1
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity. Int J Mol Sci 2023; 24:1841. [PMID: 36768162 PMCID: PMC9916283 DOI: 10.3390/ijms24031841] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC—Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC—Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
2
|
Role of Superoxide Reductase FA796 in Oxidative Stress Resistance in Filifactor alocis. Sci Rep 2020; 10:9178. [PMID: 32513978 PMCID: PMC7280497 DOI: 10.1038/s41598-020-65806-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Filifactor alocis, a Gram-positive anaerobic bacterium, is now a proposed diagnostic indicator of periodontal disease. Because the stress response of this bacterium to the oxidative environment of the periodontal pocket may impact its pathogenicity, an understanding of its oxidative stress resistance strategy is vital. Interrogation of the F. alocis genome identified the HMPREF0389_00796 gene that encodes for a putative superoxide reductase (SOR) enzyme. SORs are non-heme, iron-containing enzymes that can catalyze the reduction of superoxide radicals to hydrogen peroxide and are important in the protection against oxidative stress. In this study, we have functionally characterized the putative SOR (FA796) from F. alocis ATCC 35896. The recombinant FA796 protein, which is predicted to be a homotetramer of the 1Fe-SOR class, can reduce superoxide radicals. F. alocis FLL141 (∆FA796::ermF) was significantly more sensitive to oxygen/air exposure compared to the parent strain. Sensitivity correlated with the level of intracellular superoxide radicals. Additionally, the FA796-defective mutant had increased sensitivity to hydrogen peroxide-induced stress, was inhibited in its ability to form biofilm and had reduced survival in epithelial cells. Collectively, these results suggest that the F. alocis SOR protein is a key enzymatic scavenger of superoxide radicals and protects the bacterium from oxidative stress conditions.
Collapse
|
3
|
Martins MC, Romão CV, Folgosa F, Borges PT, Frazão C, Teixeira M. How superoxide reductases and flavodiiron proteins combat oxidative stress in anaerobes. Free Radic Biol Med 2019; 140:36-60. [PMID: 30735841 DOI: 10.1016/j.freeradbiomed.2019.01.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Microbial anaerobes are exposed in the natural environment and in their hosts, even if transiently, to fluctuating concentrations of oxygen and its derived reactive species, which pose a considerable threat to their anoxygenic lifestyle. To counteract these stressful conditions, they contain a multifaceted array of detoxifying systems that, in conjugation with cellular repairing mechanisms and in close crosstalk with metal homeostasis, allow them to survive in the presence of O2 and reactive oxygen species. Some of these systems are shared with aerobes, but two families of enzymes emerged more recently that, although not restricted to anaerobes, are predominant in anaerobic microbes. These are the iron-containing superoxide reductases, and the flavodiiron proteins, endowed with O2 and/or NO reductase activities, which are the subject of this Review. A detailed account of their physicochemical, physiological and molecular mechanisms will be presented, highlighting their unique properties in allowing survival of anaerobes in oxidative stress conditions, and comparing their properties with the most well-known detoxifying systems.
Collapse
Affiliation(s)
- Maria C Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
4
|
Horch M. Rational redox tuning of transition metal sites: learning from superoxide reductase. Chem Commun (Camb) 2019; 55:9148-9151. [PMID: 31304493 DOI: 10.1039/c9cc04004h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using superoxide reductase as a model system, a computational approach reveals how histidine tautomerism tunes the redox properties of metalloenzymes to enable their catalytic function. Inspired by these experimentally inaccessible insights, non-canonical histidine congeners are introduced as new versatile tools for the rational engineering of biological transition metal sites.
Collapse
Affiliation(s)
- Marius Horch
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Romão CV, Matias PM, Sousa CM, Pinho FG, Pinto AF, Teixeira M, Bandeiras TM. Insights into the Structures of Superoxide Reductases from the Symbionts Ignicoccus hospitalis and Nanoarchaeum equitans. Biochemistry 2018; 57:5271-5281. [PMID: 29939726 DOI: 10.1021/acs.biochem.8b00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductases (SORs) are enzymes that detoxify the superoxide anion through its reduction to hydrogen peroxide and exist in both prokaryotes and eukaryotes. The substrate is transformed at an iron catalytic center, pentacoordinated in the ferrous state by four histidines and one cysteine. SORs have a highly conserved motif, (E)(K)HxP-, in which the glutamate is associated with a redox-driven structural change, completing the octahedral coordination of the iron in the ferric state, whereas the lysine may be responsible for stabilization and donation of a proton to catalytic intermediates. We aimed to understand at the structural level the role of these two residues, by determining the X-ray structures of the SORs from the hyperthermophilic archaea Ignicoccus hospitalis and Nanoarchaeum equitans that lack the quasi-conserved lysine and glutamate, respectively, but have catalytic rate constants similar to those of the canonical enzymes, as we previously demonstrated. Furthermore, we have determined the crystal structure of the E23A mutant of I. hospitalis SOR, which mimics several enzymes that lack both residues. The structures revealed distinct structural arrangements of the catalytic center that simulate several catalytic cycle intermediates, namely, the reduced and the oxidized forms, and the glutamate-free and deprotonated ferric forms. Moreover, the structure of the I. hospitalis SOR provides evidence for the presence of an alternative lysine close to the iron center in the reduced state that may be a functional substitute for the "canonical" lysine.
Collapse
Affiliation(s)
- Célia V Romão
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Pedro M Matias
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal.,iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| | - Cristiana M Sousa
- iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| | - Filipa G Pinho
- iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| | - Ana F Pinto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Miguel Teixeira
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Tiago M Bandeiras
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal.,iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| |
Collapse
|
6
|
Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol Biochem Parasitol 2016; 206:56-66. [DOI: 10.1016/j.molbiopara.2015.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023]
|
7
|
Horch M, Utesch T, Hildebrandt P, Mroginski MA, Zebger I. Domain motions and electron transfer dynamics in 2Fe-superoxide reductase. Phys Chem Chem Phys 2016; 18:23053-66. [DOI: 10.1039/c6cp03666j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical studies on 2Fe-superoxide reductase provide mechanistic insights into structural dynamics and electron transfer efficiencies.
Collapse
Affiliation(s)
- Marius Horch
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Tillmann Utesch
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Peter Hildebrandt
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | | | - Ingo Zebger
- Institut für Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| |
Collapse
|
8
|
Sousa CM, Carpentier P, Matias PM, Testa F, Pinho F, Sarti P, Giuffrè A, Bandeiras TM, Romão CV. Superoxide reductase from Giardia intestinalis: structural characterization of the first SOR from a eukaryotic organism shows an iron centre that is highly sensitive to photoreduction. ACTA ACUST UNITED AC 2015; 71:2236-47. [PMID: 26527141 DOI: 10.1107/s1399004715015825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/24/2015] [Indexed: 11/11/2022]
Abstract
Superoxide reductase (SOR), which is commonly found in prokaryotic organisms, affords protection from oxidative stress by reducing the superoxide anion to hydrogen peroxide. The reaction is catalyzed at the iron centre, which is highly conserved among the prokaryotic SORs structurally characterized to date. Reported here is the first structure of an SOR from a eukaryotic organism, the protozoan parasite Giardia intestinalis (GiSOR), which was solved at 2.0 Å resolution. By collecting several diffraction data sets at 100 K from the same flash-cooled protein crystal using synchrotron X-ray radiation, photoreduction of the iron centre was observed. Reduction was monitored using an online UV-visible microspectrophotometer, following the decay of the 647 nm absorption band characteristic of the iron site in the glutamate-bound, oxidized state. Similarly to other 1Fe-SORs structurally characterized to date, the enzyme displays a tetrameric quaternary-structure arrangement. As a distinctive feature, the N-terminal loop of the protein, containing the characteristic EKHxP motif, revealed an unusually high flexibility regardless of the iron redox state. At variance with previous evidence collected by X-ray crystallography and Fourier transform infrared spectroscopy of prokaryotic SORs, iron reduction did not lead to dissociation of glutamate from the catalytic metal or other structural changes; however, the glutamate ligand underwent X-ray-induced chemical changes, revealing high sensitivity of the GiSOR active site to X-ray radiation damage.
