1
|
Payne N, Kpebe A, Guendon C, Baffert C, Maillot M, Haurogné T, Tranchida F, Brugna M, Shintu L. NMR-based metabolomic analysis of the physiological role of the electron-bifurcating FeFe-hydrogenase Hnd in Solidesulfovibrio fructosivorans under pyruvate fermentation. Microbiol Res 2023; 268:127279. [PMID: 36592576 DOI: 10.1016/j.micres.2022.127279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans), an anaerobic sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of hydrogen gas (H2) into protons and electrons. One of these, named Hnd, was demonstrated to be an electron-bifurcating hydrogenase Hnd (Kpebe et al., 2018). It couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 and whose function has been recently shown to be involved in ethanol production under pyruvate fermentation (Payne 2022). To understand further the physiological role of Hnd in S. fructosivorans, we compared the mutant deleted of part of the hnd gene with the wild-type strain grown on pyruvate without sulfate using NMR-based metabolomics. Our results confirm that Hnd is profoundly involved in ethanol metabolism, but also indirectly intervenes in global carbon metabolism and additional metabolic processes such as the biosynthesis of branched-chain amino acids. We also highlight the metabolic reprogramming induced by the deletion of hndD that leads to the upregulation of several NADP-dependent pathways.
Collapse
Affiliation(s)
- Natalie Payne
- Aix Marseille Univ, CNRS, BIP, Marseille, France; Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | | | | | | | | | - Fabrice Tranchida
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France.
| |
Collapse
|
2
|
Payne N, Kpebe A, Guendon C, Baffert C, Ros J, Lebrun R, Denis Y, Shintu L, Brugna M. The electron-bifurcating FeFe-hydrogenase Hnd is involved in ethanol metabolism in Desulfovibrio fructosovorans grown on pyruvate. Mol Microbiol 2022; 117:907-920. [PMID: 35066935 DOI: 10.1111/mmi.14881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Desulfovibrio fructosovorans, a sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of H2 into protons and electrons. Among them, Hnd is an electron-bifurcating hydrogenase, coupling the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 . It was previously hypothesized that its biological function involves the production of NADPH necessary for biosynthetic purposes. However, it was subsequently demonstrated that Hnd is instead a NAD+ -reducing enzyme, thus its specific function has yet to be established. To understand the physiological role of Hnd in D. fructosovorans, we compared the hnd deletion mutant with the wild-type strain grown on pyruvate. Growth, metabolites production and comsumption, and gene expression were compared under three different growth conditions. Our results indicate that hnd is strongly regulated at the transcriptional level and that its deletion has a drastic effect on the expression of genes for two enzymes, an aldehyde ferredoxin oxidoreductase and an alcohol dehydrogenase. We demonstrated here that Hnd is involved in ethanol metabolism when bacteria grow fermentatively and proposed that Hnd might oxidize part of the H2 produced during fermentation generating both NADH and reduced ferredoxin for ethanol production via its electron bifurcation mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Julien Ros
- CNRS, Aix Marseille Univ, BIP, Marseille, France
| | - Régine Lebrun
- CNRS, Aix Marseille Univ, Plate-forme Protéomique de l'IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | - Yann Denis
- CNRS, Aix Marseille Univ, Plate-forme Transcriptomique, Marseille, France
| | - Laetitia Shintu
- CNRS, Aix Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | | |
Collapse
|
3
|
Mulder DW, Peters JW, Raugei S. Catalytic bias in oxidation-reduction catalysis. Chem Commun (Camb) 2021; 57:713-720. [PMID: 33367317 DOI: 10.1039/d0cc07062a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cataytic bias refers to the propensity of a reaction catalyst to effect a different rate acceleration in one direction versus the other in a chemical reaction under non-equilibrium conditions. In biocatalysis, the inherent bias of an enzyme is often advantagous to augment the innate thermodynamics of a reaction to promote efficiency and fidelity in the coordination of catabolic and anabolic pathways. In industrial chemical catalysis a directional cataltyic bias is a sought after property in facilitating the engineering of systems that couple catalysis with harvest and storage of for example fine chemicals or energy compounds. Interestingly, there is little information about catalytic bias in biocatalysis likely in large part due to difficulties in developing tractible assays sensitive enough to study detailed kinetics. For oxidation-reduction reactions, colorimetric redox indicators exist in a range of reduction potentials to provide a mechanism to study both directions of reactions in a fairly facile manner. The current short review attempts to define catalytic bias conceptually and to develop model systems for defining the parameters that control catalytic bias in enzyme catalyzed oxidation-reduction catalysis.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | |
Collapse
|
4
|
Gomez-Bolivar J, Mikheenko IP, Macaskie LE, Merroun ML. Characterization of Palladium Nanoparticles Produced by Healthy and Microwave-Injured Cells of Desulfovibrio desulfuricans and Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E857. [PMID: 31195655 PMCID: PMC6630224 DOI: 10.3390/nano9060857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
Numerous studies have focused on the bacterial synthesis of palladium nanoparticles (bio-Pd NPs), via uptake of Pd (II) ions and their enzymatically-mediated reduction to Pd (0). Cells of Desulfovibrio desulfuricans (obligate anaerobe) and Escherichia coli (facultative anaerobe, grown anaerobically) were exposed to low-dose radiofrequency (RF) radiation(microwave (MW) energy) and the biosynthesized Pd NPs were compared. Resting cells were exposed to microwave energy before Pd (II)-challenge. MW-injured Pd (II)-treated cells (and non MW-treated controls) were contacted with H2 to promote Pd(II) reduction. By using scanning transmission electron microscopy (STEM) associated with a high-angle annular dark field (HAADF) detector and energy dispersive X-ray (EDX) spectrometry, the respective Pd NPs were compared with respect to their mean sizes, size distribution, location, composition, and structure. Differences were observed following MWinjury prior to Pd(II) exposure versus uninjured controls. With D. desulfuricans the bio-Pd NPs formed post-injury showed two NP populations with different sizes and morphologies. The first, mainly periplasmically-located, showed polycrystalline Pd nano-branches with different crystal orientations and sizes ranging between 20 and 30 nm. The second NPpopulation, mainly located intracellularly, comprised single crystals with sizes between 1 and 5 nm. Bio-Pd NPs were produced mainly intracellularly by injured cells of E. coli and comprised single crystals with a size distribution between 1 and 3 nm. The polydispersity index was reduced in the bio-Pd made by injured cells of E. coli and D. desulfuricans to 32% and 39%, respectively, of the values of uninjured controls, indicating an increase in NP homogeneity of 30-40% as a result of the prior MWinjury. The observations are discussed with respect to the different locations of Pd(II)-reducing hydrogenases in the two organisms and with respect to potential implications for the catalytic activity of the produced NPs following injury-associated altered NP patterning.
