1
|
Liu H, Sun M, Gao Y, Lin J, Zhang T, Zhao G, Lv C. Interactions between protein Z and lycopene: A win-win scenario for both security and stability. Int J Biol Macromol 2025; 295:139401. [PMID: 39788260 DOI: 10.1016/j.ijbiomac.2024.139401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Malt protein Z (PZ), the main albumin in malt endosperm, exhibits trypsin inhibitory activity and has the ability to bind fat-soluble active molecules. However, its potential utilization as a food ingredient necessitates an evaluation of its allergenicity. Lycopene has many functional activities, such as antioxidant and treatment or alleviation of various diseases, but its tendency to degrade easily hinders its effective utilization. Therefore, this paper investigates the allergenicity of PZ and provides a win-win scenario that PZ interacts with lycopene. PZ interacts with lycopene through non-covalent interactions with a ratio of 4.07 ± 0.20, leading to the formation of homogenous particles with an increased absolute zeta potential, from -7.3 ± 0.2 to -20.0 ± 0.6. Unsurprisingly, the presence of lycopene alleviates the allergenicity of PZ by decreasing the IgE, mMcp-1 and vascular permeability, such as the plasma mMcp-1 decreased from 245.0 ± 5.2 ng/mL for the PZ group to 217.8 ± 4.1 ng/mL for the PZ-LYC group. To uncover the potential mechanism, the linear antigenic epitopes of PZ by ABCpred were predicted, which are almost the potential binding site of lycopene at PZ. On the other hand, PZ improved the storage stability of lycopene. The addition of PZ increased lycopene retention in solution from 14.9 ± 2.7 % to 65.5 ± 2.8 % over 10 days at room temperature with light exposure. These results provide foundations for PZ utilization concerning security, and give ways to protect bioactive molecules.
Collapse
Affiliation(s)
- Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Junyu Lin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
2
|
Liu H, Yang K, Gao Y, Lin J, Zhao G, Lv C. Comparison of recombinant protein Z with natural protein Z derived from malt: From structure to functional properties. Food Chem 2024; 460:140482. [PMID: 39032296 DOI: 10.1016/j.foodchem.2024.140482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Protein Z (PZ) is a prominent albumin found in the endosperm of barley seeds with a molecular weight of approximately 40 kDa. Its multifaceted functional attributes, including trypsin- and thrombin-inhibiting bioactivities and superior foaming properties, have garnered significant attention in research. Considering the post-translational modifications of PZ natural in barley malt, we tried to express recombinant protein Z (rPZ) in E. coli. The present study aims to undertake a comparative analysis between natural PZ and rPZ in order to elucidate their respective characteristics. After spectral analysis, there are significant differences in their secondary and tertiary structures. In addition, rPZ showed superior foamability and foam stability. As for the serpin-like activity, the inhibition rate of rPZ is much higher than that of PZ. In contrast with the inhibition activity, the digestability of rPZ is much lower than that of PZ. As for the cargo carrier properties, rPZ showed an excellent ability to stabilize astaxanthin at 37 °C. These results suggest that rPZ is more suitable as protein carrier, due to the high foamability, serpin-like activity and low digestive stability, which not only give a brief view of recombinant protein, but also give a direction for PZ in cargo delivery.
Collapse
Affiliation(s)
- Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Kailin Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Junyu Lin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China..
| |
Collapse
|
3
|
Tanner G, van de Meene A, Bacic A. Immunolocalization of hordein synthesis and transport in developing barley endosperm. PLANT DIRECT 2024; 8:e591. [PMID: 39247583 PMCID: PMC11377179 DOI: 10.1002/pld3.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 09/10/2024]
Abstract
The spatial accumulation of hordeins in the developing endosperm of barley grains was examined by immunofluorescence microscopy (immunolight microscopy [iLM]) and immunoelectron microscopy (iEM) to establish the timing and subcellular pattern of hordein synthesis and deposition. The pattern seen for hordeins was compared to other abundant grain proteins, such as serpin Z4 and lipid transfer protein 1 (LTP1). Hordein accumulates throughout grain development, from 6 to 37 days post-anthesis (DPA). In contrast, serpin Z4 was present at 6 DPA, but the greatest synthesis and accumulation occurred during the middle of seed development, from 15 to 30 DPA. LTP1 accumulated later in seed development, from 15 to 30 DPA. Hordeins accumulated within the lumen of the endoplasmic reticulum (ER), were exocytosed from the ER membrane, and accumulated in protein bodies, which then fused either with the protein storage vacuoles or with other protein bodies, which also later fused with the protein storage vacuoles. iEM showed hordein, and LTP1 appeared not to traverse the Golgi apparatus (GA). Hordein, LTP1, and serpin Z4 colocalized to the same protein bodies and were co-transported to the protein storage vacuole in the same protein bodies. It is likely that this represents a general transport mechanism common to storage proteins in developing grains.