Collapse
Affiliation(s)
- Cristiana M Sousa
- Instituto de Tecnologia Química e Biológica, António Xavier Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Philippe Carpentier
- Structural Biology Group, ESRF - The European Synchrotron, CS40220, 38043 Grenoble CEDEX 9, France
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica, António Xavier Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Fabrizio Testa
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Filipa Pinho
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Paolo Sarti
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Tiago M Bandeiras
- Instituto de Tecnologia Química e Biológica, António Xavier Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica, António Xavier Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
10
|
Pinto AF, Romão CV, Pinto LC, Huber H, Saraiva LM, Todorovic S, Cabelli D, Teixeira M. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue. J Biol Inorg Chem 2015; 20:155-164. [PMID: 25476860 DOI: 10.1007/s00775-014-1222-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.
Collapse
Affiliation(s)
- Ana F Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177, Stockholm, Sweden
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Liliana C Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Harald Huber
- Lehrstuhl fuer Mikrobiologie, Universität Regensburg, 93053, Regensburg, Germany
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Diane Cabelli
- Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.
| |
Collapse
|
11
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 671] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
12
|
Horch M, Pinto AF, Mroginski MA, Teixeira M, Hildebrandt P, Zebger I. Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase. RSC Adv 2014. [DOI: 10.1039/c4ra11976b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An experimental and theoretical case study on superoxide reductase explores the protonation states of iron-bound histidines and their relevance for metalloenzyme catalysis.
Collapse
Affiliation(s)
- Marius Horch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - Ana Filipa Pinto
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- P-2780-157 Oeiras, Portugal
| | | | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- P-2780-157 Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| |
Collapse
|
13
|
Horch M, Pinto AF, Utesch T, Mroginski MA, Romão CV, Teixeira M, Hildebrandt P, Zebger I. Reductive activation and structural rearrangement in superoxide reductase: a combined infrared spectroscopic and computational study. Phys Chem Chem Phys 2014; 16:14220-30. [DOI: 10.1039/c4cp00884g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Local and global structural changes that enable reductive activation of superoxide reductase are revealed by a combined approach of infrared difference spectroscopy and computational methods.
Collapse
Affiliation(s)
- M. Horch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - A. F. Pinto
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - T. Utesch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - M. A. Mroginski
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - C. V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - M. Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - P. Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - I. Zebger
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| |
Collapse
|
14
|
Almeida RM, Turano P, Moura I, Moura JJG, Pauleta SR. Superoxide Reductase: Different Interaction Modes with its Two Redox Partners. Chembiochem 2013; 14:1858-66. [DOI: 10.1002/cbic.201300196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 11/08/2022]
|
15
|
Testa F, Mastronicola D, Cabelli DE, Bordi E, Pucillo LP, Sarti P, Saraiva LM, Giuffrè A, Teixeira M. The superoxide reductase from the early diverging eukaryote Giardia intestinalis. Free Radic Biol Med 2011; 51:1567-74. [PMID: 21839165 DOI: 10.1016/j.freeradbiomed.2011.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/02/2011] [Accepted: 07/20/2011] [Indexed: 12/13/2022]
Abstract
Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.
Collapse
Affiliation(s)
- Fabrizio Testa
- Department of Biochemical Sciences, CNR Institute of Molecular Biology and Pathology, Sapienza Università di Roma, I-00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway. Biochem J 2011; 438:485-94. [DOI: 10.1042/bj20110836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SORs (superoxide reductases) are enzymes involved in bacterial resistance to reactive oxygen species, catalysing the reduction of superoxide anions to hydrogen peroxide. So far three structural classes have been identified. Class I enzymes have two iron-centre-containing domains. Most studies have focused on the catalytic iron site (centre II), yet the role of centre I is poorly understood. The possible roles of this iron site were approached by an integrated study using both classical and fast kinetic measurements, as well as direct electrochemistry. A new heterometallic form of the protein with a zinc-substituted centre I, maintaining the iron active-site centre II, was obtained, resulting in a stable derivative useful for comparison with the native all-iron from. Second-order rate constants for the electron transfer between reduced rubredoxin and the different SOR forms were determined to be 2.8×107 M−1·s−1 and 1.3×106 M−1·s−1 for SORFe(IIII)-Fe(II) and for SORFe(IIII)-Fe(III) forms respectively, and 3.2×106 M−1·s−1 for the SORZn(II)-Fe(III) form. The results obtained seem to indicate that centre I transfers electrons from the putative physiological donor rubredoxin to the catalytic active iron site (intramolecular process). In addition, electrochemical results show that conformational changes are associated with the redox state of centre I, which may enable a faster catalytic response towards superoxide anion. The apparent rate constants calculated for the SOR-mediated electron transfer also support this observation.
Collapse
|
17
|
Lucchetti-Miganeh C, Goudenège D, Thybert D, Salbert G, Barloy-Hubler F. SORGOdb: Superoxide Reductase Gene Ontology curated DataBase. BMC Microbiol 2011; 11:105. [PMID: 21575179 PMCID: PMC3116461 DOI: 10.1186/1471-2180-11-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.
Collapse
Affiliation(s)
- Céline Lucchetti-Miganeh
- CNRS UMR 6026, ICM, Equipe Sp@rte, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.
| | | | | | | | | |
Collapse
|
18
|
Krätzer C, Welte C, Dörner K, Friedrich T, Deppenmeier U. Methanoferrodoxin represents a new class of superoxide reductase containing an iron-sulfur cluster. FEBS J 2010; 278:442-51. [PMID: 21138528 DOI: 10.1111/j.1742-4658.2010.07964.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein MM0632 from the methanogenic archaeon Methanosarcina mazei showed strong superoxide reductase activity and rapidly decomposed superoxide radicals to peroxides. The superoxide reductase activity of the heterologously produced enzyme was determined by a cytochrome c assay and in a test system with NADPH, ferredoxin:NADP(+) reductase, and rubredoxin. Furthermore, EPR spectroscopy showed that MM0632 is the first superoxide reductase that possesses an iron-sulfur cluster instead of a second mononuclear iron center. We propose the name methanoferrodoxin for this new class of superoxide reductase with an [Fe(NHis)(4)(SCys)] site as the catalytic center and a [4Fe-4S] cluster as second prosthetic group that is probably involved in electron transfer to the catalytic center. Methanosarcina mazei grows only under anaerobic conditions, but is one of the most aerotolerant methanogens. It is tempting to speculate that methanoferrodoxin contributes to the protection of cells from oxygen radicals formed by flavoproteins during periodic exposure to oxygen in natural environments.
Collapse
Affiliation(s)
- Christian Krätzer
- Institut für Mikrobiologie und Biotechnologie, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
19
|
Pinto AF, Rodrigues JV, Teixeira M. Reductive elimination of superoxide: Structure and mechanism of superoxide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:285-97. [PMID: 19857607 DOI: 10.1016/j.bbapap.2009.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Superoxide anion is among the deleterious reactive oxygen species, towards which all organisms have specialized detoxifying enzymes. For quite a long time, superoxide elimination was thought to occur through its dismutation, catalyzed by Fe, Cu, and Mn or, as more recently discovered, by Ni-containing enzymes. However, during the last decade, a novel type of enzyme was established that eliminates superoxide through its reduction: the superoxide reductases, which are spread among anaerobic and facultative microorganisms, from the three life kingdoms. These enzymes share the same unique catalytic site, an iron ion bound to four histidines and a cysteine that, in its reduced form, reacts with superoxide anion with a diffusion-limited second order rate constant of approximately 10(9) M(-1) s(-1). In this review, the properties of these enzymes will be thoroughly discussed.