Collapse
Affiliation(s)
- Jaime Gomez-Bolivar
- Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.
| | - Iryna P Mikheenko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Lynne E Macaskie
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.
| |
Collapse
|
5
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
6
|
Kpebe A, Benvenuti M, Guendon C, Rebai A, Fernandez V, Le Laz S, Etienne E, Guigliarelli B, García-Molina G, de Lacey AL, Baffert C, Brugna M. A new mechanistic model for an O 2-protected electron-bifurcating hydrogenase, Hnd from Desulfovibrio fructosovorans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1302-1312. [PMID: 30463674 DOI: 10.1016/j.bbabio.2018.09.364] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
The genome of the sulfate-reducing and anaerobic bacterium Desulfovibrio fructosovorans encodes different hydrogenases. Among them is Hnd, a tetrameric cytoplasmic [FeFe] hydrogenase that has previously been described as an NADP-specific enzyme (Malki et al., 1995). In this study, we purified and characterized a recombinant Strep-tagged form of Hnd and demonstrated that it is an electron-bifurcating enzyme. Flavin-based electron-bifurcation is a mechanism that couples an exergonic redox reaction to an endergonic one allowing energy conservation in anaerobic microorganisms. One of the three ferredoxins of the bacterium, that was named FdxB, was also purified and characterized. It contains a low-potential (Em = -450 mV) [4Fe4S] cluster. We found that Hnd was not able to reduce NADP+, and that it catalyzes the simultaneous reduction of FdxB and NAD+. Moreover, Hnd is the first electron-bifurcating hydrogenase that retains activity when purified aerobically due to formation of an inactive state of its catalytic site protecting against O2 damage (Hinact). Hnd is highly active with the artificial redox partner (methyl viologen) and can perform the electron-bifurcation reaction to oxidize H2 with a specific activity of 10 μmol of NADH/min/mg of enzyme. Surprisingly, the ratio between NADH and reduced FdxB varies over the reaction with a decreasing amount of FdxB reduced per NADH produced, indicating a more complex mechanism than previously described. We proposed a new mechanistic model in which the ferredoxin is recycled at the hydrogenase catalytic subunit.
Collapse
Affiliation(s)
- Arlette Kpebe
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Martino Benvenuti
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Chloé Guendon
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Amani Rebai
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France
| | - Victoria Fernandez
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France
| | - Sébastien Le Laz
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | | | - Antonio L de Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, Madrid, Spain.
| | - Carole Baffert
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 09, France.
| |
Collapse
|
7
|
Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:264. [PMID: 27004043 PMCID: PMC4779138 DOI: 10.1007/s11051-015-3067-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 05/24/2023]
Abstract
Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H2, with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.
Collapse
Affiliation(s)
- Jacob B. Omajali
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Iryna P. Mikheenko
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Mohamed L. Merroun
- />Department of Microbiology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Joseph Wood
- />School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Lynne E. Macaskie
- />Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
8
|
Abou-Hamdan A, Ceccaldi P, Lebrette H, Gutiérrez-Sanz O, Richaud P, Cournac L, Guigliarelli B, De Lacey AL, Léger C, Volbeda A, Burlat B, Dementin S. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase. J Biol Chem 2015; 290:8550-8. [PMID: 25666617 DOI: 10.1074/jbc.m114.630491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production.
Collapse
Affiliation(s)
- Abbas Abou-Hamdan
- From the Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, UMR 7281 Aix-Marseille Université/CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Pierre Ceccaldi
- From the Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, UMR 7281 Aix-Marseille Université/CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Hugo Lebrette
- Metalloproteins Unit, Institut de Biologie Structurale, UMR 5075 Commissariat à l'Energie Atomique/CNRS/Université Joseph Fourier, 6 rue Jules Horowitz, 38000, Grenoble, France
| | - Oscar Gutiérrez-Sanz
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Pierre Richaud
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Saint-Paul-lez-Durance, F-13108, France CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementale (BVME), Saint-Paul-lez-Durance, 13108, France, and Aix-Marseille Université, BVME UMR7265, Marseille F-13284, France
| | - Laurent Cournac
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Saint-Paul-lez-Durance, F-13108, France CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementale (BVME), Saint-Paul-lez-Durance, 13108, France, and Aix-Marseille Université, BVME UMR7265, Marseille F-13284, France
| | - Bruno Guigliarelli
- From the Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, UMR 7281 Aix-Marseille Université/CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Antonio L De Lacey
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | - Christophe Léger
- From the Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, UMR 7281 Aix-Marseille Université/CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Anne Volbeda
- Metalloproteins Unit, Institut de Biologie Structurale, UMR 5075 Commissariat à l'Energie Atomique/CNRS/Université Joseph Fourier, 6 rue Jules Horowitz, 38000, Grenoble, France
| | - Bénédicte Burlat
- From the Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, UMR 7281 Aix-Marseille Université/CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Sébastien Dementin
- From the Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, UMR 7281 Aix-Marseille Université/CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France,
| |
Collapse
|
9
|
Volbeda A, Martin L, Barbier E, Gutiérrez-Sanz O, De Lacey AL, Liebgott PP, Dementin S, Rousset M, Fontecilla-Camps JC. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states. J Biol Inorg Chem 2015; 20:11-22. [PMID: 25315838 DOI: 10.1007/s00775-014-1203-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/01/2014] [Indexed: 01/12/2023]
Abstract
Catalytically inactive oxidized O2-sensitive [NiFe]-hydrogenases are characterized by a mixture of the paramagnetic Ni-A and Ni-B states. Upon O2 exposure, enzymes in a partially reduced state preferentially form the unready Ni-A state. Because partial O2 reduction should generate a peroxide intermediate, this species was previously assigned to the elongated Ni-Fe bridging electron density observed for preparations of [NiFe]-hydrogenases known to contain the Ni-A state. However, this proposition has been challenged based on the stability of this state to UV light exposure and the possibility of generating it anaerobically under either chemical or electrochemical oxidizing conditions. Consequently, we have considered alternative structures for the Ni-A species including oxidation of thiolate ligands to either sulfenate or sulfenic acid. Here, we report both new and revised [NiFe]-hydrogenases structures and conclude, taking into account corresponding characterizations by Fourier transform infrared spectroscopy (FTIR), that the Ni-A species contains oxidized cysteine and bridging hydroxide ligands instead of the peroxide ligand we proposed earlier. Our analysis was rendered difficult by the typical formation of mixtures of unready oxidized states that, furthermore, can be reduced by X-ray induced photoelectrons. The present study could be carried out thanks to the use of Desulfovibrio fructosovorans [NiFe]-hydrogenase mutants with special properties. In addition to the Ni-A state, crystallographic results are also reported for two diamagnetic unready states, allowing the proposal of a revised oxidized inactive Ni-SU model and a new structure characterized by a persulfide ion that is assigned to an Ni-'Sox' species.
