VIBs), which are composed predominantly of the nonstructural protein NS2. However, core protein location in the absence of VIBs remains unclear. In this study, we examined VP3 location and degradation both in the absence of any other viral protein and in the presence of NS2 or the VP3 natural associate protein, VP7. To enable real-time tracking and processing of VP3 within the host cell, a fully functional enhanced green fluorescent protein (EGFP)-VP3 chimera was synthesized, and distribution of the fusion protein was monitored in different cell types using specific markers and inhibitors. In the absence of other BTV proteins, EGFP-VP3 exhibited distinct cytoplasmic focus formation. Further evidence suggested that EGFP-VP3 was targeted to the proteasome of the host cells but was dispersed throughout the cytoplasm when MG132, a specific proteasome inhibitor, was added. However, the distribution of the chimeric EGFP-VP3 protein was altered dramatically when the protein was expressed in the presence of the BTV core protein VP7, a normal partner of VP3 during BTV assembly. Interaction of EGFP-VP3 and VP7 and subsequent assembly of core-like particles was further examined by visualizing fluorescent particles and was confirmed by biochemical analysis and by electron microscopy. These data indicated the correct assembly of EGFP-VP3 subcores, suggesting that core formation could be monitored in real time. When EGFP-VP3 was expressed in BTV-infected BSR cells, the protein was not associated with proteasomes but instead was distributed within the BTV inclusion bodies, where it colocalized with NS2. These findings expand our knowledge about VP3 localization and its fate within the host cell and illustrate the assembly capability of a VP3 molecule with a large amino-terminal extension. This also opens up the possibility of application as a delivery system.
Collapse
Affiliation(s)
- Alak Kanti Kar
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
32
|
Starodubova E, Boberg A, Kashuba EV, Wahren B, Karpov V, Isaguliants M. HIV-1 reverse transcriptase targeted for proteasomal degradation as a prototype vaccine against drug-resistant HIV-1. Vaccine 2005; 24:4541-7. [PMID: 16181708 DOI: 10.1016/j.vaccine.2005.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acquisition of drug-resistance conferring mutations leads to an enhanced degradation of HIV-1 reverse transcriptase (RT) affecting its immunogenicity. The mechanism of this degradation is not known. We investigated the input of proteasome in this degradation, and explored a possibility to enhance the proteasomal degradation of RTs to potentiate the immunogenic peformance of RT genes. To this end, a C-terminal fusion was made of RT with ornithine decarboxylase (ODC) that is rapidly degraded by proteasome in an ubiquitine-independent fashion. Eukaryotic cells were transiently transfected with the genes for wild-type (wt) RT, multi-drug-resistant (MDR) RT, and their chimeras with ODC. RT expression in the presence or absence of the proteasome inhibitors MG132 and epoxomicin was quantified by Western blotting. Treatment with MG132 led to a two-fold increase in the level of wtRT, and a four-fold increase in the level of MDR-RT accumulation. Treatment with epoxomicin had virtually no effect on the accumulation of wtRT, while stabilizing MDR-RT two-fold. Since epoxomicin is a more specific proteasome inhibitor, it indicated that degradation of wtRT may not be solely proteasomal. Fusion to ODC considerably decreased the intracellular levels of both RT-ODC and MDR-RT-ODC as compared to parental proteins. MG132 treatment increased the intracellular RT-ODC content 20-fold (up the level of the MG132-treated wtRT; 60-80 fg/cell), and epoxomicin treatment, 10-fold as compared to non-treated samples. Thus, attachment of ODC moiety has modified the metabolic pathway of RT targeting it to proteasomal degradation. We are currently testing if this is translated into an enhanced MHC class I performance of wild-type and drug-resistant RTs in gene immunization.