Collapse
Affiliation(s)
- Ana Filipa Pinto
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
20
|
Rodrigues JV, Victor BL, Huber H, Saraiva LM, Soares CM, Cabelli DE, Teixeira M. Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand. J Biol Inorg Chem 2007; 13:219-28. [PMID: 17968598 DOI: 10.1007/s00775-007-0313-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
|
21
|
Pereira AS, Tavares P, Folgosa F, Almeida RM, Moura I, Moura JJG. Superoxide Reductases. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200700008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice S. Pereira
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Pedro Tavares
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Filipe Folgosa
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Rui M. Almeida
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - Isabel Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| | - José J. G. Moura
- Requimte, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829‐516 Caparica, Portugal, Fax: +351‐21‐2948550
| |
Collapse
|
22
|
Rodrigues JV, Saraiva LM, Abreu IA, Teixeira M, Cabelli DE. Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin. J Biol Inorg Chem 2006; 12:248-56. [PMID: 17066300 DOI: 10.1007/s00775-006-0182-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Superoxide reductases (SORs) are non-heme iron-containing enzymes that remove superoxide by reducing it to hydrogen peroxide. The active center of SORs consists of a ferrous ion coordinated by four histidines and one cysteine in a square-pyramidal geometry. In the 2Fe-SOR, a distinct family of SORs, there is an additional desulforedoxin-like site that does not appear to be involved in SOR activity. Our previous studies on recombinant Archaeoglobus fulgidus neelaredoxin (1Fe-SOR) have shown that the reaction with superoxide involves the formation of a transient ferric form that, upon protonation, decays to yield an Fe(3+)-OH species, followed by binding of glutamate to the ferric ion via replacement of hydroxide (Rodrigues et al. in Biochemistry 45:9266-9278, 2006). Here, we report the characterization of recombinant desulfoferrodoxin from the same organism, which is a member of the 2Fe-SOR family, and show that the steps involved in the superoxide reduction are similar in both families of SOR. The electron donation to the SOR from its redox partner, rubredoxin, is also presented here.
Collapse
Affiliation(s)
- João V Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2784-505, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
23
|
Santos-Silva T, Trincão J, Carvalho AL, Bonifácio C, Auchère F, Raleiras P, Moura I, Moura JJG, Romão MJ. The first crystal structure of class III superoxide reductase from Treponema pallidum. J Biol Inorg Chem 2006; 11:548-58. [PMID: 16791639 DOI: 10.1007/s00775-006-0104-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/20/2006] [Indexed: 12/01/2022]
Abstract
Superoxide reductase (SOR) is a metalloprotein containing a non-heme iron centre, responsible for the scavenging of superoxide radicals in the cell. The crystal structure of Treponema pallidum (Tp) SOR was determined using soft X-rays and synchrotron radiation. Crystals of the oxidized form were obtained using poly(ethylene glycol) and MgCl2 and diffracted beyond 1.55 A resolution. The overall architecture is very similar to that of other known SORs but TpSOR contains an N-terminal domain in which the desulforedoxin-type Fe centre, found in other SORs, is absent. This domain conserves the beta-barrel topology with an overall arrangement very similar to that of other SOR proteins where the centre is present. The absence of the iron ion and its ligands, however, causes a decrease in the cohesion of the domain and some disorder is observed, particularly in the region where the metal would be harboured. The C-terminal domain exhibits the characteristic immunoglobulin-like fold and harbours the Fe(His)4(Cys) active site. The five ligands of the iron centre are well conserved despite some disorder observed for one of the four molecules in the asymmetric unit. The participation of a glutamate as the sixth ligand of some of the iron centres in Pyrococcus furiosus SOR was not observed in TpSOR. A possible explanation is that either X-ray photoreduction occurred or there was a mixture of redox states at the start of data collection. In agreement with earlier proposals, details in the TpSOR structure also suggest that Lys49 might be involved in attraction of superoxide to the active site.
Collapse
Affiliation(s)
- Teresa Santos-Silva
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Auchère F, Pauleta SR, Tavares P, Moura I, Moura JJG. Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases. J Biol Inorg Chem 2006; 11:433-44. [PMID: 16544159 DOI: 10.1007/s00775-006-0090-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
In this work we present a kinetic study of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and members of the three different classes of superoxide reductases (SORs). SORs from the sulfate-reducing bacteria Desulfovibrio vulgaris (Dv) and D. gigas (Dg) were chosen as prototypes of classes I and II, respectively, while SOR from the syphilis spirochete Treponema pallidum (Tp) was representative of class III. Our results show evidence for different behaviors of SORs toward electron acceptance, with a trend to specificity for the electron donor and acceptor from the same organism. Comparison of the different kapp values, 176.9+/-25.0 min(-1) in the case of the Tp/Tp electron transfer, 31.8+/-3.6 min(-1) for the Dg/Dg electron transfer, and 6.9+/-1.3 min(-1) for Dv/Dv, could suggest an adaptation of the superoxide-mediated electron transfer efficiency to various environmental conditions. We also demonstrate that, in Dg, another iron-sulfur protein, a desulforedoxin, is able to transfer electrons to SOR more efficiently than rubredoxin, with a kapp value of 108.8+/-12.0 min(-1), and was then assigned as the potential physiological electron donor in this organism.
Collapse
Affiliation(s)
- Françoise Auchère
- REQUIMTE-Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | |
Collapse
|
25
|
Kim YS, Kang KR, Wolff EC, Bell JK, McPhie P, Park MH. Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis [corrected]. J Biol Chem 2006; 281:13217-13225. [PMID: 16533814 PMCID: PMC1868894 DOI: 10.1074/jbc.m601081200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine) in eIF5A. DOHH is a HEAT-repeat protein with eight tandem helical hairpins in a symmetrical dyad. It contains two potential iron coordination sites (one on each dyad) composed of two strictly conserved His-Glu motifs. The purified human recombinant DOHH was a mixture of active holoenzyme containing 2 mol of iron/mol of DOHH and inactive metal-free apoenzyme. The two species could be distinguished by their different mobilities upon native gel electrophoresis. The DOHH apoenzyme exhibited markedly reduced levels of iron and activity. DOHH activity could be restored only by the addition of Fe2+ to the apoenzyme but not by other metals including Cd2+,Co2+,Cr2+,Cu2+,Mg2+,Mn2+,Ni2+, and Zn2+. The role of the strictly conserved His-Glu residues was evaluated by site-directed mutagenesis. Substitution of any single amino acid in the four His-Glu motifs with alanine abolished the enzyme activity. Of these eight alanine substitutions, six, including H56A, H89A, E90A, H207A, H240A, and E241A, caused a severe reduction in the iron content. Our results provide strong evidence that Fe(II) is the active-site-bound metal critical for DOHH catalysis and that the strictly conserved His-Glu motifs are essential for iron binding and catalysis. Furthermore, the iron to DOHH stoichiometry and dependence of iron binding on each of the four conserved His-Glu motifs suggest a binuclear iron mediated reaction mechanism, distinct from that of other Fe(II)-dependent protein hydroxylases, such as prolyl 4-hydroxylase or lysyl hydroxylases.