Collapse
Affiliation(s)
- Anne Volbeda
- University Grenoble Alpes, IBS, 38044, Grenoble, France. .,CEA, IBS, 38044, Grenoble, France. .,CNRS, IBS, 38044, Grenoble, France.
| | - Lydie Martin
- University Grenoble Alpes, IBS, 38044, Grenoble, France.,CEA, IBS, 38044, Grenoble, France.,CNRS, IBS, 38044, Grenoble, France
| | - Elodie Barbier
- University Grenoble Alpes, IBS, 38044, Grenoble, France.,CEA, IBS, 38044, Grenoble, France.,CNRS, IBS, 38044, Grenoble, France.,CEA, MINATEC, 38044, Grenoble, France
| | | | | | - Pierre-Pol Liebgott
- Aix-Marseille Université, CNRS, IMM, 13402, Marseille, France.,Aix-Marseille Université, CNRS/INSU, MIO, 13288, Marseille, France
| | | | - Marc Rousset
- Aix-Marseille Université, CNRS, IMM, 13402, Marseille, France.,Consulate General of France, 205 N Michigan Ave, Chicago, IL, 60601, USA
| | - Juan C Fontecilla-Camps
- University Grenoble Alpes, IBS, 38044, Grenoble, France.,CEA, IBS, 38044, Grenoble, France.,CNRS, IBS, 38044, Grenoble, France
| |
Collapse
|
10
|
Hydrogen bioelectrooxidation in ionic liquids: From cytochrome c3 redox behavior to hydrogenase activity. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2010.12.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 2009; 285:3928-3938. [PMID: 19917611 DOI: 10.1074/jbc.m109.067751] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The enterobacterium Escherichia coli synthesizes two H(2) uptake enzymes, Hyd-1 and Hyd-2. We show using precise electrochemical kinetic measurements that the properties of Hyd-1 and Hyd-2 contrast strikingly, and may be individually optimized to function under distinct environmental conditions. Hyd-2 is well suited for fast and efficient catalysis in more reducing environments, to the extent that in vitro it behaves as a bidirectional hydrogenase. In contrast, Hyd-1 is active for H(2) oxidation under more oxidizing conditions and cannot function in reverse. Importantly, Hyd-1 is O(2) tolerant and can oxidize H(2) in the presence of air, whereas Hyd-2 is ineffective for H(2) oxidation under aerobic conditions. The results have direct relevance for physiological roles of Hyd-1 and Hyd-2, which are expressed in different phases of growth. The properties that we report suggest distinct technological applications of these contrasting enzymes.
Collapse
Affiliation(s)
- Michael J Lukey
- From the Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom and
| | - Alison Parkin
- From the Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom and
| | - Maxie M Roessler
- From the Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom and
| | - Bonnie J Murphy
- From the Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom and
| | - Jeffrey Harmer
- From the Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom and
| | - Tracy Palmer
- the College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Frank Sargent
- the College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Fraser A Armstrong
- From the Department of Inorganic Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom and.
| |
Collapse
|
12
|
Tard C, Pickett CJ. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 2009; 109:2245-74. [PMID: 19438209 DOI: 10.1021/cr800542q] [Citation(s) in RCA: 1021] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cédric Tard
- Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS 7591, Université Paris Diderot, 75013 Paris, France
| | | |
Collapse
|
13
|
Mikheenko IP, Rousset M, Dementin S, Macaskie LE. Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Appl Environ Microbiol 2008; 74:6144-6. [PMID: 18689514 PMCID: PMC2565964 DOI: 10.1128/aem.02538-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 08/01/2008] [Indexed: 11/20/2022] Open
Abstract
Wild-type Desulfovibrio fructosivorans and three hydrogenase-negative mutants reduced Pd(II) to Pd(0). The location of Pd(0) nanoparticles on the cytoplasmic membrane of the mutant retaining only cytoplasmic membrane-bound hydrogenase was strong evidence for the role of hydrogenases in Pd(0) deposition. Hydrogenase activity was retained at acidic pH, shown previously to favor Pd(0) deposition.
Collapse
Affiliation(s)
- I P Mikheenko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, United Kingdom
| | | | | | | |
Collapse
|
14
|
Nickel–thiolate and iron–thiolate cyanocarbonyl complexes: Modeling the nickel and iron sites of [NiFe] hydrogenase. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Dementin S, Belle V, Bertrand P, Guigliarelli B, Adryanczyk-Perrier G, De Lacey AL, Fernandez VM, Rousset M, Léger C. Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers. J Am Chem Soc 2007; 128:5209-18. [PMID: 16608357 DOI: 10.1021/ja060233b] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In NiFe hydrogenases, electrons are transferred from the active site to the redox partner via a chain of three Iron-Sulfur clusters, and the surface-exposed [4Fe4S] cluster has an unusual His(Cys)3 ligation. When this Histidine (H184 in Desulfovibrio fructosovorans) is changed into a cysteine or a glycine, a distal cubane is still assembled but the oxidative activity of the mutants is only 1.5 and 3% of that of the WT, respectively. We compared the activities of the WT and engineered enzymes for H2 oxidation, H+ reduction and H/D exchange, under various conditions: (i) either with the enzyme directly adsorbed onto an electrode or using soluble redox partners, and (ii) in the presence of exogenous ligands whose binding to the exposed Fe of H184G was expected to modulate the properties of the distal cluster. Protein film voltammetry proved particularly useful to unravel the effects of the mutations on inter and intramolecular electron transfer (ET). We demonstrate that changing the coordination of the distal cluster has no effect on cluster assembly, protein stability, active-site chemistry and proton transfer; however, it slows down the first-order rates of ET to and from the cluster. All-sulfur coordination is actually detrimental to ET, and intramolecular (uphill) ET is rate determining in the glycine variant. This demonstrates that although [4Fe4S] clusters are robust chemical constructs, the direct protein ligands play an essential role in imparting their ability to transfer electrons.