Collapse
Affiliation(s)
- Elizaveta Starodubova
- WA Engelhardt Institute of Molecular Biology, Vavilova str 32, 117984 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Palanimurugan R, Scheel H, Hofmann K, Jürgen Dohmen R. Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 2004; 23:4857-67. [PMID: 15538383 PMCID: PMC535087 DOI: 10.1038/sj.emboj.7600473] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 10/13/2004] [Indexed: 01/25/2023] Open
Abstract
Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported to involve a polyamine-induced ribosomal frameshifting mechanism. High levels of polyamine therefore inhibit new synthesis of polyamines by inducing ODC degradation. We identified a previously unrecognized sequence in the genome of Saccharomyces cerevisiae encoding an orthologue of mammalian AZ. We show that synthesis of yeast AZ (Oaz1) involves polyamine-regulated frameshifting as well. Degradation of yeast ODC by the proteasome depends on Oaz1. Using this novel model system for polyamine regulation, we discovered another level of its control. Oaz1 itself is subject to ubiquitin-mediated proteolysis by the proteasome. Degradation of Oaz1, however, is inhibited by polyamines. We propose a model, in which polyamines inhibit their ODC-mediated biosynthesis by two mechanisms, the control of Oaz1 synthesis and inhibition of its degradation.
Collapse
Affiliation(s)
- R Palanimurugan
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Hartmut Scheel
- Bioinformatics Group, Memorec Biotec GmbH, Cologne, Germany
| | - Kay Hofmann
- Bioinformatics Group, Memorec Biotec GmbH, Cologne, Germany
| | - R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany. Tel.: +49 221 470 4862; Fax: +49 221 470 1631; E-mail:
| |
Collapse
|
34
|
Bercovich Z, Kahana C. Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J Biol Chem 2004; 279:54097-102. [PMID: 15491992 DOI: 10.1074/jbc.m410234200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ornithine decarboxylase (ODC) is the most notable example of a protein degraded by the 26 S proteasome without ubiquitination. Instead, ODC is targeted to degradation by direct binding to a polyamine-induced protein termed antizyme (Az). Antizyme inhibitor (AzI) is an ODC-related protein that does not retain enzymatic activity yet binds Az with higher affinity than ODC. We show here that like ODC, AzI is also a short-lived protein that undergoes proteasomal degradation. However, in contrast to ODC degradation, the degradation of AzI is ubiquitin-dependent and does not require interaction with Az. Moreover, Az binding actually stabilizes AzI by inhibiting its ubiquitination. Substituting the C terminus of AzI with that of ODC, which together with Az constitutes the complete degradation signal of ODC, does not subvert AzI degradation from the ubiquitin-dependent mode to the Az-dependent mode, suggesting dominance of the ubiquitination signal. Our results suggest opposing roles of Az in regulating the degradation of AzI and ODC.
Collapse
Affiliation(s)
- Zippi Bercovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
35
|
Schmitz A, Schneider A, Kummer MP, Herzog V. Endoplasmic reticulum-localized amyloid beta-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 2004; 5:89-101. [PMID: 14690498 DOI: 10.1111/j.1600-0854.2004.00159.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The paradigm of endoplasmic reticulum (ER)-associated degradation (ERAD) holds that misfolded secretory and membrane proteins are translocated back to the cytosol and degraded by the proteasome in a coupled process. Analyzing the degradation of ER-localized amyloid beta-peptide (Abeta), we found a divergence from this general model. Cell-free reconstitution of the export in biosynthetically loaded ER-derived brain microsomes showed that the export was mediated by the Sec61p complex and required a cytosolic factor but was independent of ATP. In contrast to the ERAD substrates known so far, the exported Abeta was degraded by both, a proteasome-dependent and a proteasome-independent pathway. RNA interference experiments in Abeta-transfected cells identified the protease of the proteasome-independent pathway as insulin-degrading enzyme (IDE). The IDE-mediated clearance mechanism for ER-localized Abeta represents an as yet unknown type of ERAD which is not entirely dependent on the proteasome.
Collapse
Affiliation(s)
- Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Str 61a, 53121 Bonn, Germany.
| | | | | | | |
Collapse
|
36
|
Schmitz A, Herzog V. Endoplasmic reticulum-associated degradation: exceptions to the rule. Eur J Cell Biol 2004; 83:501-9. [PMID: 15679096 DOI: 10.1078/0171-9335-00412] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control mechanisms in the endoplasmic reticulum (ER) ensure that misfolded proteins are recognized and targeted for degradation. According to the current view of ER-associated degradation (ERAD), the degradation does not occur in the ER itself but requires the retrotranslocation of the proteins to the cytosol where they are degraded by proteasomes. Although this model appears to be valid for many different proteins a number of exceptions from this rule suggest that additional proteasome-independent ERAD pathways may exist. In this review, we will summarize what is known about these alternative ERAD pathways.