Collapse
Affiliation(s)
- Gregory Tanner
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
| | - Allison van de Meene
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
- Ian Holmes Imaging Centre, Bio21 Institute The University of Melbourne Melbourne Victoria Australia
| | - Anthony Bacic
- School of Biosciences The University of Melbourne Melbourne Victoria Australia
- La Trobe Institute for Sustainable Agriculture & Food Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment La Trobe University Bundoora Victoria Australia
| |
Collapse
|
4
|
Ferreira MM, Santos AS, Santos AS, Zugaib M, Pirovani CP. Plant Serpins: Potential Inhibitors of Serine and Cysteine Proteases with Multiple Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3619. [PMID: 37896082 PMCID: PMC10609998 DOI: 10.3390/plants12203619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/29/2023]
Abstract
Plant serpins are a superfamily of protein inhibitors that have been continuously studied in different species and have great biotechnological potential. However, despite ongoing studies with these inhibitors, the biological role of this family in the plant kingdom has not yet been fully clarified. In order to obtain new insights into the potential of plant serpins, this study presents the first systematic review of the topic, whose main objective was to scrutinize the published literature to increase knowledge about this superfamily. Using keywords and the eligibility criteria defined in the protocol, we selected studies from the Scopus, PubMed, and Web of Science databases. According to the eligible studies, serpins inhibit different serine and non-serine proteases from plants, animals, and pathogens, and their expression is affected by biotic and abiotic stresses. Moreover, serpins like AtSerpin1, OSP-LRS, MtSer6, AtSRP4, AtSRP5, and MtPiI4, act in resistance and are involved in stress-induced cell death in the plant. Also, the system biology analysis demonstrates that serpins are related to proteolysis control, cell regulation, pollen development, catabolism, and protein dephosphorylation. The information systematized here contributes to the design of new studies of plant serpins, especially those aimed at exploring their biotechnological potential.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Ariana Silva Santos
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | | | - Maria Zugaib
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Carlos Priminho Pirovani
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| |
Collapse
|
5
|
Fox GP, Bettenhausen HM. Variation in quality of grains used in malting and brewing. FRONTIERS IN PLANT SCIENCE 2023; 14:1172028. [PMID: 37377804 PMCID: PMC10291334 DOI: 10.3389/fpls.2023.1172028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
Cereal grains have been domesticated largely from food grains to feed and malting grains. Barley (Hordeum vulgare L.) remains unparalleled in its success as a primary brewing grain. However, there is renewed interest in "alternative" grains for brewing (and distilling) due to attention being placed on flavor, quality, and health (i.e., gluten issues) aspects that they may offer. This review covers basic and general information on "alternative grains" for malting and brewing, as well as an in-depth look at several major biochemical aspects of these grains including starch, protein, polyphenols, and lipids. These traits are described in terms of their effects on processing and flavor, as well as the prospects for improvement through breeding. These aspects have been studied extensively in barley, but little is known about the functional properties in other crops for malting and brewing. In addition, the complex nature of malting and brewing produces a large number of brewing targets but requires extensive processing, laboratory analysis, and accompanying sensory analysis. However, if a better understanding of the potential of alternative crops that can be used in malting and brewing is needed, then significantly more research is required.
Collapse
Affiliation(s)
- Glen P. Fox
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Harmonie M. Bettenhausen
- Center for Craft Food and Beverage, Hartwick College Center for Craft Food and Beverage, Oneonta, NY, United States
| |
Collapse
|
6
|
Jiang Z, Gan J, Wang L, Lv C. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chem 2023; 399:133952. [DOI: 10.1016/j.foodchem.2022.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
7
|
Wang L, Zhang Y, Agbaka Johnpaul I, Hong K, Gao H, Song Y, Lv C, Ma C. Protein Z-based promising carriers for enhancing solubility and bioaccessibility of Xanthohumol. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Rehman S, Jørgensen B, Aziz E, Batool R, Naseer S, Rasmussen SK. Genome Wide Identification and Comparative Analysis of the Serpin Gene Family in Brachypodium and Barley. PLANTS 2020; 9:plants9111439. [PMID: 33114466 PMCID: PMC7692276 DOI: 10.3390/plants9111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Serpins (serine protease inhibitors) constitute one of the largest and most widely distributed superfamilies of protease inhibitors and have been identified in nearly all organisms. To gain significant insights, a comprehensive in silico analysis of the serpin gene family was carried out in the model plant for temperate grasses Brachypodium distachyon and barley Hordeum vulgare using bioinformatic tools at the genome level for the first time. We identified a total of 27 BdSRPs and 25 HvSRP genes in Brachypodium and barley, respectively, showing an unexpectedly high gene number in these model plants. Gene structure, conserved motifs and phylogenetic comparisons of serpin genes supported the role of duplication events in the expansion and evolution of serpin gene family. Further, purifying selection pressure was found to be a main driving force in the evolution of serpin genes. Genome synteny analysis indicated that BdSRP genes were present in syntenic regions of barley, rice, sorghum and maize, suggesting that they evolved before the divergence of these species from common ancestor. The distinct expression pattern in specific tissues further suggested a specialization of functions during development and in plant defense. These results suggest that the LR serpins (serpins with Leu-Arg residues at P2-P1') identified here can be utilized as candidates for exploitation in disease resistance, pest control and preventing stress-induced cell death. Additionally, serpins were identified that could lead to further research aimed at validating and functionally characterizing the role of potential serpin genes from other plants.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46200, Pakistan
- Department of Botany, Govt. Gordon College Rawalpindi, Rawalpindi 46000, Pakistan
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Correspondence: (S.R.); (S.K.R.)
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
| | - Ejaz Aziz
- Department of Botany, Government Degree College Khanpur, Haripur 22650, Pakistan;
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, PMAS, Arid Agriculture University, Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Samar Naseer
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan;
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Correspondence: (S.R.); (S.K.R.)
| |
Collapse
|
9
|
|
10
|
Sultan A, Andersen B, Christensen JB, Poulsen HD, Svensson B, Finnie C. Quantitative Proteomics Analysis of Barley-Based Liquid Feed and the Effect of Protease Inhibitors and NADPH-Dependent Thioredoxin Reductase/Thioredoxin (NTR/Trx) System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6432-6444. [PMID: 31095381 DOI: 10.1021/acs.jafc.9b01708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid feeding strategies have been devised with the aim of enhancing grain nutrient availability for livestock. It is characterized by a steeping/soaking period that softens the grains and initiates mobilization of seed storage reserves. The present study uses 2D gel-based proteomics to investigate the role of proteolysis and reduction by thioredoxins over a 48 h steeping period by monitoring protein abundance dynamics in barley-based liquid feed samples supplemented with either protease inhibitors or NADPH-dependent thioredoxin reductase/thioredoxin (NTR/Trx). Several full-length storage proteins were only identified in the water-extractable fraction of feed containing protease inhibitors, illustrating significant inhibition of proteolytic activities arising during the steeping period. Application of functional NTR/Trx to liquid feed reductively increased the solubility of known and potentially new Trx-target proteins, e.g., outer membrane protein X, and their susceptibility to proteolysis. Thus, the NTR/Trx system exhibits important potential as a feed additive to enhance nutrient digestibility in monogastric animals.