Collapse
Affiliation(s)
- Sébastien Dementin
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS UPR 9036, IBSM and Université de Provence, 31 chemin Joseph Aiguier, 13402 Marseille Cédex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lubitz W, Reijerse E, van Gastel M. [NiFe] and [FeFe] Hydrogenases Studied by Advanced Magnetic Resonance Techniques. Chem Rev 2007; 107:4331-65. [PMID: 17845059 DOI: 10.1021/cr050186q] [Citation(s) in RCA: 376] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
17
|
|
18
|
Nouailler M, Morelli X, Bornet O, Chetrit B, Dermoun Z, Guerlesquin F. Solution structure of HndAc: a thioredoxin-like domain involved in the NADP-reducing hydrogenase complex. Protein Sci 2006; 15:1369-78. [PMID: 16731971 PMCID: PMC2242533 DOI: 10.1110/ps.051916606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The NADP-reducing hydrogenase complex from Desulfovibrio fructosovorans is a heterotetramer encoded by the hndABCD operon. Sequence analysis indicates that the HndC subunit (52 kDa) corresponds to the NADP-reducing unit, and the HndD subunit (63.5 kDa) is homologous to Clostridium pasteurianum hydrogenase. The role of HndA and HndB subunits (18.8 kDa and 13.8 kDa, respectively) in the complex remains unknown. The HndA subunit belongs to the [2Fe-2S] ferredoxin family typified by C. pasteurianum ferredoxin. HndA is organized into two independent structural domains, and we report in the present work the NMR structure of its C-terminal domain, HndAc. HndAc has a thioredoxin-like fold consisting in four beta-strands and two relatively long helices. The [2Fe-2S] cluster is located near the surface of the protein and bound to four cysteine residues particularly well conserved in this class of proteins. Electron exchange between the HndD N-terminal [2Fe-2S] domain (HndDN) and HndAc has been previously evidenced, and in the present studies we have mapped the binding site of the HndDN domain on HndAc. A structural analysis of HndB indicates that it is a FeS subunit with 41% similarity with HndAc and it contains a possible thioredoxin-like fold. Our data let us propose that HndAc and HndB can form a heterodimeric intermediate in the electron transfer between the hydrogenase (HndD) active site and the NADP reduction site in HndC.
Collapse
Affiliation(s)
- Matthieu Nouailler
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
19
|
Albracht SPJ, Roseboom W, Hatchikian EC. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J Biol Inorg Chem 2005; 11:88-101. [PMID: 16323020 DOI: 10.1007/s00775-005-0039-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe-4S] cluster, the [4Fe-4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the H(ox)-CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the H(ox)-CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the H(ox)-CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 degrees C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g = 5 signal which is ascribed to an S = 3/2 form of the [2Fe](H) subcluster. The light sensitivity of the enzyme explains the occurrence of the g = 5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.
Collapse
Affiliation(s)
- Simon P J Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
20
|
Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC. Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 2005; 10:239-49. [PMID: 15803334 DOI: 10.1007/s00775-005-0632-x] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/02/2005] [Indexed: 11/29/2022]
Abstract
[NiFe] hydrogenases catalyze the reversible heterolytic cleavage of molecular hydrogen. Several oxidized, inactive states of these enzymes are known that are distinguishable by their very different activation properties. So far, the structural basis for this difference has not been understood because of lack of relevant crystallographic data. Here, we present the crystal structure of the ready Ni-B state of Desulfovibrio fructosovorans [NiFe] hydrogenase and show it to have a putative mu-hydroxo Ni-Fe bridging ligand at the active site. On the other hand, a new, improved refinement procedure of the X-ray diffraction data obtained for putative unready Ni-A/Ni-SU states resulted in a more elongated electron density for the bridging ligand, suggesting that it is a diatomic species. The slow activation of the Ni-A state, compared with the rapid activation of the Ni-B state, is therefore proposed to result from the different chemical nature of the ligands in the two oxidized species. Our results along with very recent electrochemical studies suggest that the diatomic ligand could be hydro-peroxide.
Collapse
Affiliation(s)
- Anne Volbeda
- Laboratoire de Cristallographie et de Cristallogenèse des Protèines, Institut de Biologie Structurale J.P. Ebel (CEA-CNRS-UJF), 41 rue Jules Horowitz, 38027, Grenoble Cédex 1, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: electrocatalysis of the hydrogen production/consumption reactions at carbon electrodes. J Electroanal Chem (Lausanne) 2005. [DOI: 10.1016/j.jelechem.2004.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
De Lacey AL, Pardo A, Fernández VM, Dementin S, Adryanczyk-Perrier G, Hatchikian EC, Rousset M. FTIR spectroelectrochemical study of the activation and inactivation processes of [NiFe] hydrogenases: effects of solvent isotope replacement and site-directed mutagenesis. J Biol Inorg Chem 2004; 9:636-42. [PMID: 15175937 DOI: 10.1007/s00775-004-0559-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
The kinetics of the activation and anaerobic inactivation processes of Desulfovibrio gigas hydrogenase have been measured in D(2)O by FTIR spectroelectrochemistry. A primary kinetic solvent isotope effect was observed for the inactivation process but not for the activation step. The kinetics of these processes have been also measured after replacement of a glutamic residue placed near the active site of an analogous [NiFe] hydrogenase from Desulfovibrio fructosovorans. Its replacement by a glutamine affected greatly the kinetics of the inactivation process but only slightly the activation process. The interpretation of the experimental results is that the rate-limiting step for anaerobic inactivation is the formation from water of a micro-OH(-) bridge at the hydrogenase active site, and that Glu25 has a role in this step.
Collapse
Affiliation(s)
- Antonio L De Lacey
- Instituto de Catálisis, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Casalot L, Valette O, De Luca G, Dermoun Z, Rousset M, de Philip P. Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans. FEMS Microbiol Lett 2002; 214:107-12. [PMID: 12204380 DOI: 10.1111/j.1574-6968.2002.tb11332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Desulfovibrio fructosovorans possesses two periplasmic hydrogenases (a nickel-iron and an iron hydrogenase) and a cytoplasmic NADP-dependent hydrogenase. The hydAB genes encoding the periplasmic iron hydrogenase were replaced, in the wild-type strain as well as in single mutants depleted of one of the other two hydrogenases, by the acc1 gene encoding resistance to gentamycin. Molecular characterization and remaining activity measurements of the resulting single and double mutants were performed. All mutated strains exhibited similar growth when H(2) was the electron donor but they grew differently on fructose, lactate or pyruvate as electron donors. Our results indicate that the loss of one enzyme might be compensated by another even though hydrogenases have different localization in the cells.
