1
|
Petkevičius V, Juknevičiūtė J, Mašonis D, Meškys R. Synthetic pathways for microbial biosynthesis of valuable pyrazine derivatives using genetically modified Pseudomonas putida KT2440. Metab Eng Commun 2025; 20:e00258. [PMID: 40236303 PMCID: PMC11999294 DOI: 10.1016/j.mec.2025.e00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Using engineered microbes for synthesizing high-valued chemicals from renewable sources is a foundation in synthetic biology, however, it is still in its early stages. Here, we present peculiarities and troubleshooting of the construction of novel synthetic metabolic pathways in genetically modified work-horse Pseudomonas putida KT2440. The combination of this microbial host and heterologous expressed non-heme diiron monooxygenases enabled de novo biosynthesis of 2,5-dimethylpyrazine (2,5-DMP) carboxylic acid and N-oxides as target products. A key intermediate, 2,5-DMP, was obtained by using Pseudomonas putida KT2440Δ6 strain containing six gene deletions in the L-threonine pathway, along with the overexpression of thrA S345F and tdh from E. coli. Thus, the carbon surplus was redirected from glucose through L-threonine metabolism toward the formation of 2,5-DMP, resulting in a product titre of 106 ± 30 mg L-1. By introducing two native genes (thrB and thrC from P. putida KT2440) from the L-threonine biosynthesis pathway, the production of 2,5-DMP was increased to 168 ± 20 mg L-1. The resulting 2,5-DMP was further derivatized through two separate pathways. Recombinant P. putida KT2440 strain harboring xylene monooxygenase (XMO) produced 5-methyl-2-pyrazinecarboxylic acid from glucose as a targeted compound in a product titre of 204 ± 24 mg L-1. The microbial host containing genes of PmlABCDEF monooxygenase (Pml) biosynthesized N-oxides - 2,5-dimethylpyrazine 1-oxide as a main product, and 2,5-dimethylpyrazine 1,4-dioxide as a minor product, reaching product titres of 82 ± 8 mg L-1 and 11 ± 2 mg L-1 respectively.
Collapse
Affiliation(s)
- Vytautas Petkevičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Justė Juknevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Domas Mašonis
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
2
|
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chem Int Ed Engl 2012; 51:10712-23. [DOI: 10.1002/anie.201203280] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 02/02/2023]
|
3
|
Bordeaux M, Galarneau A, Drone J. Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Bordeaux M, Galarneau A, Fajula F, Drone J. A Regioselective Biocatalyst for Alkane Activation under Mild Conditions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Bordeaux M, Galarneau A, Fajula F, Drone J. A regioselective biocatalyst for alkane activation under mild conditions. Angew Chem Int Ed Engl 2011; 50:2075-9. [PMID: 21344555 DOI: 10.1002/anie.201005597] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/20/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Mélanie Bordeaux
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/ENSCM/UM2/UM1, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
6
|
Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J Biotechnol 2010; 146:9-24. [PMID: 20132846 DOI: 10.1016/j.jbiotec.2010.01.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 12/29/2022]
Abstract
Monooxygenases are enzymes that catalyze the insertion of a single oxygen atom from O(2) into an organic substrate. In order to carry out this type of reaction, these enzymes need to activate molecular oxygen to overcome its spin-forbidden reaction with the organic substrate. In most cases, monooxygenases utilize (in)organic cofactors to transfer electrons to molecular oxygen for its activation. Monooxygenases typically are highly chemo-, regio-, and/or enantioselective, making them attractive biocatalysts. In this review, an exclusive overview of known monooxygenases is presented, based on the type of cofactor that these enzymes require. This includes not only the cytochrome P450 and flavin-dependent monooxygenases, but also enzymes that utilize pterin, metal ions (copper or iron) or no cofactor at all. As most of these monooxygenases require nicotinamide coenzymes as electron donors, also an overview of current methods for coenzyme regeneration is given. This latter overview is of relevance for the biotechnological applications of these oxidative enzymes.
