1
|
Zhou K, Zhang Y, Xu M, Zhou Y, Sun A, Zhou H, Han Y, Zhao D, Yu S. A GH1 β-glucosidase from the Fervidobacterium pennivorans DSM9078 showed extraordinary thermostability and distinctive ability in the efficient transformation of ginsenosides. Bioorg Chem 2025; 154:108049. [PMID: 39667076 DOI: 10.1016/j.bioorg.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
A novel GH1 β-glucosidase Fpglu1 from Fervidobacterium pennivorans DSM9078 was successfully cloned and expressed in Escherichia coli. This hyperthermophilic enzyme possesses unique features that make it valuable in biochemistry and pharmacology. It exhibited optimal activity at temperatures exceeding 100 °C, a trait rarely observed in other enzymes, and demonstrated extraordinary thermostability. It displayed multifunctional activity, with the highest activity observed for p-nitrophenyl-β-d-glucopyranoside (pNPGlu) at 92.47 U/mg. Furthermore, the distinctive capacity of Fpglu1 to transform ginsenosides (Rb1, Rb2, and Rc) into Compound-K (C-K) sets it apart from the other enzymes. It effectively cleaved the external β-(1-6) glycosidic linkage at the C-20 position of ginsenosides Rb1, Rb2, and Rc, followed by hydrolysis ofthe internal glycosidic bond connected to the C-3 position. The kcat/Km value of Fpglu1 for Rb1 was 453 ± 1.27 mM-1/s, significantly higher than those of Fpglu1 for other ginsenosides. The crystal structure of Fpglu1, determined at 1.85 Å resolution, provided a deeper understanding of its catalysis and substrate specificity. The evaluation of the binding conformation, hydrogen bond, and key amino acids of β-glucosidase Fpglu1 with different ginsenosides (Rb1, Rb2, and Rc) further elucidated the structural basis of its substrate-binding preference. In summary, Fpglu1, which had excellent thermostability and unique ginsenoside-transforming ability, was a highly promising catalyst for the industrial production of ginsenoside C-K. Additionally, structural studies have laid a theoretical foundation for further improving the catalytic properties of the enzyme through directed evolution in the future.
Collapse
Affiliation(s)
- Kailu Zhou
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yangyang Zhang
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Minghao Xu
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yikai Zhou
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ao Sun
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Hao Zhou
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ye Han
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Daqing Zhao
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Shanshan Yu
- Northeast Asia Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| |
Collapse
|
2
|
Kuschmierz L, Wagner A, Schmerling C, Busche T, Kalinowski J, Bräsen C, Siebers B. 5'-untranslated region sequences enhance plasmid-based protein production in Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1443342. [PMID: 39654677 PMCID: PMC11627041 DOI: 10.3389/fmicb.2024.1443342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Sulfolobus acidocaldarius, a thermoacidophilic archaeon of the phylum Thermoproteota (former Crenarchaeota), is a widely used model organism for gene deletion studies and recombinant protein production. Previous research has demonstrated the efficacy of the saci_2122 promoter (Para), providing low basal activity and high pentose-dependent induction. However, the available expression vector does not include a 5'-terminal untranslated region (5'-UTR), a typical element found in bacterial expression vectors that usually enhances protein production in bacteria. To establish S. acidocaldarius as a production strain in biotechnology in the long term, it is intrinsically relevant to optimize its tools and capacities to increase production efficiencies. Here we show that protein production is increased by the integration of S. acidocaldarius 5'-UTRs into Para expression plasmids. Using the esterase Saci_1116 as a reporter protein, we observed a four-fold increase in soluble and active protein yield upon insertion of the saci_1322 (alba) 5'-UTR. Screening of four additional 5'-UTRs from other highly abundant proteins (thα, slaA, slaB, saci_0330) revealed a consistent enhancement in target protein production. Additionally, site-directed mutagenesis of the Shine-Dalgarno (SD) motif within the alba 5'-UTR revealed its significance for protein synthesis. Ultimately, the alba 5'-UTR optimized expression vector improved the expression of various proteins, including six glycosyltransferases and one hydroxyacyl-CoA dehydratase from S. acidocaldarius, and a malto-oligosyltrehalose trehalohydrolase from Saccharolobus solfataricus, demonstrating its applicability. Our results show that the integration of SD-motif containing 5'-UTRs significantly enhanced plasmid-based protein production in S. acidocaldarius. This advancement in recombinant expression not only broadens the utility of S. acidocaldarius as an archaeal expression platform but also marks an important step toward potential biotechnological applications.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alexander Wagner
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christian Schmerling
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Shen W, Dalby PA, Guo Z, Li W, Zhu C, Fan D. Residue Effect-Guided Design: Engineering of S. Solfataricus β-Glycosidase to Enhance Its Thermostability and Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16669-16680. [PMID: 37812684 DOI: 10.1021/acs.jafc.3c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
β-Glycosidase from Sulfolobus solfataricus (SS-BGL) is a highly effective biocatalyst for the synthesis of compound K (CK) from glycosylated protopanaxadiol ginsenosides. In order to improve the thermal stability of SS-BGL, molecular dynamics simulations were used to determine the residue-level binding energetics of ginsenoside Rd in the SS-BGL-Rd docked complex and to identify the top ten critical contributors. Target sites for mutations were determined using dynamic cross-correlation mapping of residues via the Ohm server to identify networks of distal residues that interact with the key binding residues. Target mutations were determined rationally based on site characteristics. Single mutants and then recombination of top hits led to the two most promising variants SS-BGL-Q96E/N97D/N302D and SS-BGL-Q96E/N97D/N128D/N302D with 2.5-fold and 3.3-fold increased half-lives at 95 °C, respectively. The enzyme activities relative to those of wild-type for ginsenoside conversion were 161 and 116%, respectively..