Collapse
Affiliation(s)
- Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | |
Collapse
|
37
|
Gutekunst CA, Torre ER, Sheng Z, Yi H, Coleman SH, Riedel IB, Bujo H. Stigmoid bodies contain type I receptor proteins SorLA/LR11 and sortilin: new perspectives on their function. J Histochem Cytochem 2003; 51:841-52. [PMID: 12754295 DOI: 10.1177/002215540305100615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stigmoid bodies (SBs) are structures in the cytoplasm of neurons. SBs are mostly found in the hypothalamic region of the rat and contain a protein called huntingtin-associated protein 1 (HAP1). In a recent publication, large cytoplasmic structures were shown to be immunoreactive for a type I receptor called SorLA/LR11. By light microscopic analysis, these structures appeared similar to SBs in size and in brain regional and subcellular localization. To determine whether these large puncta correspond to HAP1-containing SBs, we used antibodies specific to various domains of the apolipoprotein receptor LR11 to perform immunocytochemistry in rat and mouse brain tissue. Transfection studies using HeLa cells were conducted to demonstrate the specificity of the antibodies. We found that, in both species, antibodies to the domain II (or VSP10 for vacuolar sorting protein 10 domain) of LR11 immunoreact with large cytoplasmic structures. Co-localization immunolabeling experiments in rat brain tissue sections and in neuron cultures showed that these LR11-immunoreactive structures correspond to HAP1-positive SBs. Electron microscopy was performed in rat hypothalamus and further demonstrated the presence of LR11 in SBs and its co-localization with HAP1. LR11-containing SBs were most abundant in the hypothalamus but were also found in many brainstem nuclei, thalamus, and hippocampus. Our data also show that sortilin, another transmembrane protein containing a VPS10 domain, localizes to large cytoplasmic puncta and is found in LR11-positive and Hap1-positive SBs in hypothalamic neuron cultures.
Collapse
Affiliation(s)
- Claire-Anne Gutekunst
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hoyt MA, Zhang M, Coffino P. Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 2003; 278:12135-43. [PMID: 12562772 DOI: 10.1074/jbc.m211802200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.
Collapse
Affiliation(s)
- Martin A Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
39
|
Gandre S, Kahana C. Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent. Biochem Biophys Res Commun 2002; 293:139-44. [PMID: 12054575 DOI: 10.1016/s0006-291x(02)00194-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ornithine decarboxylase (ODC), the first rate-limiting enzyme in the polyamine biosynthesis is one of the most rapidly degraded proteins in eukaryotic cells. Mammalian ODC is a notable exception to the widely accepted dogma that ubiquitination is always required for targeting a protein to degradation by the 26S proteasome. However, while it is well established that in mammalian cells degradation of ODC is ubiquitin independent, the requirement of ubiquitination for degradation of ODC in yeast cells remained undetermined. We have investigated ODC degradation in three mutant strains of Saccharomyces cerevisiae in which ubiquitin-dependent protein degradation activity is severely compromised. While yeast ODC was rapidly degraded in all these mutant strains the degradation of N-end rule substrates was inhibited. A mutant mouse ODC that fails to interact with Az was rapidly degraded in yeast cells but was stable in mammalian cells suggesting that interaction with a mammalian Az like yeast protein is not necessary for the degradation of ODC in yeast cells. Deletion analysis revealed that sequences from its unique N-terminus are involved in targeting yeast ODC to rapid degradation in yeast cells.
Collapse
Affiliation(s)
- Shilpa Gandre
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
40
|
Gandre S, Bercovich Z, Kahana C. Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1316-22. [PMID: 11856366 DOI: 10.1046/j.1432-1033.2002.02774.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradation system, in cells antizyme is rapidly degraded and this degradation is inhibited by specific proteasome inhibitors. While the degradation of ODC is stimulated by the presence of cotransfected antizyme, degradation of antizyme seems to be independent of ODC, suggesting that antizyme degradation does not occur while presenting ODC to the 26S proteasome. Interestingly, both species of antizyme, which represent initiation at two in-frame initiation codons, are rapidly degraded. The degradation of both antizyme proteins is inhibited in ts20 cells containing a thermosensitive ubiquitin-activating enzyme, E1. Therefore we conclude that in contrast with ubiquitin-independent degradation of ODC, degradation of antizyme requires a functional ubiquitin system.