Collapse
Affiliation(s)
- Abida Sultan
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| | - Birgit Andersen
- Agricultural and Environmental Proteomics, Department of Systems Biology , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| | - Jesper Bjerg Christensen
- Department of Animal Science, Animal Nutrition and Physiology , Aarhus University , Blichers Allé 20, Building S20 , DK-8830 Tjele , Denmark
| | - Hanne Damgaard Poulsen
- Department of Animal Science, Animal Nutrition and Physiology , Aarhus University , Blichers Allé 20, Building S20 , DK-8830 Tjele , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| | - Christine Finnie
- Agricultural and Environmental Proteomics, Department of Systems Biology , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
11
|
Vinje MA, Walling JG, Henson CA, Duke SH. Comparative gene expression analysis of the β-amylase and hordein gene families in the developing barley grain. Gene 2019; 693:127-136. [DOI: 10.1016/j.gene.2018.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
12
|
Kakui T, Ishibashi Y, Kunishige Y, Isoe A, Nakatani K. Application of Enzyme-Linked Immunosorbent Assay to Quantitative Evaluation of Foam-Active Protein in Wheat Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-57-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tatsufumi Kakui
- Research Institute for New Product Development, Suntory Ltd., 1–1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618-8503 Japan
| | - Yoshihiko Ishibashi
- Research Institute for New Product Development, Suntory Ltd., 1–1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618-8503 Japan
| | - Yoko Kunishige
- Research Institute for New Product Development, Suntory Ltd., 1–1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618-8503 Japan
| | - Akira Isoe
- Research Institute for New Product Development, Suntory Ltd., 1–1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618-8503 Japan
| | - Kazuo Nakatani
- Research Institute for New Product Development, Suntory Ltd., 1–1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618-8503 Japan
| |
Collapse
|
13
|
Kakui T, Ishibashi Y, Miyake A, Terano Y, Nakatani K. Development of Monoclonal Antibody Sandwich-ELISA for Determination of Beer Foam-Active Proteins. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-56-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- T. Kakui
- Research Institute for New Product Development, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618 Japan
| | - Y. Ishibashi
- Research Institute for New Product Development, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618 Japan
| | - A. Miyake
- Research Institute for New Product Development, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618 Japan
| | - Y. Terano
- Research Institute for New Product Development, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618 Japan
| | - K. Nakatani
- Research Institute for New Product Development, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka 618 Japan
| |
Collapse
|
14
|
Ishibashi Y, Kakui T, Terano Y, Hon-No E, Kogin A, Nakatani K. Application of ELISA to Quantitative Evaluation of Foam-Active Protein in the Malting and Brewing Processes. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-55-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Y. Ishibashi
- Beer Research Institute, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka, 618, Japan
| | - T. Kakui
- Beer Research Institute, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka, 618, Japan
| | - Y. Terano
- Beer Research Institute, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka, 618, Japan
| | - E. Hon-No
- Beer Research Institute, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka, 618, Japan
| | - A. Kogin
- Beer Research Institute, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka, 618, Japan
| | - K. Nakatani
- Beer Research Institute, Suntory Ltd., 1-1 Wakayama-dai, Shimamoto-cho, Mishima-gun, Osaka, 618, Japan
| |
Collapse
|
15
|
Klose C, Thiele F, Arendt EK. Changes in the Protein Profile of Oats and Barley during Brewing and Fermentation. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0312-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Christina Klose
- Department of Food and Nutritional Sciences, National University of Ireland, University College Cork, Cork, Ireland
| | - Frithjof Thiele
- Department of Food and Nutritional Sciences, National University of Ireland, University College Cork, Cork, Ireland
| | - Elke K. Arendt
- Department of Food and Nutritional Sciences, National University of Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Han Y, Wang J, Li Y, Li H. Purification and Structural Characterization of Protein Z4 from Malt. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-2537-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yupeng Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Hao J, Li Q, Dong J, Yu J, Gu G, Fan W, Chen J. Identification of the Major Proteins in Beer Foam by Mass Spectrometry following Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-64-0166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Junguang Hao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, People's Republic of China
- Research Center of Tsingtao Brewery Group, Qingdao, Shandong, People's Republic of China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, People's Republic of China
| | - Jianjun Dong
- Research Center of Tsingtao Brewery Group, Qingdao, Shandong, People's Republic of China
| | - Junhong Yu
- Research Center of Tsingtao Brewery Group, Qingdao, Shandong, People's Republic of China
| | - Guoxian Gu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, People's Republic of China
| | - Wei Fan
- Research Center of Tsingtao Brewery Group, Qingdao, Shandong, People's Republic of China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Heterologous expression of Hordeum vulgare protein Z4 in Pichia pastoris shows increased structural stability. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Schmidt D, Gaziola SA, Boaretto LF, Azevedo RA. Proteomic analysis of mature barley grains from C-hordein antisense lines. PHYTOCHEMISTRY 2016; 125:14-26. [PMID: 26976333 DOI: 10.1016/j.phytochem.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 05/24/2023]
Abstract
Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.