Collapse
Affiliation(s)
- Wenfeng Shen
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Paul A Dalby
- Department of Biochemical Engineering, UCL, London WCIE 6BT, U.K
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Science and Technology, Aarhus University, Gustav Wied Vej 10, Aarhus 8000, Denmark
| | - Weina Li
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules 2021; 11:1557. [PMID: 34827555 PMCID: PMC8615776 DOI: 10.3390/biom11111557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
Hyperthermophilic Archaea colonizing unnatural habitats of extremes conditions such as volcanoes and deep-sea hydrothermal vents represent an unmeasurable bioresource for enzymes used in various industrial applications. Their enzymes show distinct structural and functional properties and are resistant to extreme conditions of temperature and pressure where their mesophilic homologs fail. In this review, we will outline carbohydrate-active enzymes (CAZymes) from hyperthermophilic Archaea with specific focus on the two largest families, glycoside hydrolases (GHs) and glycosyltransferases (GTs). We will present the latest advances on these enzymes particularly in the light of novel accumulating data from genomics and metagenomics sequencing technologies. We will discuss the contribution of these enzymes from hyperthermophilic Archaea to industrial applications and put the emphasis on newly identifed enzymes. We will highlight their common biochemical and distinct features. Finally, we will overview the areas that remain to be explored to identify novel promising hyperthermozymes.
Collapse
Affiliation(s)
- Khadija Amin
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Ziad Abdel-Razzak
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| | - Hala Chamieh
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| |
Collapse
|
5
|
Aulitto M, Strazzulli A, Sansone F, Cozzolino F, Monti M, Moracci M, Fiorentino G, Limauro D, Bartolucci S, Contursi P. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Microb Cell Fact 2021; 20:71. [PMID: 33736637 PMCID: PMC7977261 DOI: 10.1186/s12934-021-01553-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
Background The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. Conclusions Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01553-y.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ferdinando Sansone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.,Institute of Biosciences and BioResources-National Research Council of Italy, Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy. .,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy.
| |
Collapse
|
6
|
Suleiman M, Krüger A, Antranikian G. Biomass-degrading glycoside hydrolases of archaeal origin. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:153. [PMID: 32905355 PMCID: PMC7469102 DOI: 10.1186/s13068-020-01792-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
During the last decades, the impact of hyperthermophiles and their enzymes has been intensively investigated for implementation in various high-temperature biotechnological processes. Biocatalysts of hyperthermophiles have proven to show extremely high thermo-activities and thermo-stabilities and are identified as suitable candidates for numerous industrial processes with harsh conditions, including the process of an efficient plant biomass pretreatment and conversion. Already-characterized archaea-originated glycoside hydrolases (GHs) have shown highly impressive features and numerous enzyme characterizations indicated that these biocatalysts show maximum activities at a higher temperature range compared to bacterial ones. However, compared to bacterial biomass-degrading enzymes, the number of characterized archaeal ones remains low. To discover new promising archaeal GH candidates, it is necessary to study in detail the microbiology and enzymology of extremely high-temperature habitats, ranging from terrestrial to marine hydrothermal systems. State-of-the art technologies such as sequencing of genomes and metagenomes and automated binning of genomes out of metagenomes, combined with classical microbiological culture-dependent approaches, have been successfully performed to detect novel promising biomass-degrading hyperthermozymes. In this review, we will focus on the detection, characterization and similarities of archaeal GHs and their unique characteristics. The potential of hyperthermozymes and their impact on high-temperature industrial applications have not yet been exhausted.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anna Krüger
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Febbraio F, Ionata E, Marcolongo L. Forty years of study on the thermostable β-glycosidase from S. solfataricus: Production, biochemical characterization and biotechnological applications. Biotechnol Appl Biochem 2020; 67:602-618. [PMID: 32621790 DOI: 10.1002/bab.1982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this paper is to make the point on the fortieth years study on the β-glycosidase from Sulfolobus solfataricus. This enzyme represents one of the thermophilic biocatalysts, which is more extensively studied as witnessed by the numerous literature reports available since 1980. Comprehensive biochemical studies highlighted its broad substrate specificity for β-d-galacto-, gluco-, and fuco-sides and also showed its remarkable exo-glucosidase and transglycosidase activities. The enzyme demonstrated to be active and stable over a wide range of temperature and pHs, withstanding to several drastic conditions comprising solvents and detergents. Over the years, a great deal of studies were focused on its homotetrameric tridimensional structure, elucidating several structural features involved in the enzyme stability, such as ion pairs and post-translational modifications. Several β-glycosidase mutants were produced in the years in order to understand its peculiar behavior in extreme conditions and/or to improve its functional properties. The β-glycosidase overproduction was also afforded reporting numerous studies dealing with its production in the mesophilic host Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, and Lactococcus lactis. Relevant applications in food, beverages, bioenergy, pharmaceuticals, and nutraceutical fields of this enzyme, both in free and immobilized forms, highlighted its biotechnological relevance.