Collapse
Affiliation(s)
- Shilpa Gandre
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | | | | |
Collapse
|
41
|
Abstract
Ornithine decarboxylase (ODC) is among the small set of proteasome substrates that is not ubiquitinated. It is instead degraded in conjunction with the protein antizyme (AZ). ODC and AZ are participants in a regulatory circuit that restricts pools of polyamines, the downstream products of ODC enzymatic activity. Functional studies using directed mutagenesis have identified regions of ODC and AZ required for the process of ODC degradation. Within ODC, there is a region that is required for AZ binding which lies on the surface of an alpha-beta barrel forming one domain of the ODC monomer. A carboxy-terminal ODC domain is needed for both AZ-dependent and AZ-independent degradation. Within AZ, the carboxy-terminal half molecule is sufficient for binding to ODC, but an additional domain found within the AZ amino terminus must be present for stimulation of ODC degradation by the proteasome. Recently, the AZs have been found to consist of an ancient gene family. Within vertebrate species, multiple isoforms are found, with distinct functions that remain to be sorted out. Although AZ homologs have been found in some yeast species, homology searches have failed to identify an AZ homolog in Saccharomyces cerevisiae. Nevertheless, the close parallel between polyamine-induced ODC degradation in S. cerevisiae and in animal cells suggests that this organism will also be found to harbor an AZ-like protein.
Collapse
Affiliation(s)
- P Coffino
- Department of Microbiology and Immunology and Department of Medicine, University of California, San Francisco 94143-0414, USA.
| |
Collapse
|
42
|
Toda T, Ochotorena I, Kominami K. Two distinct ubiquitin-proteolysis pathways in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 1999; 354:1551-7. [PMID: 10582240 PMCID: PMC1692669 DOI: 10.1098/rstb.1999.0498] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCFPop1/Pop1, SCFPop1/Pop2 and SCFPop2/Pop2, appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.
Collapse
Affiliation(s)
- T Toda
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, London, UK.
| | | | | |
Collapse
|
43
|
García-Mata R, Bebök Z, Sorscher EJ, Sztul ES. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 1999; 146:1239-54. [PMID: 10491388 PMCID: PMC2156127 DOI: 10.1083/jcb.146.6.1239] [Citation(s) in RCA: 458] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1999] [Accepted: 08/18/1999] [Indexed: 11/22/2022] Open
Abstract
Formation of a novel structure, the aggresome, has been proposed to represent a general cellular response to the presence of misfolded proteins (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883-1898; Wigley, W.C., R.P. Fabunmi, M.G. Lee, C.R. Marino, S. Muallem, G.N. DeMartino, and P.J. Thomas. 1999. J. Cell Biol. 145:481-490). To test the generality of this finding and characterize aspects of aggresome composition and its formation, we investigated the effects of overexpressing a cytosolic protein chimera (GFP-250) in cells. Overexpression of GFP-250 caused formation of aggresomes and was paralleled by the redistribution of the intermediate filament protein vimentin as well as by the recruitment of the proteasome, and the Hsp70 and the chaperonin systems of chaperones. Interestingly, GFP-250 within the aggresome appeared not to be ubiquitinated. In vivo time-lapse analysis of aggresome dynamics showed that small aggregates form within the periphery of the cell and travel on microtubules to the MTOC region where they remain as distinct but closely apposed particulate structures. Overexpression of p50/dynamitin, which causes the dissociation of the dynactin complex, significantly inhibited the formation of aggresomes, suggesting that the minus-end-directed motor activities of cytoplasmic dynein are required for aggresome formation. Perinuclear aggresomes interfered with correct Golgi localization and disrupted the normal astral distribution of microtubules. However, ER-to-Golgi protein transport occurred normally in aggresome containing cells. Our results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that aggresome formation might be a general cellular response to the presence of misfolded proteins.