Collapse
Affiliation(s)
- Yeon Sook Kim
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Kee Ryeon Kang
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Edith C Wolff
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica K Bell
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter McPhie
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
26
|
Mathé C, Nivière V, Mattioli TA. Fe3+-Hydroxide Ligation in the Superoxide Reductase from Desulfoarculus baarsii Is Associated with pH Dependent Spectral Changes. J Am Chem Soc 2005; 127:16436-41. [PMID: 16305229 DOI: 10.1021/ja053808y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductase (SOR) catalyzes the reduction of O2*- to H2O2. Its active site consists of a non-heme Fe2+ center in an unusual square-pyramidal [His4 Cys] coordination. Like many SORs, the electronic absorption band corresponding to the oxidized active site of the SOR from Desulfoarculus baarsii exhibits a pH-dependent alkaline transition changing from ca. 644 to 560 nm as the pH increases and with an apparent pKa of 9.0. Variants in which the conserved amino acids glutamate 47 and lysine 48 were replaced by the neutral residues alanine (E47A) and isoleucine (K48I), respectively, exhibited the same alkaline transition but at lower apparent pKa values of 6.7 and 7.6, respectively. Previous work [Nivière, V.; Asso, M.; Weill, C. O.; Lombard, M.; Guigliarelli, B.; Favaudon, V.; Houée-Levin, C. Biochemistry 2004, 43, 808-818] has shown that this alkaline transition is associated with the protonation/deprotonation of an unidentified base, B-, which is neither E47 nor K48. In this work, we show by resonance Raman spectroscopy that at basic pH a high-spin Fe3+-OH species is formed at the active site. The presence of the HO- ligand was directly associated with an absorption band maximum at 560 nm, whereas upon protonation, the band shifts to 644 nm. With respect to our previous work, B- can be identified with this high-spin Fe3+-OH species, which upon protonation results in a water molecule at the active site. Implications for the SOR catalytic cycle are proposed.
Collapse
Affiliation(s)
- Christelle Mathé
- Laboratoire de Biophysique du Stress Oxydant, SBE/DBJC and CNRS URA 2096, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
27
|
Auchère F, Sikkink R, Cordas C, Raleiras P, Tavares P, Moura I, Moura JJG. Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin. J Biol Inorg Chem 2004; 9:839-49. [PMID: 15328557 DOI: 10.1007/s00775-004-0584-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction.
Collapse
Affiliation(s)
- Françoise Auchère
- REQUIMTE-Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | |
Collapse
|
28
|
Kovacs JA. Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Chem Rev 2004; 104:825-48. [PMID: 14871143 PMCID: PMC4487544 DOI: 10.1021/cr020619e] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie A Kovacs
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Nivière V, Fontecave M. Discovery of superoxide reductase: an historical perspective. J Biol Inorg Chem 2004; 9:119-23. [PMID: 14722742 DOI: 10.1007/s00775-003-0519-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 12/15/2003] [Indexed: 11/30/2022]
Abstract
For more than 30 years, the only enzymatic system known to catalyze the elimination of superoxide was superoxide dismutase, SOD. SOD has been found in almost all organisms living in the presence of oxygen, including some anaerobic bacteria, supporting the notion that superoxide is a key and general component of oxidative stress. Recently, a new concept in the field of the mechanisms of cellular defense against superoxide has emerged. It was discovered that elimination of superoxide in some anaerobic and microaerophilic bacteria could occur by reduction, a reaction catalyzed by a small metalloenzyme thus named superoxide reductase, SOR. Having played a major role in this discovery, we describe here how the concept of superoxide reduction emerged and how it was experimentally substantiated independently in our laboratory.
Collapse
Affiliation(s)
- Vincent Nivière
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DRDC-CB, UMR CEA/CNRS/Université Joseph Fourier no. 5047, CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France.
| | | |
Collapse
|
30
|
Emerson JP, Coulter ED, Phillips RS, Kurtz DM. Kinetics of the superoxide reductase catalytic cycle. J Biol Chem 2003; 278:39662-8. [PMID: 12900405 DOI: 10.1074/jbc.m306488200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady state kinetics of a Desulfovibrio (D.) vulgaris superoxide reductase (SOR) turnover cycle, in which superoxide is catalytically reduced to hydrogen peroxide at a [Fe(His)4(Cys)] active site, are reported. A proximal electron donor, rubredoxin, was used to supply reducing equivalents from NADPH via ferredoxin: NADP+ oxidoreductase, and xanthine/xanthine oxidase was used to provide a calibrated flux of superoxide. SOR turnover in this system was well coupled, i.e. approximately 2O*2 reduced:NADPH oxidized over a 10-fold range of superoxide flux. The reduction of the ferric SOR active site by reduced rubredoxin was independently measured to have a second-order rate constant of approximately 1 x 10(6) m-1 s-1. Analysis of the kinetics showed that: (i) 1 microM SOR can convert a 10 microM/min superoxide flux to a steady state superoxide concentration of 10(-10) m, during which SOR turns over about once every 6 s, (ii) the diffusion-controlled reaction of reduced SOR with superoxide is the slowest process during turnover, and (iii) neither ligation nor deligation of the active site carboxylate of SOR limits the turnover rate. An intracellular SOR concentration on the order of 10 microM is estimated to be the minimum required for lowering superoxide to sublethal levels in aerobically growing SOD knockout mutants of Escherichia coli. SORs from Desulfovibrio gigas and Treponema pallidum showed similar turnover rates when substituted for the D. vulgaris SOR, whereas superoxide dismutases showed no SOR activity in our assay. These results provide quantitative support for previous suggestions that, in times of oxidative stress, SORs efficiently divert intracellular reducing equivalents to superoxide.
Collapse
Affiliation(s)
- Joseph P Emerson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
31
|
Clay MD, Emerson JP, Coulter ED, Kurtz DM, Johnson MK. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris. J Biol Inorg Chem 2003; 8:671-82. [PMID: 12764688 DOI: 10.1007/s00775-003-0465-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Accepted: 04/11/2003] [Indexed: 10/26/2022]
Abstract
The electronic and vibrational properties of the [Fe(His)(4)(Cys)] site (Center II) responsible for catalysis of superoxide reduction in the two-iron superoxide reductase (2Fe-SOR) from Desulfovibrio vulgaris have been investigated using the combination of EPR, resonance Raman, UV/visible/near-IR absorption, CD, and VTMCD spectroscopies. Deconvolution of the spectral contributions of Center II from those of the [Fe(Cys)(4)] site (Center I) has been achieved by parallel investigations of the C13S variant, which does not contain Center I. The resonance Raman spectrum of ferric Center II has been assigned based on isotope shifts for (34)S and (15)N globally labeled proteins. As for the [Fe(His)(4)(Cys)] active site in 1Fe-SOR from Pyrococcus furiosus, the spectroscopic properties of ferric and ferrous Center II in D. vulgaris 2Fe-SOR are indicative of distorted octahedral and square-pyramidal coordination geometries, respectively. Differences in the properties of the ferric [Fe(His)(4)(Cys)] sites in 1Fe- and 2Fe-SORs are apparent in the rhombicity of the S=5/2 ground state ( E/ D=0.06 and 0.28 in 1Fe- and 2Fe-SORs, respectively), the energy of the CysS(-)(p(pi))-->Fe(3+)(d(pi)) CT transition (15150+/-150 cm(-1) and 15600+/-150 cm(-1) in 1Fe- and 2Fe-SORs, respectively) and in changes in the Fe-S stretching region of the resonance Raman spectrum indicative of a weaker Fe-S(Cys) bond in 2Fe-SORs. These differences are interpreted in terms of small structural perturbations in the Fe coordination sphere with changes in the Fe-S(Cys) bond strength resulting from differences in the peptide N-H.S(Cys) hydrogen bonding within a tetrapeptide bidentate "chelate". Observation of the characteristic intervalence charge transfer transition of a cyano-bridged [Fe(III)-NC-Fe(II)(CN)(5)] unit in the near-IR VTMCD spectra of ferricyanide-oxidized samples of both P. furiosus 1Fe-SOR and D. vulgaris 2Fe-SOR has confirmed the existence of novel ferrocyanide adducts of the ferric [Fe(His)(4)(Cys)] sites in both 1Fe- and 2Fe-SORs.