Collapse
Affiliation(s)
- Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy
| | - Elena Ionata
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| |
Collapse
|
8
|
Sinha SK, Prakash Reddy K, Datta S. Understanding the glucose tolerance of an archaeon β-glucosidase from Thermococcus sp. Carbohydr Res 2019; 486:107835. [DOI: 10.1016/j.carres.2019.107835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 01/28/2023]
|
9
|
Purification and characterization of a novel thermophilic β-galactosidase from Picrophilus torridus of potential industrial application. Extremophiles 2019; 23:783-792. [DOI: 10.1007/s00792-019-01133-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
10
|
Subramanian A, Kadirvel P, Anishetty S. Insights into the pH-dependent catalytic mechanism of Sulfolobus solfataricus β-glycosidase: A molecular dynamics study. Carbohydr Res 2019; 480:42-53. [DOI: 10.1016/j.carres.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
|
11
|
Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr 2019; 6:78. [PMID: 31214595 PMCID: PMC6554340 DOI: 10.3389/fnut.2019.00078] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fructo- and galacto-oligosaccharides (FOS and GOS) are non-digestible oligosaccharides with prebiotic properties that can be incorporated into a wide number of products. This review details the general outlines for the production of FOS and GOS, both by enzymatic synthesis using disaccharides or other substrates, and by hydrolysis of polysaccharides. Special emphasis is laid on technological aspects, raw materials, properties, and applications.
Collapse
Affiliation(s)
- Gonçalo N. Martins
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | - E. Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Paula C. Castilho
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
12
|
Effects of Random Mutagenesis and In Vivo Selection on the Specificity and Stability of a Thermozyme. Catalysts 2019. [DOI: 10.3390/catal9050440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Factors that give enzymes stability, activity, and substrate recognition result from the combination of few weak molecular interactions, which can be difficult to study through rational protein engineering approaches. We used irrational random mutagenesis and in vivo selection to test if a β-glycosidase from the thermoacidophile Saccharolobus solfataricus (Ssβ-gly) could complement an Escherichia coli strain unable to grow on lactose. The triple mutant of Ssβ-gly (S26L, P171L, and A235V) was more active than the wild type at 85 °C, inactivated at this temperature almost 300-fold quicker, and showed a 2-fold higher kcat on galactosides. The three mutations, which were far from the active site, were analyzed to test their effect at the structural level. Improved activity on galactosides was induced by the mutations. The S26L and P171L mutations destabilized the enzyme through the removal of a hydrogen bond and increased flexibility of the peptide backbone, respectively. However, the flexibility added by S26L mutation improved the activity at T > 60 °C. This study shows that random mutagenesis and biological selection allowed the identification of residues that are critical in determining thermal activity, stability, and substrate recognition.
Collapse
|
13
|
de Sousa M, Melo VMM, Hissa DC, Manzo RM, Mammarella EJ, Antunes ASLM, García JL, Pessela BC, Gonçalves LRB. One-Step Immobilization and Stabilization of a Recombinant Enterococcus faecium DBFIQ E36 L-Arabinose Isomerase for D-Tagatose Synthesis. Appl Biochem Biotechnol 2018; 188:310-325. [PMID: 30430344 DOI: 10.1007/s12010-018-2905-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/08/2018] [Indexed: 10/27/2022]
Abstract
A recombinant L-arabinose isomerase from Enterococcus faecium DBFIQ E36 was immobilized onto multifunctional epoxide supports by chemical adsorption and onto a chelate-activated support via polyhistidine-tag, located on the N-terminal (N-His-L-AI) or on the C-terminal (C-His-L-AI) sequence, followed by covalent bonding between the enzyme and the support. The results were compared to reversible L-AI immobilization by adsorption onto charged agarose supports with improved stability. All the derivatives presented immobilization yields of above 75%. The ionic interaction established between agarose gels containing monoaminoethyl-N-aminoethyl structures (MANAE) and the enzyme was the most suitable strategy for L-AI immobilization in comparison to the chelate-activated agarose. In addition, the immobilized biocatalysts by ionic interaction in MANAE showed to be the most stable, retaining up to 100% of enzyme activity for 60 min at 60 °C and with Km values of 28 and 218 mM for MANAE-N-His-L-AI and MANAE-C-His-L-AI, respectively.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza, CE, Brazil
| | - Vânia M M Melo
- Department of Biology, Federal University of Ceará, Campus do Pici, BL 909, Fortaleza, CE, Brazil
| | - Denise C Hissa
- Department of Biology, Federal University of Ceará, Campus do Pici, BL 909, Fortaleza, CE, Brazil
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S / N, Santa Fe, Argentina
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S / N, Santa Fe, Argentina
| | | | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C / Ramiro de Maeztu, 9, Madrid, Spain
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C / Nicolás Cabrera 9, UAM Campus, Madrid, Spain. .,Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, Talatona, Luanda, Angola.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Letsididi R, Hassanin HA, Koko MY, Zhang T, Jiang B, Mu W. Lactulose production by a thermostable glycoside hydrolase from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:928-937. [PMID: 28703279 DOI: 10.1002/jsfa.8539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lactulose has various uses in the food and pharmaceutical fields. Thermostable enzymes have many advantages for industrial exploitation, including high substrate solubilities as well as reduced risk of process contamination. RESULTS Enzymatic synthesis of lactulose employing a transgalactosylation reaction by a recombinant thermostable glycoside hydrolase (GH1) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was investigated. The optimal pH for lactulose production was found to be 4.5, while the optimal temperature was 85 °C, before it dropped moderately to 83% at 90 °C. However, the relative activity for lactulose synthesis dropped sharply to 35% at 95 °C. At optimal reaction conditions of 70% (w/w) initial sugar substrates with molar ratio of lactose to fructose of 1:4, 15 U mL-1 enzyme concentration and 85 °C, the time course reaction produced a maximum lactulose concentration of 108 g L-1 at 4 h, corresponding to a lactulose yield of 14% and 27 g L-1 h-1 productivity with 84% lactose conversion. The transgalactosylation reaction for lactulose synthesis was greatly influenced by the ratio of galactose donor to acceptor. CONCLUSION This novel GH1 may be useful for process applications owing to its high activity in very concentrated substrate reaction media and promising thermostability. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebaone Letsididi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Food Technology Research Centre, Kanye, Botswana
| | - Hinawi Am Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Marwa Yf Koko
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Danby PM, Withers SG. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis. J Am Chem Soc 2017; 139:10629-10632. [PMID: 28737389 DOI: 10.1021/jacs.7b05628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 β-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s-1. Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.