Collapse
Affiliation(s)
- Rafael García-Mata
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Zsuzsa Bebök
- The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric J. Sorscher
- The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Elizabeth S. Sztul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
44
|
Zhu C, Lang DW, Coffino P. Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport. J Biol Chem 1999; 274:26425-30. [PMID: 10473601 DOI: 10.1074/jbc.274.37.26425] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antizyme family consists of closely homologous proteins believed to regulate cellular polyamine pools. Antizyme1, the first described, negatively regulates ornithine decarboxylase, the initial enzyme in the biosynthetic pathway for polyamines. Antizyme1 targets ornithine decarboxylase for degradation and inhibits polyamine transport into cells, thereby diminishing polyamine pools. A polyamine-stimulated ribosomal frameshift is required for decoding antizyme1 mRNA. Recently, additional novel conserved members of the antizyme family have been described. We report here the properties of one of these, antizyme2. Antizyme2, like antizyme1, binds to ornithine decarboxylase and inhibits polyamine transport. Using a baculovirus expression system in cultured Sf21 insect cells, both antizymes were found to accelerate ornithine decarboxylase degradation. Expression of either antizyme1 or 2 in Sf21 cells also diminished their uptake of the polyamine spermidine. Both forms of antizyme can therefore function as negative regulators of polyamine production and transport. However, in contrast to antizyme1, antizyme2 has negligible ability to stimulate degradation of ornithine decarboxylase in a rabbit reticulocyte lysate.
Collapse
Affiliation(s)
- C Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
45
|
Mahaffey D, Rechsteiner M. Discrimination between ubiquitin-dependent and ubiquitin-independent proteolytic pathways by the 26S proteasome subunit 5a. FEBS Lett 1999; 450:123-5. [PMID: 10350069 DOI: 10.1016/s0014-5793(99)00456-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 26S proteasome subunit 5a binds polyubiquitin chains and has previously been shown to inhibit the degradation of mitotic cyclins. Presumably inhibition results from S5a binding and preventing recognition of Ub-cyclin conjugates by the 26S proteasome. Here we show that S5a does not inhibit the degradation of full-length ornithine decarboxylase (ODC) consistent with previous reports that the enzyme is degraded in an antizyme-dependent, but ubiquitin-independent reaction. S5a does, however, inhibit degradation of short ODC translation products generated by internal initiation events. Because in vitro translation often produces some shortened products, the existence of ubiquitin conjugated to a 35S-labeled protein is not necessarily evidence that the full-length protein is a substrate of the Ub-dependent proteolytic pathway.
Collapse
Affiliation(s)
- D Mahaffey
- Department of Biochemistry, University of Utah, School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
46
|
Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 1998; 273:34970-5. [PMID: 9857028 DOI: 10.1074/jbc.273.52.34970] [Citation(s) in RCA: 642] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The green fluorescent protein (GFP) is a widely used reporter in gene expression and protein localization studies. GFP is a stable protein; this property allows its accumulation and easy detection in cells. However, this stability also limits its application in studies that require rapid reporter turnover. We created a destabilized GFP for use in such studies by fusing amino acids 422-461 of the degradation domain of mouse ornithine decarboxylase (MODC) to the C-terminal end of an enhanced variant of GFP (EGFP). The fusion protein, unlike EGFP, was unstable in the presence of cycloheximide and had a fluorescence half-life of 2 h. Western blot analysis indicated that the fluorescence decay of EGFP-MODC-(422-461) was correlated with degradation of the fusion protein. We mutated key amino acids in the PEST sequence of EGFP-MODC-(422-461) and identified several mutants with variable half-lives. The suitability of destabilized EGFP as a transcription reporter was tested by linking it to NFkappaB binding sequences and monitoring tumor necrosis factor alpha-mediated NFkappaB activation. We obtained time course induction and dose response kinetics similar to secreted alkaline phosphatase obtained in transfected cells. This result did not occur when unmodified EGFP was used as the reporter. Because of its autofluorescence, destabilized EGFP can be used to directly correlate gene induction with biochemical change, such as NFkappaB translocation to the nucleus.