Collapse
Affiliation(s)
- Daiana Schmidt
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Salete Aparecida Gaziola
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Luis Felipe Boaretto
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil.
| |
Collapse
|
20
|
Leisegang R, Stahl U. Degradation of a Foam-Promoting Barley Protein by a Proteinase from Brewing Yeast. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2005.tb00656.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Francis SE, Ersoy RA, Ahn JW, Atwell BJ, Roberts TH. Serpins in rice: protein sequence analysis, phylogeny and gene expression during development. BMC Genomics 2012; 13:449. [PMID: 22947050 PMCID: PMC3534287 DOI: 10.1186/1471-2164-13-449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/19/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Most members of the serpin family of proteins are potent, irreversible inhibitors of specific serine or cysteine proteinases. Inhibitory serpins are distinguished from members of other families of proteinase inhibitors by their metastable structure and unique suicide-substrate mechanism. Animal serpins exert control over a remarkable diversity of physiological processes including blood coagulation, fibrinolysis, innate immunity and aspects of development. Relatively little is known about the complement of serpin genes in plant genomes and the biological functions of plant serpins. RESULTS A structurally refined amino-acid sequence alignment of the 14 full-length serpins encoded in the genome of the japonica rice Oryza sativa cv. Nipponbare (a monocot) showed a diversity of reactive-centre sequences (which largely determine inhibitory specificity) and a low degree of identity with those of serpins in Arabidopsis (a eudicot). A new convenient and functionally informative nomenclature for plant serpins in which the reactive-centre sequence is incorporated into the serpin name was developed and applied to the rice serpins. A phylogenetic analysis of the rice serpins provided evidence for two main clades and a number of relatively recent gene duplications. Transcriptional analysis showed vastly different levels of basal expression among eight selected rice serpin genes in callus tissue, during seedling development, among vegetative tissues of mature plants and throughout seed development. The gene OsSRP-LRS (Os03g41419), encoding a putative orthologue of Arabidopsis AtSerpin1 (At1g47710), was expressed ubiquitously and at high levels. The second most highly expressed serpin gene was OsSRP-PLP (Os11g11500), encoding a non-inhibitory serpin with a surprisingly well-conserved reactive-centre loop (RCL) sequence among putative orthologues in other grass species. CONCLUSIONS The diversity of reactive-centre sequences among the putatively inhibitory serpins of rice point to a range of target proteases with different proteolytic specificities. Large differences in basal expression levels of the eight selected rice serpin genes during development further suggest a range of functions in regulation and in plant defence for the corresponding proteins.
Collapse
Affiliation(s)
- Sheila E Francis
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Renan A Ersoy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joon-Woo Ahn
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Thomas H Roberts
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
22
|
Gorjanović S. A Review: Biological and Technological Functions of Barley Seed Pathogenesis-Related Proteins (PRs). JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00389.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Evans D, Hejgaard J. The Impact of Malt Derived Proteins on Beer Foam Quality. Part I. The Effect of Germination and Kilning on the Level of Protein Z4, Protein Z7 and LTP1. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.1999.tb00015.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Steiner E, Gastl M, Becker T. Protein changes during malting and brewing with focus on haze and foam formation: a review. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-010-1412-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Iimure T, Kihara M, Ichikawa S, Ito K, Takeda K, Sato K. Development of DNA markers associated with beer foam stability for barley breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:199-210. [PMID: 20827457 DOI: 10.1007/s00122-010-1436-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our results indicate that these CAPS markers provide an efficient selection tool for beer foam stability in barley breeding programs.
Collapse
Affiliation(s)
- Takashi Iimure
- Bioresources Research and Development Department, Sapporo Breweries Ltd., 37-1, Nittakizaki, Ota, Gunma, 370-0393, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Serpins in plants and green algae. Funct Integr Genomics 2007; 8:1-27. [PMID: 18060440 DOI: 10.1007/s10142-007-0059-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/06/2007] [Accepted: 09/15/2007] [Indexed: 01/02/2023]
Abstract
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.
Collapse
|
27
|
Robinson LH, Juttner J, Milligan A, Lahnstein J, Eglinton JK, Evans DE. The identification of a barley haze active protein that influences beer haze stability: Cloning and characterisation of the barley SE protein as a barley trypsin inhibitor of the chloroform/methanol type. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2006.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F. Serpin1 of Arabidopsis thaliana is a Suicide Inhibitor for Metacaspase 9. J Mol Biol 2006; 364:625-36. [PMID: 17028019 DOI: 10.1016/j.jmb.2006.09.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 01/05/2023]
Abstract
Metacaspases are distant relatives of animal caspases found in plants, fungi and protozoa. We demonstrated previously that two type II metacaspases of Arabidopsis thaliana, AtMC4 and AtMC9 are Arg/Lys-specific cysteine-dependent proteases. We screened a combinatorial tetrapeptide library of 130,321 substrates with AtMC9. Here, we show that AtMC9 is a strict Arg/Lys-specific protease. Based on the position-specific scoring matrix derived from the substrate library results, the tetrapeptide Val-Arg-Pro-Arg was identified as an optimized substrate. AtMC9 had a kcat/KM of 4.6x10(5) M-1 s-1 for Ac-Val-Arg-Pro-Arg-amido-4-methyl-coumarin, representing a more than 10-fold improvement over existing fluorogenic substrates. A yeast two-hybrid screen with catalytically inactive AtMC9 as bait identified a serine protease inhibitor, designated AtSerpin1, which was found to be a potent inhibitor of AtMC9 activity in vitro through cleavage of its reactive center loop and covalent binding to AtMC9. On the basis of the substrate profiling of AtMC9 and confirmation through site-directed mutagenesis, the inhibitory P4-P1 cleavage site of AtSerpin1 was determined to be Ile-Lys-Leu-Arg351. Further mutagenesis of the AtSerpin1 inhibitory cleavage site modulated AtMC9 inhibition positively or negatively. Both AtMC9 and AtSerpin1 were localized in the extracellular space, suggesting an in vivo interaction as well. To our knowledge, this is the first report of plant protease inhibition by a plant serpin.