Collapse
Affiliation(s)
- Michael D Clay
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
32
|
Fareleira P, Santos BS, António C, Moradas-Ferreira P, LeGall J, Xavier AV, Santos H. Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1513-1522. [PMID: 12777491 DOI: 10.1099/mic.0.26155-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The biochemical response to oxygen of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio gigas was studied with the goal of elucidating survival strategies in oxic environments. Cultures of D. gigas on medium containing lactate and sulfate were exposed to oxygen (concentration 5-120 micro M). Growth was fully inhibited by oxygen, but the cultures resumed growth as soon as they were shifted back to anoxic conditions. Following 24 h exposure to oxygen the growth rate was as high as 70 % of the growth rates observed before oxygenation. Catalase levels and activity were enhanced by exposure to oxygen whereas superoxide-scavenging and glutathione reductase activities were not affected. The general pattern of cellular proteins as analysed by two-dimensional electrophoresis was altered in the presence of oxygen, the levels of approximately 12 % of the detected proteins being markedly increased. Among the induced proteins, a homologue of a 60 kDa eukaryotic heat-shock protein (Hsp60) was identified by immunoassay analysis. In the absence of external substrates, the steady-state levels of nucleoside triphosphates detected by in vivo (31)P-NMR under saturating concentrations of oxygen were 20 % higher than under anoxic conditions. The higher energy levels developed under oxygen correlated with a lower rate of substrate (glycogen) mobilization, but no experimental evidence for a contribution from oxidative phosphorylation was found. The hypothesis that oxygen interferes with ATP dissipation processes is discussed.
Collapse
Affiliation(s)
- Paula Fareleira
- Estação Agronómica Nacional, Instituto Nacional de Investigação Agrária, Quinta do Marquês, 2780-156 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apartado 127, 2780-156 Oeiras, Portugal
| | - Bruno S Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apartado 127, 2780-156 Oeiras, Portugal
| | - Célia António
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apartado 127, 2780-156 Oeiras, Portugal
| | | | - Jean LeGall
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apartado 127, 2780-156 Oeiras, Portugal
| | - António V Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apartado 127, 2780-156 Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apartado 127, 2780-156 Oeiras, Portugal
| |
Collapse
|
33
|
Emerson JP, Cabelli DE, Kurtz DM. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo. Proc Natl Acad Sci U S A 2003; 100:3802-7. [PMID: 12637682 PMCID: PMC153002 DOI: 10.1073/pnas.0537177100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superoxide reductases (SORs) contain a characteristic square-pyramidal [Fe(NHis)(4)(SCys)] active site that catalyzes reduction of superoxide to hydrogen peroxide in several anaerobic bacteria and archaea. Some SORs, referred to as two-iron SORs (2Fe-SORs), also contain a lower-potential [Fe(SCys)(4)] site that is presumed to have an electron transfer function. However, the intra- and inter-subunit distances between [Fe(SCys)(4)] and [Fe(NHis)(4)(SCys)] iron centers within the 2Fe-SOR homodimer seem too long for efficient electron transfer between these sites. The possible role of the [Fe(SCys)(4)] site in 2Fe-SORs was addressed in this work by examination of an engineered Desulfovibrio vulgaris 2Fe-SOR variant, C13S, in which one ligand residue of the [Fe(SCys)(4)] site, cysteine 13, was changed to serine. This single amino acid residue change destroyed the native [Fe(SCys)(4)] site with complete loss of its iron, but left the [Fe(NHis)(4)(SCys)] site and the protein homodimer intact. The spectroscopic, redox and superoxide reactivity properties of the [Fe(NHis)(4)(SCys)] site in the C13S variant were nearly indistinguishable from those of the wild-type 2Fe-SOR. Aerobic growth complementation of a superoxide dismutase (SOD)-deficient Escherichia coli strain showed that the presence of the [Fe(NHis)(4)(SCys)] site in C13S 2Fe-SOR was apparently sufficient to catalyze reduction of the intracellular superoxide to nonlethal levels. As is the case for the wild-type protein, C13S 2Fe-SOR did not show any detectable SOD activity, i.e., destruction of the [Fe(SCys)(4)] site did not unmask latent SOD activity of the [Fe(NHis)(4)(SCys)] site. Possible alternative roles for the [Fe(SCys)(4)] site in 2Fe-SORs are considered.
Collapse
Affiliation(s)
- Joseph P Emerson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30605, USA
| | | | | |
Collapse
|
34
|
Auchère F, Raleiras P, Benson L, Venyaminov SY, Tavares P, Moura JJG, Moura I, Rusnak F. Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6). Inorg Chem 2003; 42:938-40. [PMID: 12588121 DOI: 10.1021/ic0262886] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site.
Collapse
Affiliation(s)
- Françoise Auchère
- Section of Hematology Research, Department of Biochemistry, Biomedical Mass Spectrometry Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hazlett KRO, Cox DL, Sikkink RA, Auch'ere F, Rusnak F, Radolf JD. Contribution of neelaredoxin to oxygen tolerance by Treponema pallidum. Methods Enzymol 2002; 353:140-56. [PMID: 12078490 DOI: 10.1016/s0076-6879(02)53044-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | |
Collapse
|
36
|
Clay MD, Jenney FE, Noh HJ, Hagedoorn PL, Adams MWW, Johnson MK. Resonance Raman characterization of the mononuclear iron active-site vibrations and putative electron transport pathways in Pyrococcus furiosus superoxide reductase. Biochemistry 2002; 41:9833-41. [PMID: 12146949 DOI: 10.1021/bi025833b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resonance Raman spectrum of oxidized wild-type P. furiosus SOR at pH 7.5 and 10.5 has been investigated using excitation wavelengths between 406 and 676 nm, and vibrational modes have been assigned on the basis of isotope shifts resulting from global replacements of (32)S with (34)S, (14)N with (15)N, (56)Fe with (54)Fe, and exchange into a H(2)(18)O buffer. The results are interpreted in terms of the crystallographically defined active-site structure involving a six-coordinate mononuclear Fe center with four equatorial histidine ligands and axial cysteine and monodentate glutamate ligands (Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W., and Rees, D. C. (2000) Biochemistry 39, 2499-2508). Excitation into the intense (Cys)S(p(pi))-to-Fe(d(pi)) CT transition centered at 660 nm results in strong enhancement of modes at 298 cm(-1) and 323 cm(-1) that are assigned to extensively mixed cysteine S-C(beta)-C(alpha) bending and Fe-S(Cys) stretching modes, respectively. All other higher-energy vibrational modes are readily assigned to overtone or combination bands or to fundamentals corresponding to internal modes of the ligated cysteine. Weak enhancement of Fe-N(His) stretching modes is observed in the 200-250 cm(-1) region. The enhancement of internal cysteine modes and Fe-N(His) stretching modes are a consequence of a near-planar Fe-S-C(beta)-C(alpha)-N unit for the coordinated cysteine and significant (His)N(p(pi))-Fe(d(xy))-(Cys)S(p(pi)) orbital overlap, respectively, and have close parallels to type 1 copper proteins. By analogy with type 1 copper proteins, putative superexchange electron-transfer pathways to the mononuclear Fe active site are identified involving either the tyrosine and cysteine residues or the solvent-exposed deltaN histidine residue in a Y-C-X-X-H arrangement. Studies of wild-type at pH 10.5 and the E14A variant indicate that the resonance Raman spectrum is remarkably insensitive to changes in the ligand trans to cysteine and hence are inconclusive concerning the origin of the alkaline transition and the nature of sixth Fe ligand in the E14A variant.
Collapse
Affiliation(s)
- Michael D Clay
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rusnak F, Ascenso C, Moura I, Moura JJG. Superoxide reductase activities of neelaredoxin and desulfoferrodoxin metalloproteins. Methods Enzymol 2002; 349:243-58. [PMID: 11912914 DOI: 10.1016/s0076-6879(02)49339-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Superoxide reductases have now been well characterized from several organisms. Unique biochemical features include the ability of the reduced enzyme to react with O2- but not dioxygen (reduced SORs are stable in an aerobic atmosphere for hours). Future biochemical assays that measure the reaction of SOR with O2- should take into account the difficulties of assaying O2- directly and the myriad of redox reactions that can take place between components in the assay, for example, direct electron transfer between cytochrome c and Dfx. Future prospects include further delineation of the reaction mechanisms, characterization of the putative (hydro)peroxo intermediate, and studies that uncover the components between reduced pyridine nucleotides and SOR in the metabolic pathway responsible for O2- detoxification.