Collapse
Affiliation(s)
- Laurence Casalot
- Laboratoire de Microbiologie, IRD, ESIL, Case 925, F-13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
24
|
Stadler C, de Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernández VM. Density functional calculations for modeling the active site of nickel-iron hydrogenases. 2. Predictions for the unready and ready States and the corresponding activation processes. Inorg Chem 2002; 41:4424-34. [PMID: 12184759 DOI: 10.1021/ic020016l] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ZORA relativistic DFT calculations are presented which aim to model the geometric and electronic structure of the active site of NiFe hydrogenases in its EPR-active oxidized states Ni-A (unready state) and Ni-B (ready state). Starting coordinates are taken from the X-ray structure of a mutant of Desulfovibrio fructosovorans hydrogenase refined at 1.81 A resolution. Nine possible candidates for Ni-A and Ni-B are analyzed in terms of their geometric and electronic structure. Comparison of calculated geometric and magnetic resonance parameters with available experimental data indicates that both oxidized states have a micro-hydroxo bridge between the two metal centers. The different electronic structures of both forms can be explained by a modification of a terminal cysteine in Ni-B, best modeled by protonation of the sulfur atom. A possible mechanism for the activation of both oxidized forms is presented.
Collapse
Affiliation(s)
- Christian Stadler
- Instituto de Catálisis, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Liaw WF, Lee JH, Gau HB, Chen CH, Jung SJ, Hung CH, Chen WY, Hu CH, Lee GH. Six-coordinate and five-coordinate Fe(II)(CN)(2)(CO)(x) thiolate complexes (x = 1, 2): synthetic advances for iron sites of [NiFe] hydrogenases. J Am Chem Soc 2002; 124:1680-8. [PMID: 11853444 DOI: 10.1021/ja011504f] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dicyanodicarbonyliron(II) thiolate complexes trans,cis-[(CN)(2)(CO)(2)Fe(S,S-C-R)](-) (R = OEt (2), N(Et)(2) (3)) were prepared by the reaction of [Na][S-C(S)-R] and [Fe(CN)(2)(CO)(3)(Br)](-) (1). Complex 1 was obtained from oxidative addition of cyanogen bromide to [Fe(CN)(CO)(4)](-). In a similar fashion, reaction of complex 1 with [Na][S,O-C(5)H(4)N], and [Na][S,N-C(5)H(4)] produced the six-coordinate trans,cis-[(CN)(2)(CO)(2)Fe(S,O-C(5)H(4)N)](-) (6) and trans,cis-[(CN)(2)(CO)(2)Fe(S,N-C(5)H(4))](-) (7) individually. Photolysis of tetrahydrofuran (THF) solution of complexes 2, 3, and 7 under CO led to formation of the coordinatively unsaturated iron(II) dicyanocarbonyl thiolate compounds [(CN)(2)(CO)Fe(S,S-C-R)](-) (R = OEt (4), N(Et)(2) (5)) and [(CN)(2)(CO)Fe(S,N-C(5)H(4))](-) (8), respectively. The IR v(CN) stretching frequencies and patterns of complexes 4, 5, and 8 have unambiguously identified two CN(-) ligands occupying cis positions. In addition, density functional theory calculations suggest that the architecture of five-coordinate complexes 4, 5, and 8 with a vacant site trans to the CO ligand and two CN(-) ligands occupying cis positions serves as a conformational preference. Complexes 2, 3, and 7 were reobtained when the THF solution of complexes 4, 5, and 8 were exposed to CO atmosphere at 25 degrees C individually. Obviously, CO ligand can be reversibly bound to the Fe(II) site in these model compounds. Isotopic shift experiments demonstrated the lability of carbonyl ligands of complexes 2, 3, 4, 5, 7, and 8. Complexes [(CN)(2)(CO)Fe(S,S-C-R)](-) and NiA/NiC states [NiFe] hydrogenases from D. gigas exhibit a similar one-band pattern in the v(CO) region and two-band pattern in the v(CN) region individually, but in different positions, which may be accounted for by the distinct electronic effects between [S,S-C-R](-) and cysteine ligands. Also, the facile formations of five-coordinate complexes 4, 5, and 8 imply that the strong sigma-donor, weak pi-acceptor CN(-) ligands play a key role in creating/stabilizing five-coordinate iron(II) [(CN)(2)(CO)Fe(S,S-C-R)](-) complexes with a vacant coordination site trans to the CO ligand.
Collapse
Affiliation(s)
- Wen-Feng Liaw
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Casalot L, De Luca G, Dermoun Z, Rousset M, de Philip P. Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 2002; 184:853-6. [PMID: 11790758 PMCID: PMC139505 DOI: 10.1128/jb.184.3.853-856.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A strain devoid of the three hydrogenases characterized for Desulfovibrio fructosovorans was constructed using marker exchange mutagenesis. As expected, the H(2)-dependent methyl viologen reduction activity of the strain was null, but physiological studies showed no striking differences between the mutated and wild-type strains. The H(+)-D(2) exchange activity measured in the mutated strain indicates the presence of a fourth hydrogenase in D. fructosovorans.
Collapse
Affiliation(s)
- Laurence Casalot
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
27
|
De Luca G, de Philip P, Dermoun Z, Rousset M, Verméglio A. Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol 2001; 67:4583-7. [PMID: 11571159 PMCID: PMC93206 DOI: 10.1128/aem.67.10.4583-4587.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resting cells of the sulfate-reducing bacterium Desulfovibrio fructosovorans grown in the absence of sulfate had a very high Tc(VII)-reducing activity, which led to the formation of an insoluble black precipitate. The involvement of a periplasmic hydrogenase in Tc(VII) reduction was indicated (i) by the requirement for hydrogen as an electron donor, (ii) by the tolerance of this activity to oxygen, and (iii) by the inhibition of this activity by Cu(II). Moreover, a mutant carrying a deletion in the nickel-iron hydrogenase operon showed a dramatic decrease in the rate of Tc(VII) reduction. The restoration of Tc(VII) reduction by complementation of this mutation with nickel-iron hydrogenase genes demonstrated the specific involvement of the periplasmic nickel-iron hydrogenase in the mechanism in vivo. The Tc(VII)-reducing activity was also observed with cell extracts in the presence of hydrogen. Under these conditions, Tc(VII) was reduced enzymatically to soluble Tc(V) or precipitated to an insoluble black precipitate, depending on the chemical nature of the buffer used. The purified nickel-iron hydrogenase performed Tc(VII) reduction and precipitation at high rates. These series of genetic and biochemical approaches demonstrated that the periplasmic nickel-iron hydrogenase of sulfate-reducing bacteria functions as a Tc(VII) reductase. The role of cytochrome c(3) in the mechanism is also discussed.