Collapse
Affiliation(s)
- Dominique Vercammen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hejgaard J, Laing WA, Marttila S, Gleave AP, Roberts TH. Serpins in fruit and vegetative tissues of apple (Malus domestica): expression of four serpins with distinct reactive centres and characterisation of a major inhibitory seed form, MdZ1b. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:517-527. [PMID: 32689152 DOI: 10.1071/fp04220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 04/12/2005] [Indexed: 06/11/2023]
Abstract
Most serpins irreversibly inhibit serine proteinases of the chymotrypsin family using a suicide-substrate-based mechanism. Serpins are present in all domains of life, but physiological functions in the plant kingdom are yet to be elucidated. Inhibitory properties of many abundant cereal grain serpins are well characterised, but serpins have not been identified in eudicot seeds. In apple (Malus domestica Borkh.), the origin of 88 serpin expressed sequence tags (ESTs) identified among 160 000 ESTs from 30 cultivar-, tissue- and time-specific libraries showed that serpin genes are expressed in a wide variety of tissues, including developing and mature fruits, seeds and vegetative buds as well as developing, mature and senescing leaves. Analysis of 46 sequences, most full-length, identified serpins with four distinct reactive centres belonging to two subfamilies (MdZ1 and MdZ2) with ~85% amino acid sequence identity. MdZ1 included three molecular forms with identical reactive centre loop (RCL) sequences except for three different, but related, residues at P2 (Asp, Asn or Glu). A major seed serpin, MdZ1b, with P2-P1' Glu-Arg-Arg was purified from decorticated seeds and characterised kinetically. MdZ1b was a fast inhibitor of bovine and porcine trypsin (second-order association rate constant k a ~4 × 106 m -1 s-1 and stoichiometry of inhibition SI = 1). Human plasmin and urokinase-type plasminogen activator (u-PA), but not thrombin, were inhibited at lower rates (k a ~104 m -1 s-1). Chymotrypsin was inhibited at the same site (k a~4 × 103 m -1 s-1), but a significant part of MdZ1b was cleaved as substrate (SI > 2). Unexpectedly, the MdZ1b-trypsin complex was relatively short-lived with a first-order dissociation rate constant k d in the order of 10-4 s-1. The bulk of mature seed MdZ1b was localised to the cotyledons. The content of MdZ1b in ripe apples was 5-26 µg per seed, whereas MdZ1b could not be detected in the cortex or skin. Localisation and inhibitory specificity of serpins in monocot and eudicot plants are compared and putative functions are discussed.
Collapse
Affiliation(s)
- Jørn Hejgaard
- Biochemistry and Nutrition Group, BioCentrum, Building 224, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - William A Laing
- Horticulture and Food Research Institute of New Zealand, PB 92169, Auckland, New Zealand
| | - Salla Marttila
- Department of Crop Science, Swedish University of Agricultural Sciences, PO Box 44, SE-23053 Alnarp, Sweden
| | - Andrew P Gleave
- Horticulture and Food Research Institute of New Zealand, PB 92169, Auckland, New Zealand
| | - Thomas H Roberts
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
30
|
Borén M, Larsson H, Falk A, Jansson C. The barley starch granule proteome—internalized granule polypeptides of the mature endosperm. PLANT SCIENCE 2004. [PMID: 0 DOI: 10.1016/j.plantsci.2003.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
31
|
Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. PLANT PHYSIOLOGY 2002; 129:1308-19. [PMID: 12114584 PMCID: PMC166524 DOI: 10.1104/pp.003681] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 03/11/2002] [Accepted: 03/25/2002] [Indexed: 05/15/2023]
Abstract
In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M(r) alpha-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.
Collapse
Affiliation(s)
- Christine Finnie
- Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Li CD, Langridge P, Zhang XQ, Eckstein P, Rossnagel B, Lance R, Lefol E, Lu MY, Harvey B, Scoles G. Mapping of Barley (Hordeum vulgare L.) Beta -amylase Alleles in which an Amino Acid Substitution Determines Beta -amylase Isoenzyme Type and the Level of Free Beta -amylase. J Cereal Sci 2002. [DOI: 10.1006/jcrs.2001.0398] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Jégou S, Douliez JP, Mollé D, Boivin P, Marion D. Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:4942-4949. [PMID: 11600048 DOI: 10.1021/jf010487a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The influence of malting and brewing processes on the chemical and structural modifications occurring on LTP1 was investigated by mass spectrometry and circular dichroism. Proteins were first purified from malt, and samples were collected at various steps of beer processing performed on two barley cultivars. The levels of LTP1 found in malt were not significantly different from the amounts in barley seed. However, in malt, both LTP1b, a post-translational form of LTP1, and a third isoform named LTP1c were isolated. Moreover, both of these proteins were found to be heterogeneously glycated but still exhibited an alpha-helix structure. Both glycated LTP1 and LTP1b were recovered during mashing. It was also shown that glycated LTP1 was unfolded during heat treatment of wort boiling, which is in agreement with the denatured form previously isolated from beer.
Collapse
Affiliation(s)
- S Jégou
- Unité de Biochimie et Technologie des Protéines, INRA, B.P. 71627, 44316 Nantes Cedex 03, France
| | | | | | | | | |
Collapse
|
34
|
Atchley WR, Lokot T, Wollenberg K, Dress A, Ragg H. Phylogenetic analyses of amino acid variation in the serpin proteins. Mol Biol Evol 2001; 18:1502-11. [PMID: 11470841 DOI: 10.1093/oxfordjournals.molbev.a003936] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analyses of 110 serpin protein sequences revealed clades consistent with independent phylogenetic analyses based on exon-intron structure and diagnostic amino acid sites. Trees were estimated by maximum likelihood, neighbor joining, and partial split decomposition using both the BLOSUM 62 and Jones-Taylor-Thornton substitution matrices. Neighbor-joining trees gave results closest to those based on independent analyses using genomic and chromosomal data. The maximum-likelihood trees derived using the quartet puzzling algorithm were very conservative, producing many small clades that separated groups of proteins that other results suggest were related. Independent analyses based on exon-intron structure suggested that a neighbor-joining tree was more accurate than maximum-likelihood trees obtained using the quartet puzzling algorithm.