Collapse
Affiliation(s)
- Phillip M Danby
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
16
|
Nguyen TTH, Kim SB, Kim NM, Kang C, Chung B, Park JS, Kim D. Production of steviol from steviol glucosides using β-glycosidase from Sulfolobus solfataricus. Enzyme Microb Technol 2016; 93-94:157-165. [PMID: 27702476 DOI: 10.1016/j.enzmictec.2016.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 11/15/2022]
Abstract
Steviol is a diterpene isolated from the plant Stevia rebaudiana that has a potential role as an antihyperglycemic agent by stimulating insulin secretion from pancreatic beta cells and also has significant potential to diminish the renal clearance of anionic drugs and their metabolites. In this study, the lacS gene, which encodes a thermostable β-glycosidase (SSbgly) enzyme from the extremely thermoacidophillic archaeon Sulfolobus solfataricus, was cloned and expressed in E. coli Rossetta BL21(DE3)pLyS using lactose as an inducer. Through fermentation, SSbgly was expressed as a 61kDa protein with activity of 24.3U/mg and the OD600 of 23 was reached after 18h induction with 10mM lactose. Purified protein was obtained by Ni-Sepharose chromatography with a yield of 92.3%. SSbgly hydrolyzed steviol glycosides to produce steviol with a yield of 99.2%. The optimum conditions for steviol production were 50U/ml SSbgly and 90mg/ml Ste at 75°C as determined by the response surface method.
Collapse
Affiliation(s)
- Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, South Korea
| | - Seong-Bo Kim
- CJ CheilJedang, Life Ingredient & Material Research Institute, Suwon, 16495, South Korea
| | - Nahyun M Kim
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Choongil Kang
- OTTOGI Corporation, Anyang, Kyunggi, 06177, South Korea
| | | | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin, 17074, South Korea
| | - Doman Kim
- Institute of Food Industrialization, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, South Korea; Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, South Korea.
| |
Collapse
|
17
|
A Novel Highly Thermostable Multifunctional Beta-Glycosidase from Crenarchaeon Acidilobus saccharovorans. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:978632. [PMID: 26539062 PMCID: PMC4619763 DOI: 10.1155/2015/978632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/25/2015] [Accepted: 07/05/2015] [Indexed: 12/05/2022]
Abstract
We expressed a putative β-galactosidase Asac_1390 from hyperthermophilic crenarchaeon Acidilobus saccharovorans in Escherichia coli and purified the recombinant enzyme. Asac_1390 is composed of 490 amino acid residues and showed high sequence similarity to family 1 glycoside hydrolases from various thermophilic Crenarchaeota. The maximum activity was observed at pH 6.0 and 93°C. The half-life of the enzyme at 90°C was about 7 hours. Asac_1390 displayed high tolerance to glucose and exhibits hydrolytic activity towards cellobiose and various aryl glucosides. The hydrolytic activity with p-nitrophenyl (pNP) substrates followed the order pNP-β-D-galactopyranoside (328 U mg−1), pNP-β-D-glucopyranoside (246 U mg−1), pNP-β-D-xylopyranoside (72 U mg−1), and pNP-β-D-mannopyranoside (28 U mg−1). Thus the enzyme was actually a multifunctional β-glycosidase. Therefore, the utilization of Asac_1390 may contribute to facilitating the efficient degradation of lignocellulosic biomass and help enhance bioconversion processes.
Collapse
|
18
|
Liu Z, Zhao C, Deng Y, Huang Y, Liu B. Characterization of a thermostable recombinant β-galactosidase from a thermophilic anaerobic bacterial consortium YTY-70. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1015244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Kong F, Wang Y, Cao S, Gao R, Xie G. Cloning, purification and characterization of a thermostable β-galactosidase from Thermotoga naphthophila RUK-10. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Nath A, Mondal S, Chakraborty S, Bhattacharjee C, Chowdhury R. Production, purification, characterization, immobilization, and application ofβ-galactosidase: a review. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1801] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arijit Nath
- Chemical Engineering Department; Jadavpur University; Kolkata West Bengal 700032 India
| | - Subhoshmita Mondal
- Chemical Engineering Department; Jadavpur University; Kolkata West Bengal 700032 India
| | - Sudip Chakraborty
- Chemical Engineering Department; Jadavpur University; Kolkata West Bengal 700032 India
- Department of Chemical Engineering and Materials; University of Calabria; Cubo-44C Rende 87036 CS Italy
| | | | - Ranjana Chowdhury
- Chemical Engineering Department; Jadavpur University; Kolkata West Bengal 700032 India
| |
Collapse
|
21
|
In Silico Analysis of β-Galactosidases Primary and Secondary Structure in relation to Temperature Adaptation. JOURNAL OF AMINO ACIDS 2014; 2014:475839. [PMID: 24790757 PMCID: PMC3982409 DOI: 10.1155/2014/475839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
Abstract
β -D-Galactosidases (EC 3.2.1.23) hydrolyze the terminal nonreducing β -D-galactose residues in β -D-galactosides and are ubiquitously present in all life forms including extremophiles. Eighteen microbial β -galactosidase protein sequences, six each from psychrophilic, mesophilic, and thermophilic microbes, were analyzed. Primary structure reveals alanine, glycine, serine, and arginine to be higher in psychrophilic β -galactosidases whereas valine, glutamine, glutamic acid, phenylalanine, threonine, and tyrosine are found to be statistically preferred by thermophilic β -galactosidases. Cold active β -galactosidase has a strong preference towards tiny and small amino acids, whereas high temperature inhabitants had higher content of basic and aromatic amino acids. Thermophilic β -galactosidases have higher percentage of α -helix region responsible for temperature tolerance while cold loving β -galactosidases had higher percentage of sheet and coil region. Secondary structure analysis revealed that charged and aromatic amino acids were significant for sheet region of thermophiles. Alanine was found to be significant and high in the helix region of psychrophiles and valine counters in thermophilic β -galactosidase. Coil region of cold active β -galactosidase has higher content of tiny amino acids which explains their high catalytic efficiency over their counterparts from thermal habitat. The present study has revealed the preference or prevalence of certain amino acids in primary and secondary structure of psychrophilic, mesophilic, and thermophilic β -galactosidase.