Collapse
|
7
|
Meyer D, Bühler B, Schmid A. Process and catalyst design objectives for specific redox biocatalysis. ADVANCES IN APPLIED MICROBIOLOGY 2006; 59:53-91. [PMID: 16829256 DOI: 10.1016/s0065-2164(06)59003-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Meyer
- Department of Biochemical and Chemical Engineering, University of Dortmund, Emil-Figge-Strasse 66 D-44227 Dortmund, Germany
| | | | | |
Collapse
|
8
|
Heiss-Blanquet S, Benoit Y, Maréchaux C, Monot F. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 2006; 99:1392-403. [PMID: 16313412 DOI: 10.1111/j.1365-2672.2005.02715.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A molecular tool for extensive detection of prokaryotic alkane hydroxylase genes (alkB) was developed. AlkB genotypes involved in the degradation of short-chain alkanes were quantified in environmental samples in order to assess their occurrence and ecological importance. METHODS AND RESULTS Four primer pairs specific for distinct clusters of alkane hydroxylase genes were designed, allowing amplification of alkB-related genes from all tested alkane-degrading strains and from six of seven microcosms. For the primer pair detecting alkB genes related to the Pseudomonas putida GPo1 alkB gene and the one targeting alkB genes of Gram-positive strains, both involved in short-chain alkane degradation (<C10), a quantitative competitive PCR (cPCR) assay was developed and validated on alkB-containing strains. AlkB genes of the two groups were then quantified in hydrocarbon-contaminated and pristine freshwater and soil samples, and their respective frequency was compared to degradation rates of short-chain n-alkanes. Pseudomonas putida-related alkB genes were prevalent in freshwater samples, but Gram-positive alkB-containing strains were more consistently related to alkane degradation activities. The latter genotype was more abundant in soils, although both genotypes increased in the most contaminated soils studied. CONCLUSIONS Predominance of alkB genotypes depends on the ecosystem and environmental conditions, but alkane exposure generally leads to an increase of both studied genotypes. SIGNIFICANCE AND IMPACT OF THE STUDY The study illustrates the distribution of two different alkB genotypes in two types of ecosystems, and highlights their respective roles in the environment.
Collapse
Affiliation(s)
- S Heiss-Blanquet
- Département de Biotechnologie et Chimie de la Biomasse, Institut Français du Pétrole, Rueil-Malmaison, France.
| | | | | | | |
Collapse
|
9
|
Ren Q, de Roo G, van Beilen JB, Zinn M, Kessler B, Witholt B. Poly(3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida. Appl Microbiol Biotechnol 2005; 69:286-92. [PMID: 15846484 DOI: 10.1007/s00253-005-1995-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/05/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
We tested the synthesis and in vitro activity of the poly(3-hydroxyalkanoate) (PHA) polymerase 1 from Pseudomonas putida GPo1 in both P. putida GPp104 and Escherichia coli JMU193. The polymerase encoding gene phaC1 was expressed using the inducible PalkB promoter. It was found that the production of polymerase could be modulated over a wide range of protein levels by varying inducer concentrations. The optimal inducer dicyclopropylketone concentrations for PHA production were at 0.03% (v/v) for P. putida and 0.005% (v/v) for E. coli. Under these concentrations the maximal polymerase level synthesized in the E. coli host (6% of total protein) was about three- to fourfold less than that in P. putida (20%), whereas the maximal level of PHA synthesized in the E. coli host (8% of total cell dry weight) was about fourfold less than that in P. putida (30%). In P. putida, the highest specific activity of polymerase was found in the mid-exponential growth phase with a maximum of 40 U/g polymerase, whereas in E. coli, the maximal specific polymerase activity was found in the early stationary growth phase (2 U/g polymerase). Our results suggest that optimal functioning of the PHA polymerase requires factors or a molecular environment that is available in P. putida but not in E. coli.
Collapse
Affiliation(s)
- Qun Ren
- Biocompatible Materials, Materials Science and Technology (EMPA), 9014 St. Gallen, Switzerland.
| | | | | | | | | | | |
Collapse
|
10
|
Miller ES, Peretti SW. Toluene bioconversion to p-hydroxybenzoate by fed-batch cultures of recombinant Pseudomonas putida. Biotechnol Bioeng 2002; 77:340-51. [PMID: 11753943 DOI: 10.1002/bit.10071] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A microbial oxidation process for the production of p-hydroxybenzoate (HBA) from toluene is reported. The oxidation reaction was studied in fed-batch fermentations using a recombinant Pseudomonas putida grown on glutamate as the sole carbon and energy source with salicylate and IPTG induction of tmoABCDE, and pchCF and phbz pathway genes, respectively. An average volumetric HBA productivity of 13.4 mg HBA x L(-1) x h(-1) was obtained under rapid growth conditions (glutamate excess), giving an HBA titer of 132 mg x L(-1) after 9.8 h of fermentation. This corresponded to an average specific HBA productivity of 7.2 microg HBA (mg total protein)(-1) x h(-1). In contrast, maximum HBA titers of 35 mg HBA x L(-1) were achieved in 27 h in comparative studies employing glutumate limited fed-batch cultures. A specific productivity of 4.1 microg HBA (mg total protein)(-1) x h(-1) and volumetric productivity of 1.3 mg HBA x L(-1) x h(-1) were calculated for the growth-rate restricted cultures. The differences in HBA production between the two cultures could be correlated to the levels of specific toluene-4-monooxygenase (T4MO) polypeptides. T4MO catalyzes the rate-limiting step in the pathway. Using experimental data, the half-life value of TmoA was calculated to be approximately 28 h. Assuming linear, monomolecular decay of TmoA, a specific degradation constant of 0.025 x h(-1) was calculated, which placed the stability of recombinant TmoA in the range of relatively stable proteins, even in the absence of co-expression of tmoF, the terminal oxidoreductase subunit of T4MO.