Collapse
Affiliation(s)
- W R Atchley
- Department of Genetics, North Carolina State University, Raleigh 27695-7614, USA.
| | | | | | | | | |
Collapse
|
35
|
Ragg H, Lokot T, Kamp PB, Atchley WR, Dress A. Vertebrate serpins: construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. Mol Biol Evol 2001; 18:577-84. [PMID: 11264410 DOI: 10.1093/oxfordjournals.molbev.a003838] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A combination of three independent biological features, genomic organization, diagnostic amino acid sites, and rare indels, was used to elucidate the phylogeny of the vertebrate serpin (serine protease inhibitor) superfamily. A strong correlation between serpin gene families displaying (1) a conserved exon-intron pattern and (2) family-specific combinations of amino acid residues at specific sites suggests that present-day vertebrates encompass six serpin gene families which evolved from primordial genes by massive intron insertion before or during early vertebrate radiation. Introns placed at homologous positions in the gene sequences in combination with diagnostic sequence characters may also constitute a reliable kinship indicator for other protein superfamilies.
Collapse
Affiliation(s)
- H Ragg
- Faculty of Technology and Faculty of Mathematics, University of Bielefeld, Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
36
|
Galuszka P, Frébort I, Sebela M, Sauer P, Jacobsen S, Pec P. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:450-61. [PMID: 11168382 DOI: 10.1046/j.1432-1033.2001.01910.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purified wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested. Interestingly, oxygen was not required and hydrogen peroxide not produced during the catalytic reaction, so the enzyme behaves as a dehydrogenase rather than an oxidase. This was confirmed by the ability of the enzyme to transfer electrons to artificial electron acceptors, such as phenazine methosulfate and 2,6-dichlorophenol-indophenol. 2,3-Dimethoxy-5-methyl-1,4-benzoquinone, a precursor of the naturally occurring electron acceptor ubiquinone, readily interacts with the enzyme in micromolar concentrations. Typical flavoenzyme inhibitors such as acriflavine and diphenyleneiodonium inhibited this enzyme activity. Presence of the flavin cofactor in the enzyme was confirmed by differential pulse polarography and by measuring the fluorescence emission spectrum. Possible existence of a second redox centre is discussed.
Collapse
Affiliation(s)
- P Galuszka
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelu Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Yoo BC, Aoki K, Xiang Y, Campbell LR, Hull RJ, Xoconostle-Cázares B, Monzer J, Lee JY, Ullman DE, Lucas WJ. Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor. J Biol Chem 2000; 275:35122-8. [PMID: 10960478 DOI: 10.1074/jbc.m006060200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report on the molecular, biochemical, and functional characterization of Cucurbita maxima phloem serpin-1 (CmPS-1), a novel 42-kDa serine proteinase inhibitor that is developmentally regulated and has anti-elastase properties. CmPS-1 was purified to near homogeneity from C. maxima (pumpkin) phloem exudate and, based on microsequence analysis, the cDNA encoding CmPS-1 was cloned. The association rate constant (k(a)) of phloem-purified and recombinant His(6)-tagged CmPS-1 for elastase was 3.5 +/- 1.6 x 10(5) and 2.7 +/- 0.4 x 10(5) m(-)(1) s(-)(1), respectively. The fraction of complex-forming CmPS-1, X(inh), was estimated at 79%. CmPS-1 displayed no detectable inhibitory properties against chymotrypsin, trypsin, or thrombin. The elastase cleavage sites within the reactive center loop of CmPS-1 were determined to be Val(347)-Gly(348) and Val(350)-Ser(351) with a 3:2 molar ratio. In vivo feeding assays conducted with the piercing-sucking aphid, Myzus persicae, established a close correlation between the developmentally regulated increase in CmPS-1 within the phloem sap and the reduced ability of these insects to survive and reproduce on C. maxima. However, in vitro feeding experiments, using purified phloem CmPS-1, failed to demonstrate a direct effect on aphid survival. Likely roles of this novel phloem serpin in defense against insects/pathogens are discussed.
Collapse
Affiliation(s)
- B C Yoo
- Department of Entomolgy, College of Agriculture and Environmental Sciences, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ostergaard H, Rasmussen SK, Roberts TH, Hejgaard J. Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins. Cloning and characterization of five major molecular forms. J Biol Chem 2000; 275:33272-9. [PMID: 10874043 DOI: 10.1074/jbc.m004633200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes encoding proteins of the serpin superfamily are widespread in the plant kingdom, but the properties of very few plant serpins have been studied, and physiological functions have not been elucidated. Six distinct serpins have been identified in grains of hexaploid bread wheat (Triticum aestivum L.) by partial purification and amino acid sequencing. The reactive centers of all but one of the serpins resemble the glutamine-rich repetitive sequences in prolamin storage proteins of wheat grain. Five of the serpins, classified into two protein Z subfamilies, WSZ1 and WSZ2, have been cloned, expressed in Escherichia coli, and purified. Inhibitory specificity toward 17 proteinases of mammalian, plant, and microbial origin was studied. All five serpins were suicide substrate inhibitors of chymotrypsin and cathepsin G. WSZ1a and WSZ1b inhibited at the unusual reactive center P(1)-P(1)' Gln-Gln, and WSZ2b at P(2)-P(1) Leu-Arg-one of two overlapping reactive centers. WSZ1c with P(1)-P(1)' Leu-Gln was the fastest inhibitor of chymotrypsin (k(a) = 1.3 x 10(6) m(-1) s(-1)). WSZ1a was as efficient an inhibitor of chymotrypsin as WSZ2a (k(a) approximately 10(5) m(-1) s(-1)), which has P(1)-P(1)' Leu-Ser-a reactive center common in animal serpins. WSZ2b inhibited plasmin at P(1)-P(1)' Arg-Gln (k(a) approximately 10(3) m(-1) s(-1)). None of the five serpins inhibited Bacillus subtilisin A, Fusarium trypsin, or two subtilisin-like plant serine proteinases, hordolisin from barley green malt and cucumisin D from honeydew melon. Possible functions involving interactions with endogenous or exogenous proteinases adapted to prolamin degradation are discussed.