Collapse
Affiliation(s)
- Frank Rusnak
- Section of Hematology Research, Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
38
|
Clay MD, Jenney FE, Hagedoorn PL, George GN, Adams MWW, Johnson MK. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism. J Am Chem Soc 2002; 124:788-805. [PMID: 11817955 DOI: 10.1021/ja016889g] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of UV/visible/NIR absorption, CD and variable-temperature magnetic circular dichroism (VTMCD), EPR, and X-ray absorption (XAS) spectroscopies has been used to investigate the electronic and structural properties of the oxidized and reduced forms of Pyrococcus furiosus superoxide reductase (SOR) as a function of pH and exogenous ligand binding. XAS shows that the mononuclear ferric center in the oxidized enzyme is very susceptible to photoreduction in the X-ray beam. This observation facilitates interpretation of ground- and excited-state electronic properties and the EXAFS results for the oxidized enzyme in terms of the published X-ray crystallographic data (Yeh, A. P.; Hu, Y.; Jenney, F. E.; Adams, M. W. W.; Rees, D. C. Biochemistry 2000, 39, 2499-2508). In the oxidized state, the mononuclear ferric active site has octahedral coordination with four equatorial histidyl ligands and axial cysteinate and monodentate glutamate ligands. Fe EXAFS are best fit by one Fe-S at 2.36 A and five Fe-N/O at an average distance of 2.12 A. The EPR-determined spin Hamiltonian parameters for the high-spin (S = (5)/(2)) ferric site in the resting enzyme, D = -0.50 +/- 0.05 cm(-1) and E/D = 0.06, are consistent with tetragonally compressed octahedral coordination geometry. UV/visible absorption and VTMCD studies facilitate resolution and assignment of pi His --> Fe(3+)(t(2g)) and (Cys)S(p) --> Fe(3+)(t(2g)) charge-transfer transitions, and the polarizations deduced from MCD saturation magnetization studies indicate that the zero-field splitting (compression) axis corresponds to one of the axes with trans-histidyl ligands. EPR and VTMCD studies provide evidence of azide, ferrocyanide, hydroxide, and cyanide binding via displacement of the glutamate ligand. For azide, ferrocyanide, and hydroxide, ligand binding occurs with retention of the high-spin (S = 5/2) ground state (E/D = 0.27 and D < 0 for azide and ferrocyanide; E/D = 0.25 and D = +1.1 +/- 0.2 cm(-1) for hydroxide), whereas cyanide binding results in a low-spin (S = 1/2) species (g = 2.29, 2.25, 1.94). The ground-state and charge-transfer/ligand-field excited-state properties of the low-spin cyanide-bound derivative are shown to be consistent with a tetragonally elongated octahedral coordination with the elongation axis corresponding to an axis with trans-histidyl ligands. In the reduced state, the ferrous site of SOR is shown to have square-pyramidal coordination geometry in frozen solution with four equatorial histidines and one axial cysteine on the basis of XAS and UV and NIR VTMCD studies. Fe EXAFS are best fit by one Fe-S at 2.37 A and four Fe-N/O at an average distance of 2.15 A. VTMCD reveals a high-spin (S = 2) ferrous site with (Cys)S(p) --> Fe(2+) charge-transfer transitions in the UV region and (5)T(2g) --> (5)E(g) ligand-field transitions in the NIR region at 12400 and <5000 cm(-1). The ligand-field bands indicate square-pyramidal coordination geometry with 10Dq < 8700 cm(-1) and a large excited-state splitting, Delta (5)E(g) > 7400 cm(-1). Analysis of MCD saturation magnetization data leads to ground-state zero-field splitting parameters for the S = 2 ground state, D approximately +10 cm(-1) and E/D approximately 0.1, and complete assessment of ferrous d-orbital splitting. Azide binds weakly at the vacant coordination site of reduced SOR to give a coordination geometry intermediate between octahedral and square pyramidal with 10Dq = 9700 cm(-1) and Delta (5)E(g) = 4800 cm(-1). Cyanide binding results in an octahedral ferrous site with 10Dq = 10,900 cm(-1) and Delta (5)E(g) = 1750 cm(-1). The ability to bind exogenous ligands to both the ferrous and ferric sites of SOR is consistent with an inner-sphere catalytic mechanism involving superoxide binding at the ferrous site to yield a ferric-(hydro)peroxo intermediate. The structural and electronic properties of the SOR active site are discussed in relation to the role and bonding of the axial cysteine residue and the recent proposals for the catalytic mechanism.
Collapse
Affiliation(s)
- Michael D Clay
- Department of Chemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abreu IA, Saraiva LM, Soares CM, Teixeira M, Cabelli DE. The mechanism of superoxide scavenging by Archaeoglobus fulgidus neelaredoxin. J Biol Chem 2001; 276:38995-9001. [PMID: 11489883 DOI: 10.1074/jbc.m103232200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neelaredoxin is a mononuclear iron protein widespread among prokaryotic anaerobes and facultative aerobes, including human pathogens. It has superoxide scavenging activity, but the exact mechanism by which this process occurs has been controversial. In this report, we present the study of the reaction of superoxide with the reduced form of neelaredoxin from the hyperthermophilic archaeon Archaeoglobus fulgidus by pulse radiolysis. This protein reduces superoxide very efficiently (k = 1.5 x 10(9) m(-1)s(-1)), and the dismutation activity is rate-limited, in steady-state conditions, by the much slower superoxide oxidation step. These data show unambiguously that the superfamily of neelaredoxin-like proteins (including desulfoferrodoxin) presents a novel type of reactivity toward superoxide, a result of particular relevance for the understanding of both oxygen stress response mechanisms and, in particular, how pathogens may respond to the oxidative burst produced by the defense cells in eukaryotes. The actual in vivo functioning of these enzymes will depend strongly on the cell redox status. Further insight on the catalytic mechanism was obtained by the detection of a transient intermediate ferric species upon oxidation of neelaredoxin by superoxide, detectable by visible spectroscopy with an absorption maximum at 610 nm, blue-shifted approximately 50 nm from the absorption of the resting ferric state. The role of the iron sixth ligand, glutamate-12, in the reactivity of neelaredoxin toward superoxide was assessed by studying two site-directed mutants: E12Q and E12V.
Collapse
Affiliation(s)
- I A Abreu
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, APT 127, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
40
|
Silva G, LeGall J, Xavier AV, Teixeira M, Rodrigues-Pousada C. Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J Bacteriol 2001; 183:4413-20. [PMID: 11443075 PMCID: PMC95335 DOI: 10.1128/jb.183.4.4413-4420.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfovibrio gigas neelaredoxin is an iron-containing protein of 15 kDa, having a single iron site with a His(4)Cys coordination. Neelaredoxins and homologous proteins are widespread in anaerobic prokaryotes and have superoxide-scavenging activity. To further understand its role in anaerobes, its genomic organization and expression in D. gigas were studied and its ability to complement Escherichia coli superoxide dismutase deletion mutant was assessed. In D. gigas, neelaredoxin is transcribed as a monocistronic mRNA of 500 bases as revealed by Northern analysis. Putative promoter elements resembling sigma(70) recognition sequences were identified. Neelaredoxin is abundantly and constitutively expressed, and its expression is not further induced during treatment with O(2) or H(2)O(2). The neelaredoxin gene was cloned by PCR and expressed in E. coli, and the protein was purified to homogeneity. The recombinant neelaredoxin has spectroscopic properties identical to those observed for the native one. Mutations of Cys-115, one of the iron ligands, show that this ligand is essential for the activity of neelaredoxin. In an attempt to elucidate the function of neelaredoxin within the cell, it was expressed in an E. coli mutant deficient in cytoplasmic superoxide dismutases (sodA sodB). Neelaredoxin suppresses the deleterious effects produced by superoxide, indicating that it is involved in oxygen detoxification in the anaerobe D. gigas.