Collapse
Affiliation(s)
- G De Luca
- CEA Cadarache, DSV/DEVM/Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul-Lez-Durance, France
| | | | | | | | | |
Collapse
|
28
|
Breukelman HJ, Jekel PA, Dubois JY, Mulder PP, Warmels HW, Beintema JJ. Secretory ribonucleases in the primitive ruminant chevrotain (Tragulus javanicus). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3890-7. [PMID: 11453981 DOI: 10.1046/j.1432-1327.2001.02294.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic analyses of secretory ribonucleases or RNases 1 have shown that gene duplication events, giving rise to three paralogous genes (pancreatic, seminal and brain RNase), occurred during the evolution of ancestral ruminants. A higher number of paralogous sequences are present in chevrotain (Tragulus javanicus), the earliest diverged taxon within the ruminants. Two pancreatic RNase sequences were identified, one encoding the pancreatic enzyme, the other encoding a pseudogene. The identity of the pancreatic enzyme was confirmed by isolation of the protein and N-terminal sequence analysis. It is the most acidic pancreatic ribonuclease identified so far. Formation of the mature enzyme requires cleavage by signal peptidase of a peptide bond between two glutamic acid residues. The seminal-type RNase gene shows features of a pseudogene, like orthologous genes in other ruminants investigated with the exception of the bovine species. The brain-type RNase gene of chevrotain is expressed in brain tissue. A hybrid gene with a pancreatic-type N-terminal and a brain-type C-terminal sequence has been identified but nothing is known about its expression. Phylogenetic analysis of RNase 1 sequences of six ruminant, three other artiodactyl and two whale species support previous findings that two gene duplications occurred in a ruminant ancestor. Three distinct groups of pancreatic, seminal-type and brain-type RNases have been identified and within each group the chevrotain sequence it the first to diverge. In taxa with duplications of the RNase gene (ruminants and camels) the gene evolved at twice as fast than in taxa in which only one gene could be demonstrated; in ruminants there was an approximately fourfold increase directly after the duplications and then a slowing in evolutionary rate.
Collapse
Affiliation(s)
- H J Breukelman
- Department of Biochemistry, University of Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Proc Natl Acad Sci U S A 1998; 95:11625-30. [PMID: 9751716 PMCID: PMC21691 DOI: 10.1073/pnas.95.20.11625] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue. The properties of the mutant enzyme were investigated in terms of enzymatic activity, EPR, and redox properties of the iron-sulfur centers and crystallographic structure. We have shown on the basis of both spectroscopic and x-ray crystallographic studies that the [3Fe-4S] cluster of D. fructosovorans hydrogenase was converted into a [4Fe-4S] center in the P238 mutant. The [3Fe-4S] to [4Fe-4S] cluster conversion resulted in a lowering of approximately 300 mV of the midpoint potential of the modified cluster, whereas no significant alteration of the spectroscopic and redox properties of the two native [4Fe-4S] clusters and the NiFe center occurred. The significant decrease of the midpoint potential of the intermediate Fe-S cluster had only a slight effect on the catalytic activity of the P238C mutant as compared with the wild-type enzyme. The implications of the results for the role of the high-potential [3Fe-4S] cluster in the intramolecular electron transfer pathway are discussed.
Collapse
Affiliation(s)
- M Rousset
- Unité de Bioénergétique et Ingéniérie des Protéines, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31, Chemin Joseph Aiguier, 13402 Marseille CDX 20, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rousset M, Magro V, Forget N, Guigliarelli B, Belaich JP, Hatchikian EC. Heterologous expression of the Desulfovibrio gigas [NiFe] hydrogenase in Desulfovibrio fructosovorans MR400. J Bacteriol 1998; 180:4982-6. [PMID: 9733707 PMCID: PMC107529 DOI: 10.1128/jb.180.18.4982-4986.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Desulfovibrio fructosovorans MR400 DeltahynABC to express the heterologous cloned [NiFe] hydrogenase of Desulfovibrio gigas was investigated. The [NiFe] hydrogenase operon from D. gigas, hynABCD, was cloned, sequenced, and introduced into D. fructosovorans MR400. A portion of the recombinant heterologous [NiFe] hydrogenase was totally matured, exhibiting catalytic and spectroscopic properties identical to those of the native D. gigas protein. A chimeric operon containing hynAB from D. gigas and hynC from D. fructosovorans placed under the control of the D. fructosovorans hynAp promoter was constructed and expressed in D. fructosovorans MR400. Under these conditions, the same level of activity was obtained as with the D. gigas hydrogenase operon.
Collapse
Affiliation(s)
- M Rousset
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM, CNRS, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
31
|
de Luca G, de Philip P, Rousset M, Belaich JP, Dermoun Z. The NADP-reducing hydrogenase of Desulfovibrio fructosovorans: evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity. Biochem Biophys Res Commun 1998; 248:591-6. [PMID: 9703971 DOI: 10.1006/bbrc.1998.9022] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NADP-reducing hydrogenase of Desulfovibrio fructosovorans represents a novel class of [Fe] hydrogenases which is encoded by the well-characterized hndABCD operon containing the genes hndA, hndB, hndC, and hndD. Expression of this operon, monitored by measuring the NADP-reducing activity, was found to be maximum during the exponential phase of growth on fructose and then decreased when the concentration of the carbon and energy source became limiting. The optimum pH for the H2-driven NADP reduction was 8, and the apparent K(m) and Vmax were determined to be 0.09 mM and 13 x 10(-3) u/mg, respectively. Heterologous expression of the hnd genes in Escherichia coli was carried out to raise antisera against the different subunits of the NADP-reducing hydrogenase. The antisera were used to detect the four subunits in cell extract of D. fructosovorans after separation by SDS- and native PAGE. The four subunits of the NADP-reducing hydrogenase were demonstrated to be associated in a complex which exhibited H2-driven methyl viologen reduction. Furthermore, on native gel, a form lacking HndD, with no hydrogen-dependent methyl viologen reductase activity was also shown to be present in D. fructosovorans.