Collapse
Affiliation(s)
- H Ostergaard
- Department of Biochemistry and Nutrition, Bldg. 224, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
39
|
Jégou S, Douliez JP, Mollé D, Boivin P, Marion D. Purification and structural characterization of LTP1 polypeptides from beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:5023-5029. [PMID: 11052772 DOI: 10.1021/jf000075m] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report on the purification of lipid transfer proteins (LTP) from barley seeds and beer with the aim of investigating the chemical modifications that occur during the brewing process. In seeds, the well-known LTP of 9 kDa (LTP1) has been found together with a second form named LTPb that displays comparable amino acid composition but was not fully sequenced. These two forms have been recovered in beer with marked chemical modifications including disulfide bond reduction and rearrangement and especially glycation by Maillard reaction. The glycation is heterogeneous with variable amounts of hexose units bound to LTPs. Circular dichroism shows that glycated LTP1 having all their disulfide bridges reduced are totally unfolded. These results provide a first basis for understanding how barley LTPs become foam-promoting agents during the malting and brewing process.
Collapse
Affiliation(s)
- S Jégou
- Unité de Biochimie et Technologie des Protéines, INRA, BP 71627, 44316 Nantes Cedex 03, France
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Rasmussen SK, Klausen J, Hejgaard J, Svensson B, Svendsen I. Primary structure of the plant serpin BSZ7 having the capacity of chymotrypsin inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1297:127-30. [PMID: 8917613 DOI: 10.1016/s0167-4838(96)00115-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The primary structure of barley grain serpin BSZ7 was deduced from a cDNA encoding 397 amino-acid residues. More than 70% of the residues were confirmed by sequencing peptide fragments. The N-terminus was identified as an acetylated Ala by using mass spectrometry coupled with amino-acid analysis. None of the four putative N-glycosylation sites were found to be glycosylated. The positional identity of BSZ7 with plant and mammalian serpins is 69-72% and 25-32%, respectively.
Collapse
Affiliation(s)
- S K Rasmussen
- Environmental Science and Technology Department, Risø National Laboratory, Roskilde, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Dahl SW, Rasmussen SK, Hejgaard J. Heterologous expression of three plant serpins with distinct inhibitory specificities. J Biol Chem 1996; 271:25083-8. [PMID: 8810262 DOI: 10.1074/jbc.271.41.25083] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
For the first time, inhibitory plant serpins, including WSZ1 from wheat, BSZ4, and the previously unknown protein BSZx from barley, have been expressed in Escherichia coli, and a procedure for fast purification of native plant serpins has been developed. BSZx, BSZ4, and WSZ1 were assayed for inhibitory activity against trypsin, chymotrypsin, and cathepsin G, and cleavage sites in the reactive center loop were identified by sequencing. BSZx proved to be a potent inhibitor with specific, overlapping reactive centers either at P1 Arg for trypsin or at P2 Leu for chymotrypsin. At 22 ;C, the apparent rate constant for chymotrypsin inhibition at P2 (ka = 9.4 x 10(5) M-1 s-1) was only four times lower than for trypsin at P1 (ka = 3.9 x 10(6) M-1 s-1), and the apparent inhibition stoichiometries were close to 1. Furthermore, our data suggest that cathepsin G was inhibited by BSZx (ka = 3.9 x 10(6) M-1 s-1) at both the P1 Arg and P2 Leu. These results indicate a unique adaptability of the reactive center loop of BSZx. WSZ1 inhibited chymotrypsin (ka = 1.1 x 10(5) M-1 s-1) and cathepsin G (ka = 7.6 x 10(3) M-1 s-1) at P1 Gln and not, as for BSZx, at the more favorable P2 Leu. BSZ4 inhibited cathepsin G (ka = 2.7 x 10(4) M-1 s-1) at P1 Met but was hydrolyzed by trypsin and chymotrypsin. The three plant serpins formed stable SDS-resistant complexes with the proteinases in accordance with the kinetic data.
Collapse
Affiliation(s)
- S W Dahl
- Department of Biochemistry and Nutrition, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
43
|
Dahl SW, Rasmussen SK, Petersen LC, Hejgaard J. Inhibition of coagulation factors by recombinant barley serpin BSZx. FEBS Lett 1996; 394:165-8. [PMID: 8843156 DOI: 10.1016/0014-5793(96)00940-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Barley serpin BSZx is a potent inhibitor of trypsin and chymotrypsin at overlapping reactive sites (Dahl, S.W., Rasmussen, S.K. and Hejgaard, J. (1996) J. Biol. Chem., in press). We have now investigated the interactions of BSZx with a range of serine proteinases from human plasma, pancreas and leukocytes, a fungal trypsin and three subtilisins. Thrombin, plasma kallikrein, factor VIIa/tissue factor and factor Xa were inhibited by BSZx at heparin independent association rates (k(ass)) of 4.5 X 10(3)-1.3 x 10(5) M(-1) s(-1) at 22 degrees C. Only factor Xa turned a significant fraction of BSZx over as substrate. Complexes of these proteinase with BSZx resisted boiling in SDS, and amino acid sequencing showed that cleavage in the reactive center loop only occurred after P1 Arg. Activated protein C and leukocyte elastase were slowly inhibited by BSZx (k(ass)=1-2 x 10(2) M(-1) s(-1)) whereas factor XIIa, urokinase and tissue type plasminogen activator, plasmin and pancreas kallikrein and elastase were not or only weakly affected. The inhibition pattern with mammalian proteinases reveal a specificity of BSZx similar to that of antithrombin III. Trypsin from Fusarium was not inhibited while interaction with subtilisin Carlsberg and Novo was rapid but most BSZx was cleaved as a substrate. Identification of a monoclonal antibody specific for native BSZx indicate that complex formation and loop cleavage result in similar conformational changes.