Collapse
|
22
|
Zhang X, Li H, Li CJ, Ma T, Li G, Liu YH. Metagenomic approach for the isolation of a thermostable β-galactosidase with high tolerance of galactose and glucose from soil samples of Turpan Basin. BMC Microbiol 2013; 13:237. [PMID: 24156692 PMCID: PMC4016535 DOI: 10.1186/1471-2180-13-237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 10/16/2013] [Indexed: 11/13/2022] Open
Abstract
Background β-Galactosidases can be used to produce low-lactose milk and dairy products for lactose intolerant people. Although commercial β-galactosidases have outstanding lactose hydrolysis ability, their thermostability is low, and reaction products have strong inhibition to these enzymes. In addition, the β-galactosidases possessing simultaneously high thermostability and tolerance of galactose and glucose are still seldom reported until now. Therefore, identification of novel β-galactosidases with high thermostability and tolerance to reaction products from unculturable microorganisms accounting for over 99% of microorganisms in the environment via metagenomic strategy is still urgently in demand. Results In the present study, a novel β-galactosidase (Gal308) consisting of 658 amino acids was identified from a metagenomic library from soil samples of Turpan Basin in China by functional screening. After being overexpressed in Escherichia coli and purified to homogeneity, the enzymatic properties of Gal308 with N-terminal fusion tag were investigated. The recombinant enzyme displayed a pH optimum of 6.8 and a temperature optimum of 78°C, and was considerably stable in the temperature range of 40°C - 70°C with almost unchangeable activity after incubation for 60 min. Furthermore, Gal308 displayed a very high tolerance of galactose and glucose, with the highest inhibition constant Ki,gal (238 mM) and Ki,glu (1725 mM) among β-galactosidases. In addition, Gal308 also exhibited high enzymatic activity for its synthetic substrate o-nitrophenyl-β-D-galactopyranoside (ONPG, 185 U/mg) and natural substrate lactose (47.6 U/mg). Conclusion This study will enrich the source of β-galactosidases, and attract some attentions to β-galactosidases from extreme habitats and metagenomic library. Furthermore, the recombinant Gal308 fused with 156 amino acids exhibits many novel properties including high activity and thermostability at high temperatures, the pH optimum of 6.8, high enzyme activity for lactose, as well as high tolerance of galactose and glucose. These properties make it a good candidate in the production of low-lactose milk and dairy products after further study.
Collapse
Affiliation(s)
| | | | | | | | - Gang Li
- School of life sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | | |
Collapse
|
23
|
Some characteristics and isolation of novel thermostable β-galactosidase from Thermus oshimai DSM 12092. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
Wu Y, Yuan S, Chen S, Wu D, Chen J, Wu J. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food Chem 2012; 138:1588-95. [PMID: 23411285 DOI: 10.1016/j.foodchem.2012.11.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 01/30/2023]
Abstract
Galacto-oligosaccharides (GOS), an important class of functional food, are commonly produced from lactose using β-galactosidase. In the present study, β-galactosidase (LacS) from Sulfolobus solfataricus P2 was cloned and site-directed mutagenesis was performed to obtain two mutants, F359Q and F441Y. All of the wild-type enzyme and mutants were expressed in Escherichia coli BL21(DE3) and purified to homogeneity. The enzymatic properties and optimal condition for transglycosylation reaction of the enzymes were investigated in detail. Under their individual optimal conditions, yields of GOS could reach 50.9% for wild-type enzyme, 58.3% for F359Q, and 61.7% for F441Y. In addition, the potential mechanism for this enhancement was analysed.
Collapse
Affiliation(s)
- Yufei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Gupta R, Govil T, Capalash N, Sharma P. Characterization of a glycoside hydrolase family 1 β-galactosidase from hot spring metagenome with transglycosylation activity. Appl Biochem Biotechnol 2012; 168:1681-93. [PMID: 23015191 DOI: 10.1007/s12010-012-9889-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022]
Abstract
A novel, thermostable, alkalophilic β-D-galactosidase (Mbgl) was isolated from a metagenome of geothermal springs in northern Himalayan region of India. Mbgl was 447 amino acids in size and had conserved catalytic residues E170 and E358, indicating that it belonged to family 1 of glycosyl hydrolases showing maximum homology (89 %) with uncharacterized β-galactosidase of Eubacterium, Meiothermus ruber DSM1279. Temperature and pH optima of Mbgl were 65 °C and 8.0 respectively, and it retained 80 % activity even at pH 10.0. Mbgl was active as a homotetramer, recognized β-(1,4)-D-galactoside as the preferred glycosidic bond, and preferentially hydrolyzed pNPgal with K(m) 3.33 mM and k(cat) 2,000 s(-1). It displayed high transglycosylation activity with wide acceptor specificity including hexoses and pentoses leading to the formation of prebiotic galacto-oligosaccharides whereas its lactose hydrolysis potential was low.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
26
|
Carbohydrate hydrolysis and transport in the extreme thermoacidophile Sulfolobus solfataricus. Appl Environ Microbiol 2012; 78:7931-8. [PMID: 22941087 DOI: 10.1128/aem.01758-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extremely thermoacidophilic microbes, such as Sulfolobus solfataricus, are strict chemoheterotrophs despite their geologic niche. To clarify their ecophysiology, the overlapping roles of endoglucanases and carbohydrate transporters were examined during growth on soluble cellodextrins as the sole carbon and energy source. Strain-specific differences in genome structure implied a unique role for one of three endogenous endoglucanases. Plasmid-based endoglucanase expression promoted the consumption of oligosaccharides, including cellohexaose (G6) through cellonanaose (G9). Protein transporters required for cellodextrin uptake were identified through mutagenesis and complementation of an ABC transporter cassette, including a putative oligosaccharide binding protein. In addition, ablation of the binding protein compromised growth on glucose and alpha-linked oligosaccharides while inactivation of a previously described glucose transporter had no apparent impact. These data demonstrate that S. solfataricus employs a redundant mechanism for soluble cellodextrin catabolism having both substrate uptake and extracytoplasmic hydrolytic components.