Collapse
Affiliation(s)
- G Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
41
|
Lombard M, Houée-Levin C, Touati D, Fontecave M, Nivière V. Superoxide reductase from Desulfoarculus baarsii: reaction mechanism and role of glutamate 47 and lysine 48 in catalysis. Biochemistry 2001; 40:5032-40. [PMID: 11305919 DOI: 10.1021/bi0023908] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Superoxide reductase (SOR) is a small metalloenzyme that catalyzes reduction of O(2)(*)(-) to H(2)O(2) and thus provides an antioxidant mechanism against superoxide radicals. Its active site contains an unusual mononuclear ferrous center, which is very efficient during electron transfer to O(2)(*)(-) [Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) J. Biol. Chem. 275, 115-121]. The reaction of the enzyme from Desulfoarculus baarsii with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bimolecular reaction of superoxide reductase with superoxide, with a rate constant of (1.1 +/- 0.3) x 10(9) M(-1) s(-1). A first intermediate is formed which is converted to a second one at a much slower rate constant of 500 +/- 50 s(-1). Decay of the second intermediate occurs with a rate constant of 25 +/- 5 s(-1). These intermediates are suggested to be iron-superoxide and iron-peroxide species. Furthermore, the role of glutamate 47 and lysine 48, which are the closest charged residues to the vacant sixth iron coordination site, has been investigated by site-directed mutagenesis. Mutation of glutamate 47 into alanine has no effect on the rates of the reaction. On the contrary, mutation of lysine 48 into an isoleucine led to a 20-30-fold decrease of the rate constant of the bimolecular reaction, suggesting that lysine 48 plays an important role during guiding and binding of superoxide to the iron center II. In addition, we report that expression of the lysine 48 sor mutant gene hardly restored to a superoxide dismutase-deficient Escherichia coli mutant the ability to grow under aerobic conditions.
Collapse
Affiliation(s)
- M Lombard
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DBMS-CEA/CNRS/Université Joseph Fourier, 38054 Grenoble, Cedex 9, France
| | | | | | | | | |
Collapse
|
42
|
Boone AJ, Cory MG, Scott MJ, Zerner MC, Richards NG. Investigating the structural and electronic properties of nitrile hydratase model iron(III) complexes using projected unrestricted Hartree-Fock (PUHF) calculations. Inorg Chem 2001; 40:1837-45. [PMID: 11312740 DOI: 10.1021/ic0009021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Important structural and mechanistic details concerning the non-heme, low-spin Fe(III) center in nitrile hydratase (NHase) remain poorly understood. We now report projection unrestricted Hartree-Fock (PUHF) calculations on the spin preferences of a series of inorganic complexes in which Fe(III) is coordinated by a mixed set of N/S ligands. Given that many of these compounds have been prepared as models of the NHase metal center, this study has allowed us to evaluate this computational approach as a tool for future calculations on the electronic structure of the NHase Fe(III) center itself. When used in combination with the INDO/S semiempirical model, the PUHF method correctly predicts the experimentally observed spin state for 12 of the 13 Fe(III)-containing complexes studied here. The one compound for which there is disagreement between our theoretical calculations and experimental observation exhibits temperature-dependent spin behavior. In this case, the failure of the PUHF-INDO/S approach may be associated with differences between the structure of the Fe(III) complex present under the conditions used to measure the spin preference and that observed by X-ray crystallography. A preliminary analysis of the role of the N/S ligands and coordination geometry in defining the Fe(III) spin preferences in these complexes has also been undertaken by computing the electronic properties of the lowest energy Fe(III) spin states. While any detailed interpretation of our results is constrained both by the limited set of well-characterized Fe(III) complexes used in this study and by the complicated dependence of Fe(III) spin preference upon metal-ligand interactions and coordination geometry, these PUHF-INDO/S calculations support the hypothesis that the deprotonated amide nitrogens coordinating the metal stabilize the low-spin Fe(III) ground state seen in NHase. Strong evidence that the sulfur ligands exclusively define the Fe(III) spin state preference by forming metal-ligand bonds with significant covalent character is not provided by these computational studies. This might, however, reflect limitations in modeling these systems at the INDO/S level of theory.
Collapse
Affiliation(s)
- A J Boone
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
43
|
Jackson HL, Shoner SC, Rittenberg D, Cowen JA, Lovell S, Barnhart D, Kovacs JA. Probing the influence of local coordination environment on the properties of Fe-type nitrile hydratase model complexes. Inorg Chem 2001; 40:1646-53. [PMID: 11261975 PMCID: PMC4485621 DOI: 10.1021/ic001271d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of four structurally related cis-dithiolate-ligated Fe(III) complexes, [Fe(III)(DITpy)2]Cl (1), [Fe(III)(DITIm)2]Cl (2), [Fe(III)(ADIT)2]Cl (3), and [Fe(III)(AMIT)2]Cl (4), are described. The structural characterization of 3 as well as the spectroscopic properties of 3 and 4 has been previously reported. Crystal data for 1, 2, and 4 are as follows: 1.3H2O crystallizes in the orthorhombic space group Pca2(1) with a = 19.800(4) A, b = 18.450(4) A, c = 14.800(3) A, and Z = 8. 2.(1/2)EtOH.1/2H2O crystallizes in the monoclinic space group Cc with a = 24.792(4) A, b = 14.364(3) A, c = 17.527(3) A, beta = 124.91(2) degrees, and Z = 8. 4 crystallizes in the triclinic space group P1 with a = 8.0152(6) A, b = 10.0221(8) A, c = 11.8384(10) A, alpha = 73.460(3) degrees, beta = 71.451(5) degrees, gamma = 72.856(4) degrees, and Z = 2. Complexes 1-4 share a common S2N4 coordination environment that consists of two cis-thiolates, two trans-imines, and two cis-terminal nitrogen donors: Nterm = pyridine (1), imidazole (2), and primary amine (3 and 4). The crystallographically determined mean Fe-S bond distances in 1-4 range from 2.196 to 2.232 A and are characteristic of low-spin Fe(III)-thiolate complexes. The low-spin S = 1/2 ground state was confirmed by both EPR and magnetic susceptibility measurements. The electronic spectra of these complexes are characterized by broad absorption bands centered near approximately 700 nm that are consistent with ligand-to-metal charge-transfer (CT) bands. The complexes were further characterized by cyclic voltammetry measurements, and all possess highly negative Fe(III)/Fe(II) redox couples ( approximately -1 V vs SCE, saturated calomel electrode) indicating that alkyl thiolate donors are effective at stabilizing Fe(III) centers. Both the redox couple and the 700 nm band in the visible spectra show solvent-dependent shifts that are dependent upon the H-bonding ability of the solvent. The implications of these results with respect to the active site of the iron-containing nitrile hydratases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julie A. Kovacs
- Author to whom correspondence should be addressed: Dr. Julie A. Kovacs, Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700. . Fax: 206-685-8665
| |
Collapse
|
44
|
Silva G, Oliveira S, LeGall J, Xavier AV, Rodrigues-Pousada C. Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs. Biochem Biophys Res Commun 2001; 280:491-502. [PMID: 11162545 DOI: 10.1006/bbrc.2000.4147] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rubredoxin-oxygen oxidoreductase, an 86-kDa homodimeric flavoprotein, is the final component of a soluble electron transfer chain that couples NADH oxidation with oxygen reduction to water from the sulfate-reducing bacterium Desulfovibrio gigas. A 4.2-kb fragment of D. gigas chromosomal DNA containing the roo gene and the rubredoxin gene was sequenced. Additional open reading frames designated as ORF-1, ORF-2, and ORF-3 were also identified in this DNA fragment. ORF-1 encodes a protein exhibiting homology to several proteins of the short-chain dehydrogenase/reductase family of enzymes. The N-terminal coenzyme-binding pattern and the active-site pattern characteristic of short chain dehydrogenase/reductase proteins are conserved in ORF-1 product. ORF-2 does not show any significant homology with any known protein, whereas ORF-3 encodes a protein having significant homologies with the branched-chain amino acid transporter AzlC protein family. Northern blot hybridization analysis with rd and roo-specific probes identified a common 1.5-kb transcript, indicating that these two genes are cotranscribed. The transcription start site was identified by primer extension analysis to be a guanidine 87 bp upstream the ATG start codon of rubredoxin. The transcript size indicates that the rd-roo mRNA terminates downstream the roo-coding unit. Putative -10 and -35 regulator regions of a sigma(70)-type promoter, having similarity with E. coli sigma(70) promoter elements, are found upstream the transcription start site. Rubredoxin-oxygen oxidoreductase and rubredoxin genes are shown to be constitutively and abundantly expressed. Using the data available from different prokaryotic genomes, the rubredoxin genomic organization and the first tentative to understand the phylogenetic relationships among the flavoprotein family are reported in this study.