Collapse
Affiliation(s)
- Edward S Miller
- DuPont Central Research and Development, Wilmington, Delaware, USA
| | | |
Collapse
|
11
|
Duetz WA, van Beilen JB, Witholt B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 2001; 12:419-25. [PMID: 11551473 DOI: 10.1016/s0958-1669(00)00237-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The unique catalytic properties of oxygenases (the regio-specific and/or enantio-specific hydroxylation of non-activated carbons) are of undisputed biosynthetic value. Factors that govern the economics of their industrial use include a low k(cat), a frequently decreased k(cat) in recombinant strains, limiting oxygen transfer rates in bioreactors, product inhibition, and the demanding discovery (screening) process.
Collapse
Affiliation(s)
- W A Duetz
- Institute of Biotechnology, ETH Hönggerberg, HPT, CH 8093, Zürich, Switzerland.
| | | | | |
Collapse
|
12
|
Staijen IE, Van Beilen JB, Witholt B. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1957-65. [PMID: 10727934 DOI: 10.1046/j.1432-1327.2000.01196.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We tested the synthesis and in vivo function of the inducible alkane hydroxylase of Pseudomonas oleovorans GPo1 in several Escherichia coli recombinants. The enzyme components (AlkB, AlkG and AlkT) were synthesized at various rates in different E. coli hosts, which after induction produced between twofold and tenfold more of the Alk components than did P. oleovorans. The enzyme components were less stable in recombinant E. coli hosts than in P. oleovorans. In addition, the specific activity of the alkane mono-oxygenase component AlkB was five or six times lower in E. coli than in P. oleovorans. Evidently, optimal functioning of the hydroxylase system requires factors or a molecular environment that are available in Pseudomonas but not in E. coli. These factors are likely to include correct interactions of AlkB with the membrane and incorporation of iron into the AlkG and AlkB apoproteins.
Collapse
Affiliation(s)
- I E Staijen
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
13
|
Panke S, de Lorenzo V, Kaiser A, Witholt B, Wubbolts MG. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 1999; 65:5619-23. [PMID: 10584030 PMCID: PMC91770 DOI: 10.1128/aem.65.12.5619-5623.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant strains of Pseudomonas putida KT2440 carrying genetic expression cassettes with xylene oxygenase- and styrene monooxygenase-encoding genes on their chromosomes could be induced in shaking-flask experiments to specific activities that rivaled those of multicopy-plasmid-based Escherichia coli recombinants. Such strains maintained the introduced styrene oxidation activity in continuous two-liquid-phase cultures for at least 100 generations, although at a lower level than in the shaking-flask experiments. The data suggest that placement of target genes on the chromosome might be a suitable route for the construction of segregationally stable and highly active whole-cell biocatalysts.
Collapse
Affiliation(s)
- S Panke
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Staijen IE, Marcionelli R, Witholt B. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. J Bacteriol 1999; 181:1610-6. [PMID: 10049394 PMCID: PMC93552 DOI: 10.1128/jb.181.5.1610-1616.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alk genes are located on the OCT plasmid of Pseudomonas oleovorans and encode an inducible pathway for the utilization of n-alkanes as carbon and energy sources. We have investigated the influence of alternative carbon sources on the induction of this pathway in P. oleovorans and Escherichia coli alk+ recombinants. In doing so, we confirmed earlier reports that induction of alkane hydroxylase activity in pseudomonads is subject to carbon catabolite repression. Specifically, synthesis of the monooxygenase component AlkB is repressed at the transcriptional level. The alk genes have been cloned into plasmid pGEc47, which has a copy number of about 5 to 10 per cell in both E. coli and pseudomonads. Pseudomonas putida GPo12 is a P. oleovorans derivative cured of the OCT plasmid. Upon introduction of pGEc47 in this strain, carbon catabolite repression of alkane hydroxylase activity was reduced significantly. In cultures of recombinant E. coli HB101 and W3110 carrying pGEc47, induction of AlkB and transcription of the alkB gene were no longer subject to carbon catabolite repression. This suggests that carbon catabolite repression of alkane degradation is regulated differently in Pseudomonas and in E. coli strains. These results also indicate that PalkBFGHJKL, the Palk promoter, might be useful in attaining high expression levels of heterologous genes in E. coli grown on inexpensive carbon sources which normally trigger carbon catabolite repression of native expression systems in this host.
Collapse
Affiliation(s)
- I E Staijen
- Institut für Biotechnologie, Swiss Federal Institute of Technology (ETH), ETH Hönggerberg, HPT, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
15
|
Staijen IE, Witholt B. Synthesis of alkane hydroxylase ofPseudomonas oleovorans increases the iron requirement ofalk+ bacterial strains. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980120)57:2<228::aid-bit12>3.0.co;2-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|