Collapse
Affiliation(s)
- G de Luca
- Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | |
Collapse
|
32
|
De Luca G, Asso M, Belaich JP, Dermoun Z. Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli. Biochemistry 1998; 37:2660-5. [PMID: 9485416 DOI: 10.1021/bi972474p] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on the DNA sequence of its structural genes, clustered in the hnd operon, the NADP-reducing hydrogenase of Desulfovibrio fructosovorans is thought to be a heterotetrameric complex in which HndA and HndC constitute the NADP-reducing unit and HndD constitutes the hydrogenase unit, respectively. The weak representativity of the enzyme among cell proteins has prevented its purification. This paper discusses the purification and characterization of the HndA subunit of this unique tetrameric iron hydrogenase overproduced in Escherichia coli. The purified subunit contains 1.7 mol of non-heme iron and 1.7 mol of acid-labile sulfide/mol. EPR analysis of the reduced form of HndA indicates that it contains a single binuclear [2Fe-2S] cluster. This cluster exhibits a spectrum of rhombic symmetry with values of gx, gy, and gz equal to 1.915, 1.950, and 2. 000, respectively, and a midpoint redox potential of -395 mV. The UV-visible and EPR spectra of the [2Fe-2S] cluster indicate that HndA belongs to the [2Fe-2S] family typified by the Clostridium pasteurianum [2Fe-2S] ferredoxin. The C-terminal sequence of HndA shows 27% identity with the C-terminal sequence of the 25-kDa subunit of NADH: quinone oxidoreductase from Paracoccus denitrificans, 33% identity with the C-terminal sequence of the 24-kDa subunit from Bos taurus complex I, and 32% identity with the entire sequence of C. pasteurianum [2Fe-2S] ferredoxin. The four cysteine residues involved in HndA cluster binding have been tentatively identified on the basis of sequence identity considerations. Evidence of a HndA organization based on two independent structural domains is discussed.
Collapse
Affiliation(s)
- G De Luca
- Laboratoire de Bioenergetique et Ingenierie des Proteines, Centre National de la Recherche Scientifique, IFR C1, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
33
|
Casalot L, Hatchikian CE, Forget N, de Philip P, Dermoun Z, Bélaïch JP, Rousset M. Molecular Study and Partial Characterization of Iron-only Hydrogenase inDesulfovibrio fructosovorans. Anaerobe 1998; 4:45-55. [PMID: 16887623 DOI: 10.1006/anae.1997.0137] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1997] [Accepted: 11/26/1997] [Indexed: 11/22/2022]
Abstract
An iron-only hydrogenase was partially purified and characterized from Desulfovibrio fructosovorans wild-type strain. The enzyme exhibits a molecular mass of 56 kDa and is composed of two distinct subunits HydA and HydB (46 and 13 kDa, respectively). The N-terminal amino acid sequences of the two subunits of the enzyme were determined with the aim of designing degenerate oligonucleotides. Direct and inverse polymerase chain reaction techniques were used to clone the hydrogenase encoding genes. A 9-nucleotide region located 75 bp upstream from the translational start codon of the D. fructosovorans hydA gene was found to be highly conserved. The analysis of the deduced amino acid sequence of these genes showed the presence of a signal sequence located in the small subunit, exhibiting the consensus sequence which is likely to be involved in the specific export mechanism of hydrogenases. Two ferredoxin-like motives involved in the coordination of [4Fe-4S] clusters were identified in the N-terminal domain of the large subunit. The amino acid sequence of the [Fe] hydrogenase from D. fructosovorans was compared with the amino acid sequences from eight other hydrogenases (cytoplasmic and periplasmic). These enzymes share an overall 18% identity and 28% similarity. The identity reached 73% and 69% when the D. fructosovorans hydrogenase sequence was compared with the hydrogenase sequences from Desulfovibrio vulgaris Hildenborough and Desulfovibrio vulgaris oxamicus Monticello, respectively.
Collapse
Affiliation(s)
- L Casalot
- Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036-CNRS, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Medina M, Claude Hatchikian E, Cammack R. Studies of light-induced nickel EPR signals in hydrogenase: comparison of enzymes with and without selenium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00007-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Hatchikian EC, Forget N, Bernadac A, Alazard D, Ollivier B. Involvement of a single periplasmic hydrogenase for both hydrogen uptake and production in some Desulfovibrio species. Res Microbiol 1995; 146:129-41. [PMID: 7652207 DOI: 10.1016/0923-2508(96)80891-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Various sulphate-reducing bacteria differing in the number of genes encoding hydrogenase were shown to ferment lactate in coculture with Methanospirillum hungatei, in the absence of sulphate. The efficiency of interspecies H2 transfer carried out by these species of sulphate-reducing bacteria does not appear to correlate with the distribution of genes coding for hydrogenase. Desulfovibrio vulgaris Groningen, which possesses only the gene for [NiFe] hydrogenase, oxidizes hydrogen in the presence of sulphate and produces some hydrogen during fermentation of pyruvate without electron acceptor. The hydrogenase of D. vulgaris was purified and characterized. It exhibits a molecular mass of 87 kDa and is composed of two different subunits (60 and 28 kDa). D. vulgaris hydrogenase contains 10.6 iron atoms, 0.9 nickel atom and 12 acid-labile sulphur atoms/molecule, and the absorption spectrum of the enzyme is characteristic of an iron-sulphur protein. Maximal H2 uptake and H2 evolution activities were 332 and 230 units/mg protein, respectively. D. vulgaris cells contain exclusively the [NiFe] hydrogenase, whatever the growth conditions, as shown by biochemical and immunological studies. Immunocytolocalization in ultrathin frozen sections of cells grown on lactate and sulphate, on H2 and sulphate and on pyruvate showed that the [NiFe] hydrogenase was located in the periplasmic space. Labelling was enhanced in cells grown on H2 and sulphate and on pyruvate. The results enable us to conclude that D. vulgaris Groningen contains a single hydrogenase of the [NiFe] type, located in the periplasmic space like that described for D. gigas. This enzyme appears to be involved in both H2 uptake and H2 production, depending on the growth conditions.