Collapse
|
27
|
Lassak K, Neiner T, Ghosh A, Klingl A, Wirth R, Albers SV. Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 2011; 83:110-24. [DOI: 10.1111/j.1365-2958.2011.07916.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
SYNOWIECKI JÓZEF, SINKIEWICZ IZABELA, ZAKRZEWSKA AGATA, GRUBIAK KATARZYNA, PIETROW OLGA. β-GALACTOSIDASE ACTIVITY OF MEIOTHERMUS RUBER CELLS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00468.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Katrolia P, Zhang M, Yan Q, Jiang Z, Song C, Li L. Characterisation of a thermostable family 42 β-galactosidase (BgalC) family from Thermotoga maritima showing efficient lactose hydrolysis. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Reduction of galactose inhibition via the mutation of β-galactosidase from Caldicellulosiruptor saccharolyticus for lactose hydrolysis. Biotechnol Lett 2010; 33:353-8. [PMID: 20972818 DOI: 10.1007/s10529-010-0445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
For the removal of galactose inhibition, the predicted galactose binding residues, which were determined by sequence alignment, were replaced separately with Ala. The activities of the Ala-substituted mutant enzymes were assessed with the addition of galactose. As a consequence, amino acid at position 349 was correlated with the reduction in galactose inhibition. The F349S mutant exhibited the highest activity in the presence of galactose relative to the activity measured in the absence of galactose among the tested mutant enzymes at position 349. The K (i) of the F349S mutant (160 mM), which was 13-fold that of the wild-type enzyme, was the highest among the reported values of β-galactosidase. The wild-type enzyme hydrolyzed 62% of 100 g lactose/l with the addition of 30 g galactose/l, whereas the F349S mutant hydrolyzed more than 99%.
Collapse
|
31
|
Nam ES, Kim MS, Lee HB, Ahn JK. β-Glycosidase of Thermus thermophilus KNOUC202: Gene and biochemical properties of the enzyme expressed in Escherichia coli. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810050091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res Microbiol 2010; 161:515-25. [PMID: 20472057 DOI: 10.1016/j.resmic.2010.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The gene encoding beta-galactosidase from dairy Streptococcus thermophilus strain LMD9 was cloned, sequenced and expressed in Escherichia coli. The recombinant enzyme was purified and showed high specific activity of 464 U/mg. This protein displays a homotetrameric arrangement composed of four 118 kDa monomers. Monitoring of the activity showed that this enzyme was optimally active at a wide range of temperatures (25-40 degrees C) and at pH from 6.5 to 7.5. Immobilization of the recombinant E. coli in alginate beads clearly enhanced the enzyme activity at various temperatures, including 4 and 50 degrees C, and at pH values from 4.0 to 8.5. Stability studies indicated that this biocatalyst has high stability within a broad range of temperatures and pH. This stability was improved not only by addition of 1 mM of Mn(2+) and 1.2 mM Mg(2+), but essentially through immobilization. The remarkable bioconversion rates of lactose in milk and whey at different temperatures revealed the attractive catalytic efficiency of this enzyme, thus promoting its use for lactose hydrolysis in milk and other dairy products.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086-CNRS/Université de Lyon, IFR128 BioSciences Gerland - Lyon Sud, 7 Passage du Vercors, F-69367 Lyon cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Ellen AF, Albers SV, Driessen AJM. Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 2009; 14:87-98. [PMID: 19957093 PMCID: PMC2797410 DOI: 10.1007/s00792-009-0290-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 01/01/2023]
Abstract
Although a large number of potentially secreted proteins can be predicted on the basis of genomic distribution of signal sequence-bearing proteins, protein secretion in Archaea has barely been studied. A proteomic inventory and comparison of the growth medium proteins in three hyperthermoacidophiles, i.e., Sulfolobus solfataricus, S. acidocaldarius and S. tokodaii, indicates that only few proteins are freely secreted into the growth medium and that the majority originates from cell envelope bound forms. In S. acidocaldarius both cell-associated and secreted alpha-amylase activities are detected. Inactivation of the amyA gene resulted in a complete loss of activity, suggesting that the same protein is responsible for the a-amylase activity at both locations. It is concluded that protein secretion in Sulfolobus is a limited process, and it is suggested that the S-layer may act as a barrier for the free diffusion of folded proteins into the medium.