Collapse
Affiliation(s)
- G Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, 2781-901, Portugal
| | | | | | | | | |
Collapse
|
45
|
Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 2001; 183:101-8. [PMID: 11114906 PMCID: PMC94855 DOI: 10.1128/jb.183.1.101-108.2001] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2000] [Accepted: 10/11/2000] [Indexed: 11/20/2022] Open
Abstract
Evidence is presented for an alternative to the superoxide dismutase (SOD)-catalase oxidative stress defense system in Desulfovibrio vulgaris (strain Hildenborough). This alternative system consists of the nonheme iron proteins, rubrerythrin (Rbr) and rubredoxin oxidoreductase (Rbo), the product of the rbo gene (also called desulfoferrodoxin). A Deltarbo strain of D. vulgaris was found to be more sensitive to internal superoxide exposure than was the wild type. Unlike Rbo, expression of plasmid-borne Rbr failed to restore the aerobic growth of a SOD-deficient strain of Escherichia coli. Conversely, plasmid-borne expression of two different Rbrs from D. vulgaris increased the viability of a catalase-deficient strain of E. coli that had been exposed to hydrogen peroxide whereas Rbo actually decreased the viability. A previously undescribed D. vulgaris gene was found to encode a protein having 50% sequence identity to that of E. coli Fe-SOD. This gene also encoded an extended N-terminal sequence with high homologies to export signal peptides of periplasmic redox proteins. The SOD activity of D. vulgaris is not affected by the absence of Rbo and is concentrated in the periplasmic fraction of cell extracts. These results are consistent with a superoxide reductase rather than SOD activity of Rbo and with a peroxidase activity of Rbr. A joint role for Rbo and Rbr as a novel cytoplasmic oxidative stress protection system in D. vulgaris and other anaerobic microorganisms is proposed.
Collapse
Affiliation(s)
- H L Lumppio
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
46
|
Coulter ED, Emerson JP, Kurtz DM, Cabelli DE. Superoxide Reactivity of Rubredoxin Oxidoreductase (Desulfoferrodoxin) fromDesulfovibriovulgaris: A Pulse Radiolysis Study. J Am Chem Soc 2000. [DOI: 10.1021/ja005583r] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Abreu IA, Saraiva LM, Carita J, Huber H, Stetter KO, Cabelli D, Teixeira M. Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin. Mol Microbiol 2000; 38:322-34. [PMID: 11069658 DOI: 10.1046/j.1365-2958.2000.02121.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Archaeoglobus fulgidus is a hyperthermophilic sulphate-reducing archaeon. It has an optimum growth temperature of 83 degrees C and is described as a strict anaerobe. Its genome lacks any homologue of canonical superoxide (O2.-) dismutases. In this work, we show that neelaredoxin (Nlr) is the main O2.- scavenger in A. fulgidus, by studying both the wild-type and recombinant proteins. Nlr is a 125-amino-acid blue-coloured protein containing a single iron atom/molecule, which in the oxidized state is high spin ferric. This iron centre has a reduction potential of +230 mV at pH 7.0. Nitroblue tetrazolium-stained gel assays of cell-soluble extracts show that Nlr is the main protein from A. fulgidus which is reactive towards O2.-. Furthermore, it is shown that Nlr is able to both reduce and dismutate O2.-, thus having a bifunctional reactivity towards O2.-. Kinetic and spectroscopic studies indicate that Nlr's superoxide reductase activity may allow the cell to eliminate O2.- quickly in a NAD(P)H-dependent pathway. On the other hand, Nlr's superoxide dismutation activity will allow the cell to detoxify O2.- independently of the cell redox status. Its superoxide dismutase activity was estimated to be 59 U mg-1 by the xanthine/xanthine oxidase assay at 25 degrees C. Pulse radiolysis studies with the isolated and reduced Nlr proved unambiguously that it has superoxide dismutase activity; at pH 7.1 and 83 degrees C, the rate constant is 5 x 106 M-1 s-1. Besides the superoxide dismutase activity, soluble cell extracts of A. fulgidus also exhibit catalase and NAD(P)H/oxygen oxidoreductase activities. By putting these findings together with the entire genomic data available, a possible oxygen detoxification mechanism in A. fulgidus is discussed.
Collapse
Affiliation(s)
- I A Abreu
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
48
|
Jovanović T, Ascenso C, Hazlett KR, Sikkink R, Krebs C, Litwiller R, Benson LM, Moura I, Moura JJ, Radolf JD, Huynh BH, Naylor S, Rusnak F. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. J Biol Chem 2000; 275:28439-48. [PMID: 10874033 DOI: 10.1074/jbc.m003314200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic bacteria.
Collapse
Affiliation(s)
- T Jovanović
- Section of Hematology Research, Department of Biochemistry and Molecular Biology, and Biomedical Mass Spectrometry and Functional Proteomics Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lombard M, Touati D, Fontecave M, Nivière V. Superoxide Reductase as a Unique Defense System against Superoxide Stress in the Microaerophile Treponema pallidum. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61474-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Romåo CV, Regalla M, Xavier AV, Teixeira M, Liu MY, Le Gall J. A bacterioferritin from the strict anaerobe Desulfovibrio desulfuricans ATCC 27774. Biochemistry 2000; 39:6841-9. [PMID: 10841764 DOI: 10.1021/bi992525d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bacterioferritin was isolated from the anaerobic bacterium Desulfovibrio desulfuricans ATCC 27774, grown with nitrate as the terminal electron acceptor, which is the first example of a bacterioferritin from a strict anaerobic organism. This new bacterioferritin was isolated mainly as a 24-mer of 20 kDa identical subunits, containing 0.5 noncovalently bound heme and 2 iron atoms per monomer. Although its N-terminal sequence is significantly homologous with ferritins from other microorganisms and the ligands to the di-iron ferroxidase center are conserved, it is one of the most divergent bacterioferritins so far characterized. Also, in contrast to all other known bacterioferritins, its heme is not of the B type; its chromatographic behavior is identical to that of iron uroporphyrin. Thus, D. desulfuricans bacterioferritin appears to be the second example of a protein unexpectedly containing this heme cofactor, or a closely related porphyrin, after its finding in Desulfovibrio gigas rubredoxin:oxygen oxidoreductase ¿Timkovich, R., Burkhalter, R. S., Xavier, A. V., Chen, L., and Le Gall, J. (1994) Bioorg. Chem. 22, 284-293. The oxidized form of the protein has a visible spectrum characteristic of low-spin ferric hemes, exhibiting a weak absorption band at 715 nm, indicative of bis-methionine heme axial coordination; upon reduction, the alpha-band appears at 550 nm and a splitting of the Soret band occurs, with two maxima at 410 and 425 nm. The heme center has a reduction potential of 140 +/- 10 mV (pH 7.6), a value unusually high compared to that of other bacterioferritins (ca. -200 mV).
Collapse
Affiliation(s)
- C V Romåo
- Instituto de Tecnologia Qu¿imica e Biol¿ogica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|