Collapse
Affiliation(s)
- S W Dahl
- Department of Biochemistry and Nutrition, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|
44
|
Royo J, Diaz I, Rodriquez-Palenzuela P, Carbonero P. Isolation and promoter characterization of barley gene Itr1 encoding trypsin inhibitor BTI-CMe: differential activity in wild-type and mutant lys3a endosperm. PLANT MOLECULAR BIOLOGY 1996; 31:1051-1059. [PMID: 8843947 DOI: 10.1007/bf00040723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gene Itr1, encoding trypsin inhibitor BTI-CMe, has been obtained from a genomic library of Hordeum vulgare L. The gene has no introns and presents in its 5'-upstream region 605 bp that are homologous to the long terminal repeats (LTR) of the 'copia-like' retro-transposon Bare-1. Functional analysis of the Itr1 promoter by transient expression in protoplasts derived from different barley tissues, has shown that in this system the Itr1 promoter retains its endosperm specifity and the trans-regulation mediated by the Lys3a gene. The proximal promoter extending 343 bp upstream of the translation initiation ATG codon is sufficient to confer full GUS expression and for endosperm specifity. In protoplasts derived from the lys3a mutant, Risø 1508, GUS activity was less than 5% of that obtained with the same constructs in the protoplasts of wild-type Bomi from which it derives. Gel retardation experiments, after incubation with proteins obtained from both types of endosperm nuclei, also show differential patterns. Possible reasons for these differences are discussed.
Collapse
Affiliation(s)
- J Royo
- Dpto Biotecnología-UPM, ETS Ingenieros Agrónomos, Ciudad Universitaria, Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Rasmussen SK, Dahl SW, Norgård A, Hejgaard J. A recombinant wheat serpin with inhibitory activity. PLANT MOLECULAR BIOLOGY 1996; 30:673-7. [PMID: 8605317 DOI: 10.1007/bf00049343] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs to the subfamily of protein Z-type serpins and the amino acid sequence is 70% identical with the barley serpins BSZ4 and BSZx and 27-33% identical with human serpins such as alpha 1-proteinase inhibitor, antithrombin III, and plasminogen activator inhibitor. The cDNA was subcloned in the pET3d expression vector, equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with alpha-chymotrypsin. Southern blots and amino acid sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins.
Collapse
Affiliation(s)
- S K Rasmussen
- Plant Genetics, Environmental Science and Technology Department, Risø National Laboratory, Roskilde, Denmark
| | | | | | | |
Collapse
|
46
|
Murray C, Christeller JT. Purification of a trypsin inhibitor (PFTI) from pumpkin fruit phloem exudate and isolation of putative trypsin and chymotrypsin inhibitor cDNA clones. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1995; 376:281-7. [PMID: 7662170 DOI: 10.1515/bchm3.1995.376.5.281] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The major trypsin inhibitor from pumpkin (Cucurbita maxima cv Supermarket Hybrid) fruit phloem exudate was purified by affinity and reverse phase chromatography. The protein has a molecular weight of approximately 8100 by SDS-PAGE and is blocked at the N-terminal serine. Following sequencing of a CNBr fragment, 3'- and 5'-RACE were used to isolate full length cDNAs corresponding to a trypsin inhibitor and to two chymotrypsin inhibitors. The three genes are similar, both in their translated and non-translated regions. Comparison of the full length translated proteins show that they are members of the proteinase inhibitor I family and almost identical apart from the P1 site in the proteinase binding loop. The genes encode proteins of 67 amino acids and appear to lack not only both pre- and prepro-peptide sequences but also the single disulphide present in most proteinase inhibitor I family members.
Collapse
Affiliation(s)
- C Murray
- Pest Resistance Group, Horticulture and Food Research Institute of New Zealand, Palmerston North
| | | |
Collapse
|
47
|
|
48
|
Abstract
Wheat serpin genes have been identified by Southern blot hybridization with three distinct barley protein Z probes. Immunoblot analysis with a monoclonal antibody towards barley protein Z confirmed expression of related M(r) approximately 40 kDa proteins in wheat grain. The wheat serpins were extracted under reducing conditions and separated from beta-amylase and other seed proteins by thiophilic adsorption and anion-exchange chromatography. One molecular form possessing chymotrypsin inhibitory activity was isolated in a reactive site cleaved form on a chymotrypsin affinity column. N-terminal amino acid sequences of a CNBr fragment and of the C-terminal peptide from the cleaved inhibitor (M(r) 4574 +/- 4 Da) verified homology with barley protein Z and mammalian serpins. The native inhibitory serpin was demonstrated to form an SDS-stable complex with alpha-chymotrypsin.
Collapse
Affiliation(s)
- I Rosenkrands
- Department of Biochemistry and Nutrition, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|
49
|
Abstract
The barley (Hordeum vulgare) protein Zx gene (3283 bp) has been isolated and sequenced in its entirety. The predicted 398 amino acids (aa) of Zx are 70% identical to barley protein Z4 and show approx. 30% similarity to the animal members of the serpin superfamily. Zx has an Arg-Ser as the putative reactive site. The Zx gene is interrupted by a 971 bp intron located at a position identical to that in Z4. The 5' and 3' noncoding regions as well as the intron show no pronounced sequence similarity to the Z4 gene or other plant genes.
Collapse
Affiliation(s)
- S K Rasmussen
- Environmental Science and Technology Department, Risø National Laboratory, Roskilde, Denmark
| |
Collapse
|
50
|
|