Collapse
Affiliation(s)
- E C Hatchikian
- Unité de Bioénergétique et Ingéniérie des Protéines, CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
36
|
Kamachi T, Uno S, Hiraishi T, Okura I. Purification and properties of intact hydrogenase from Desulfovibrio vulgaris (Miyazaki). ACTA ACUST UNITED AC 1995. [DOI: 10.1016/1381-1169(94)00147-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Rousset M, Dermoun Z, Wall JD, Belaich JP. Analysis of the periplasmic [NiFe] hydrogenase transcription unit from Desulfovibrio fructosovorans. J Bacteriol 1993; 175:3388-93. [PMID: 8501043 PMCID: PMC204736 DOI: 10.1128/jb.175.11.3388-3393.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two genes, hynA and hynB, encode the two subunits of the periplasmic [NiFe] hydrogenase in Desulfovibrio fructosovorans. Sequencing downstream from hynB revealed a third open reading frame (hynC) that has the potential for encoding a polypeptide showing 21% identity with the HyaD, HoxM, and HupD proteins, belonging to putative operons encoding Escherichia coli hydrogenase 1, Alcaligenes eutrophus H16 membrane-bound hydrogenase, and Rhizobium leguminosarum uptake hydrogenase, respectively. Northern (RNA) blotting with a structural gene probe revealed the existence of a major transcript of 2.9 kb, which is the appropriate length to contain the two hydrogenase subunits only. In addition, two minor 4.4- and 5.8-kb transcripts that could contain hynABC and additional genes were found. The 5' end of the most abundant [NiFe] hydrogenase mRNA was found 170 bp upstream from the translational start site of hynA. The sequences at -10 and -35 relative to the transcriptional starting site showed 55% homology with the consensus sequences of the Escherichia coli sigma 70-type promoter. The cloning of that particular region as a promoter to control transcription of the lacZ gene in E. coli DH5 alpha or the hynA, hynB, and hynC genes in D. fructosovorans MR400 led to strong expression in both systems.
Collapse
Affiliation(s)
- M Rousset
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | |
Collapse
|
38
|
Hatchikian EC, Forget N, Fernandez VM, Williams R, Cammack R. Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:357-65. [PMID: 1327776 DOI: 10.1111/j.1432-1033.1992.tb17297.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans ATCC 7757, previously reported to be a single-subunit protein [Glick, B. R., Martin, W. G., and Martin, S. M. (1980) Can. J. Microbiol. 26, 1214-1223] were reinvestigated. The pure enzyme exhibited a molecular mass of 53.5 kDa as measured by analytical ultracentrifugation and was found to comprise two different subunits of 42.5 kDa and 11 kDa, with serine and alanine as N-terminal residues, respectively. The N-terminal amino acid sequences of its large and small subunits, determined up to 25 residues, were identical to those of the Desulfovibrio vulgaris Hildenborough [Fe]-hydrogenase. D. desulfuricans ATCC 7757 hydrogenase was free of nickel and contained 14.0 atoms of iron and 14.4 atoms of acid-labile sulfur/molecule and had E400, 52.5 mM-1.cm-1. The purified hydrogenase showed a specific activity of 62 kU/mg of protein in the H2-uptake assay, and the H2-uptake activity was higher than H2-evolution activity. The enzyme isolated under aerobic conditions required incubation under reducing conditions to express its maximum activity both in the H2-uptake and 2H2/1H2 exchange reaction. The ratio of the activity of activated to as-isolated hydrogenase was approximately 3. EPR studies allowed the identification of two ferredoxin-type [4Fe-4S]1+ clusters in hydrogenase samples reduced by hydrogen. In addition, an atypical cluster exhibiting a rhombic signal (g values 2.10, 2.038, 1.994) assigned to the H2-activating site in other [Fe]-hydrogenases was detected in partially reduced samples. Molecular properties, EPR spectroscopy, catalytic activities with different substrates and sensitivity to hydrogenase inhibitors indicated that D. desulfuricans ATCC 7757 periplasmic hydrogenase is a [Fe]-hydrogenase, similar in most respects to the well characterized [Fe]-hydrogenase from D. vulgaris Hildenborough.
Collapse
Affiliation(s)
- E C Hatchikian
- Laboratoire de Chimie Bacterienne, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | |
Collapse
|
39
|
Asso M, Guigliarelli B, Yagi T, Bertrand P. EPR and redox properties of Desulfovibrio vulgaris Miyazaki hydrogenase: comparison with the Ni-Fe enzyme from Desulfovibrio gigas. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:50-6. [PMID: 1321673 DOI: 10.1016/0167-4838(92)90126-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have carried out a detailed redox titration monitored by EPR on the hydrogenase from Desulfovibrio vulgaris Miyazaki. Typical 3Fe and nickel signals have been observed, which are very similar to those given by Desulfovibrio gigas hydrogenase in all the characteristic redox states of the enzyme. This confirms that D. vulgaris Miyazaki hydrogenase is a Ni-Fe enzyme closely related to that from D. gigas, as was recently proposed on the basis of sequence comparisons (Deckers, H.M., Wilson, F.R. and Voordouw, G. (1990) J. Gen. Microb. 136, 2021-2028).
Collapse
Affiliation(s)
- M Asso
- Laboratoire d'Electronique des Milieux Condensés-URA CNRS 784, Université de Provence, Centre St Jérôme, Marseille, France
| | | | | | | |
Collapse
|
40
|
|
41
|
Rousset M, Dermoun Z, Hatchikian CE, Bélaich JP. Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans. Gene 1990; 94:95-101. [PMID: 2227457 DOI: 10.1016/0378-1119(90)90473-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genetic locus encoding the periplasmic [NiFe]hydrogenase (Hyd) from Desulfovibrio fructosovorans was cloned and sequenced. The genes of this two-subunit enzyme have an operon organization in which the 0.94-kb gene encoding the small subunit precedes the 1.69-kb gene encoding the large subunit. A Shine-Dalgarno sequence is centered at -9 bp from the ATG of both subunits. The possible presence of another open reading frame downstream from the large-subunit-encoding gene is considered. The N-terminal sequence of the large 61-kDa subunit deduced from the nucleotide sequence is in perfect agreement with the results of the amino acid (aa) sequence determined by Edman degradation. A 50-aa leader peptide precedes the small 28-kDa subunit. The aa sequence of the enzyme shows nearly 65% homology with the [NiFe]Hyd aa sequence of Desulfovibrio gigas. Comparisons with a large range of Hyds from various bacterial species indicate the presence of highly conserved Cys residues, the implications of which are discussed from the point of view of nickel atom and cluster accommodation.
Collapse
Affiliation(s)
- M Rousset
- Laboratoire de Chimie Bacterienne, CNRS, Marseille, France
| | | | | | | |
Collapse
|