Collapse
Affiliation(s)
- Albert F Ellen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
34
|
Park AR, Oh DK. Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 2009; 85:1279-86. [DOI: 10.1007/s00253-009-2356-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/28/2022]
|
35
|
Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, Haser R, Bejar S. Exploring the acidotolerance of beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Res Microbiol 2009; 160:775-84. [PMID: 19786095 DOI: 10.1016/j.resmic.2009.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 02/08/2023]
Abstract
The LacZ gene encoding beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 (L. bulgaricus) was cloned, sequenced and expressed in Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could be distinguished from homologues by its relatively low and broad optimal temperature range, from 35 to 50 degrees C, coupled with an optimal pH of 5.0-5.5. Remarkably, the E491A mutant showed the same optimal temperature, but displayed an optimal pH at 6.5-7.0. Whilst these beta-galactosidases are inhibited by Cu(2+) they require only 1mM Mn(2+) and 1mM Co(2+) for optimal activity and thermostability. The wild-type enzyme was remarkably stable at acid pH values when compared to mutant E491A. Kinetic studies demonstrated that the E491A mutation affected catalysis rather than enzyme affinity. Furthermore, the wild-type protein efficiently cleaved lactose extracted from whey; however, in milk the E491A mutant showed the highest lactose bioconversion rate. Thus, these enzymes are interesting at the industrial level for hydrolysis of lactose extracted from whey or milk, and thus could contribute to overcoming the lactose intolerance problem generated by milk products.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax, Route de Sidi Mansour Km 6 BP, 3038 Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Park AR, Oh DK. Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 2009; 85:1427-35. [DOI: 10.1007/s00253-009-2165-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 11/28/2022]
|
37
|
Cloning, expression, and characterization of a peculiar choline-binding beta-galactosidase from Streptococcus mitis. Appl Environ Microbiol 2009; 75:5972-80. [PMID: 19633119 DOI: 10.1128/aem.00618-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative beta-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric beta-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40 degrees C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first beta-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications.
Collapse
|
38
|
Park AR, Kim HJ, Lee JK, Oh DK. Hydrolysis and Transglycosylation Activity of a Thermostable Recombinant β-Glycosidase from Sulfolobus acidocaldarius. Appl Biochem Biotechnol 2009; 160:2236-47. [DOI: 10.1007/s12010-009-8705-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/29/2009] [Indexed: 11/29/2022]
|
39
|
Kengen SWM, Stams AJM. An Extremely Thermostable β-Glucosidase from the Hyperthermophilic ArchaeonPyrococcus Furiosus; A Comparison with Other Glycosidases. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409034379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- ServÉ W. M. Kengen
- Department of Microbiology, Wageningen Agricultural University, P.O. Box 8033 NL-6700 EJ, The Netherlands
| | - Alfons J. M. Stams
- Department of Microbiology, Wageningen Agricultural University, P.O. Box 8033 NL-6700 EJ, The Netherlands
| |
Collapse
|
40
|
Trincone A, Improta R, Nucci R, Rossi M, Gambacorta A. Enzymatic Synthesis of Carbohydrate Derivatives Using β-Glycosidase ofSulfolobus Solfataricus. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409065229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A. Trincone
- Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano, 6 80072 Arco Felice, (Naples), Italy
| | - R. Improta
- Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano, 6 80072 Arco Felice, (Naples), Italy
| | - R. Nucci
- Istituto di Biochimica delle Proteine ed Enzimologia CNR, Via Marconi 10, 80125, (Naples), Italy
| | - M. Rossi
- Istituto di Biochimica delle Proteine ed Enzimologia CNR, Via Marconi 10, 80125, (Naples), Italy
| | - A. Gambacorta
- Istituto per la Chimica di Molecole di Interesse Biologico CNR, Via Toiano, 6 80072 Arco Felice, (Naples), Italy
| |
Collapse
|
41
|
Moracci M, Ciaramella M, Nucci R, Pearl LH, Sanderson I, Trincone A, Rossi M. Thermostable β-Glycosidase fromSulfolobus Solfataricus. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409034380] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Marco Moracci
- Institute of Protein Biochemistry and Enzymology, Via Marconi 10, 80125, Naples, Italy
| | - Maria Ciaramella
- Institute of Protein Biochemistry and Enzymology, Via Marconi 10, 80125, Naples, Italy
| | - Roberto Nucci
- Institute of Protein Biochemistry and Enzymology, Via Marconi 10, 80125, Naples, Italy
| | - Laurence H. Pearl
- University College, Department of Biochemistry and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Ian Sanderson
- University College, Department of Biochemistry and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Antonio Trincone
- Istituto per la Chimica di Molecole di Interesse Biologico, Via Toiano 6, 80072, Arco Felice, Naples, Italy
| | - MosÉ Rossi
- Institute of Protein Biochemistry and Enzymology, Via Marconi 10, 80125, Naples, Italy
| |
Collapse
|
42
|
Huneke FU, Bailey D, Nucci R, Cowan D. Sulfolobus Solfataricusβ-Glycosidase-Catalysed Synthesis of Sugar-Alcohol Conjugates in the Presence of Organic Solvents. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420009015252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Li DK, Lin H, Kim SM. Purification and characterization of a cysteine protease inhibitor from chum salmon (Oncorhynchus keta) plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:106-111. [PMID: 18072739 DOI: 10.1021/jf0723662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A cysteine protease inhibitor (CPI) in chum salmon ( Oncorhynchus keta) plasma (CSP) was detected after performing inhibitory activity staining against papain under nonreducing condition. The CPI was purified from CSP by affinity chromatography with a yield and purification ratio of 0.94% and 30.36-fold, respectively. CSP CPI had a molecular mass of 70 kDa based on the results of SDS-PAGE and Sephacryl S-100 gel filtration. CSP CPI was a glycoprotein based on the periodic acid-Schiff (PAS) staining of the SDS-PAGE gel and classified as a kininogen. CSP CPI was stable in the pH range of 6.0-9.0 with maximal stability at pH 7.0. CSP CPI presented thermal stability at temperatures below 50 degrees C and exhibited maximal activity at temperatures of 20-40 degrees C. CSP CPI was determined to be a noncompetitive inhibitor against papain, with an inhibitor constant (Ki) of 105 nM.