Collapse
Affiliation(s)
- X Li
- Laboratories, Inc., Palo Alto, California 94303, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Flinn EM, Busch CM, Wright AP. myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Mol Cell Biol 1998; 18:5961-9. [PMID: 9742113 PMCID: PMC109182 DOI: 10.1128/mcb.18.10.5961] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular levels of the rapidly degraded c-myc protein play an important role in determining the proliferation status of cells. Increased levels of c-myc are frequently associated with rapidly proliferating tumor cells. We show here that myc boxes I and II, found in the N termini of all members of the myc protein family, function to direct the degradation of the c-myc protein. Both myc boxes I and II contain sufficient information to independently direct the degradation of otherwise stably expressed proteins to which they are fused. At least part of the myc box-directed degradation occurs via the proteasome. The mechanism of myc box-directed degradation appears to be conserved between yeast and mammalian cells. Our results suggest that the myc boxes may play an important role in regulating the level and activity of the c-myc protein.
Collapse
Affiliation(s)
- E M Flinn
- Karolinska Institute, Department of Biosciences, NOVUM, S-14157 Huddinge, Sweden.
| | | | | |
Collapse
|
48
|
The 19S Regulatory Complex of the 26S Proteasome. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2558(08)60460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Yu H, Kaung G, Kobayashi S, Kopito RR. Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J Biol Chem 1997; 272:20800-4. [PMID: 9252404 DOI: 10.1074/jbc.272.33.20800] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The T-cell antigen receptor (TCR) is an hetero-oligomeric membrane complex composed of at least seven transmembrane polypeptide chains that has served as a model for the assembly and degradation of integral membrane proteins in the endoplasmic reticulum (ER). Unassembled TCRalpha chains fail to mature to the Golgi apparatus and are rapidly degraded by a non-lysosomal "ER degradation" pathway that has been proposed to be autonomous to the ER. In these studies we show that the degradation of core-glycosylated TCRalpha is blocked by N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN) and lactacystin, implicating the proteasome in ER degradation. Either acute or chronic treatment of TCRalpha-transfected cells with proteasome inhibitors cause the core-glycosylated TCRalpha chains to progressively shift to an approximately 28-kDa form that lacks N-linked oligosaccharides and the N-terminal signal peptide. The susceptibility of this 28-kDa species to extravesicular protease indicates that it is not protected by the ER membrane and, hence, cytoplasmic. These data suggest a model in which TCRalpha chains that are translocated across the membrane, core-glycosylated, but fail to assemble are dislocated back to the cytoplasm for degradation by cytoplasmic proteasomes. Our data also suggest that covalent modification of TCRalpha with ubiquitin is not required for its degradation.
Collapse
Affiliation(s)
- H Yu
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
50
|
Tai HL, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 1997; 94:6444-9. [PMID: 9177237 PMCID: PMC21069 DOI: 10.1073/pnas.94.12.6444] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
TPMT is a cytosolic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including medications such as mercaptopurine and thioguanine. TPMT activity exhibits autosomal codominant genetic polymorphism, and patients inheriting TPMT deficiency are at high risk of potentially fatal hematopoietic toxicity. The most prevalent mutant alleles associated with TPMT deficiency in humans have been cloned and characterized (TPMT*2 and TPMT*3A), but the mechanisms for loss of catalytic activity have not been elucidated. In the present study, we established that erythrocyte TPMT activity was significantly related to the amount of TPMT protein on Western blots of erythrocytes from patients with TPMT activities of 0.4-23 units/ml pRBC (rs = 0.99; P < 0.001). Similarly, heterologous expression of wild-type (TPMT*1) and mutant (TPMT*2 and TPMT*3A) human cDNAs in yeast and COS-1 cells demonstrated comparable levels of TPMT mRNA but significantly lower TPMT protein with the mutant cDNAs. Rates of protein synthesis were comparable for wild-type and mutant proteins expressed in yeast and with in vitro translation in rabbit reticulocyte lysates. In contrast, pulse-chase experiments revealed significantly shorter degradation half-lives for TPMT*2 and TPMT*3A ( approximately 0.25 hr) compared with wild-type TPMT*1 (18 hr). The degradation of mutant proteins was impaired by ATP depletion and in yeast with mutant proteasomes (pre-1 strain) but unaffected by the lysosomal inhibitor chloroquine. These studies establish enhanced degradation of TPMT proteins encoded by TPMT*2 and TPMT*3A as mechanisms for lower TPMT protein and catalytic activity inherited by the predominant mutant alleles at the human TPMT locus.
Collapse
Affiliation(s)
- H L Tai
- St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38101, USA
| | | | | | | | | |
Collapse
|