Collapse
Affiliation(s)
- De Kun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
44
|
Park HY, Kim HJ, Lee JK, Kim D, Oh DK. Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9642-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Yuan T, Yang P, Wang Y, Meng K, Luo H, Zhang W, Wu N, Fan Y, Yao B. Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius. Biotechnol Lett 2007; 30:343-8. [PMID: 17914606 DOI: 10.1007/s10529-007-9551-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 12/01/2022]
Abstract
A genomic DNA library screen yielded the nucleotide sequence of a 12 kb fragment containing a gene (2067 bp) coding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius ATCC 27009. The beta-galactosidase gene was expressed in Pichia pastoris, and up to 90 mg recombinant beta-galactosidase/l accumulated in shake flask cultures. Using o-nitrophenyl-beta-D: -galactopyranoside as a substrate, the optimum pH and temperature of the purified recombinant beta-galactosidase were 5.8-6.0 and 70 degrees C, respectively. The enzyme retained 90% of its activity when heated at 70 degrees C for 30 min. Approximately 48% of lactose in milk was hydrolyzed following treatment with the recombinant enzyme over 60 min at 65 degrees C.
Collapse
Affiliation(s)
- Tiezheng Yuan
- Microbial Engineering Department, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gul-Guven R, Guven K, Poli A, Nicolaus B. Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
SYNOWDECKI JOZEF, MACIUŃSKA JADWIGA. ISOLATION AND SOME PROPERTIES OF THE THERMOSTABLE β-GALACTOSIDASE OF PYROCOCCUS WOESEI EXPRESSED IN ESCHERICHIA COLI. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2002.tb00049.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Hindered diffusion of proteins and polymethacrylates in controlled-pore glass: An experimental approach. Chem Eng Sci 2007. [DOI: 10.1016/j.ces.2006.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Synowiecki J, Grzybowska B, Zdziebło A. Sources, Properties and Suitability of New Thermostable Enzymes in Food Processing. Crit Rev Food Sci Nutr 2007; 46:197-205. [PMID: 16527752 DOI: 10.1080/10408690590957296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Investigations concerning recombinant a-amylases from Pyrococcus woesei and thermostable a-glucosidase from Thermus thermophilus indicate their suitability for starch processing. Furthermore, the study of recombinant ss-galactosidase from Pyrococcus woesei suitable for purpose of low lactose milk and whey production are also presented. The activity of this enzyme in a wide pH range of 4.3-6.6 and high thermostability suggests that it can be used for processing of dairy products at temperatures which restrict microbial growth during a long operating time of continuous-flow reactor with an immobilized enzyme system. Preparation of recombinant a-amylase and ss-galactosidase was facilitated by cloning and expression of genes from Pyrococcus woesei in Escherichia coli host. Satisfactory level of recombinant enzymes purification was achieved by thermal precipitation of native proteins originated from Escherichia coli. The obtained a-amylase has maximal activity at pH 5.6 and 93 degrees C. The half-life of this preparation (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. An advantageous attribute of recombinant a -amylase is independence of its activity and stability on calcium salt. a-Glucosidase from Thermus thermophilus also not require metal ions for stability and retained about 80% of maximal activity at pH range 5.8-6.9. Thus, this enzyme can be used together with recombinant a-amylase.
Collapse
Affiliation(s)
- Józef Synowiecki
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-952, Gdansk, Poland.
| | | | | |
Collapse
|
50
|
Pesheva MG, Koprinarova MK, Venkov P. Enhanced protein export in Saccharomyces cerevisiae nud1 mutants is an active process. Curr Microbiol 2006; 53:496-501. [PMID: 17072669 DOI: 10.1007/s00284-006-0210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Saccharomyces cerevisiae NUD1 gene codes for a spindle pole body component and nud1 temperature-sensitive mutants arrest at 38 degrees C in late anaphase with a tendency for lysis. We found that addition of 10% sorbitol to the medium complemented the lytic phenotype, and determination of colony-forming units evidenced the viability of nud1 cells for at least 48 hours at 38 degrees C. The protein amount in cell-free medium increased at 38 degrees C, and evidence is presented that intact nud1 cells exported proteins in amounts 10-fold higher compared wild type strains. The observed high amounts of extracellular acid phosphatase, invertase, and bacterial beta-galactosidase suggested the export of secretory proteins. This was evidenced by construction of nudlsec mutants and the observation that interruption of the secretory pathway resulted in absence of protein export at 38 degrees C. Proteins were exported through a cell wall showing increased porosity at 38 degrees C. The extracellular release of Gas1p and the facilitated transformability with plasmid DNA of nud1 cells indicated alternations of their cell walls at 38 degrees C. The export of proteins depends on oxidative phosphorylation as evidenced by disruption of the COX10 gene. Experiments with inhibitors of mitochondrial functions showed that the synthesis of adenosine triphosphate, but not the electron transport along the respiratory chain, has a key role in the export of proteins. The data show that the phenotype of S. cerevisiae nud1 mutants is characterized by enhanced export of secretory proteins and that the passage of proteins through the walls of nud1 cells is an active process.
Collapse
Affiliation(s)
- M G Pesheva
- Faculty of Biology, Department of Genetics, Sofia University, 8 Dr. Tzankov Boulevard, 1421, Sofia, Bulgaria.
| | | | | |
Collapse
|