1
|
Chen Y, Yuan Y, Yang W, Storey KB, Zhang J, Yu D. Insight into the Phylogenetic Relationships of Phasmatodea and Selection Pressure Analysis of Phraortes liaoningensis Chen & He, 1991 (Phasmatodea: Lonchodidae) Using Mitogenomes. INSECTS 2024; 15:858. [PMID: 39590457 PMCID: PMC11595267 DOI: 10.3390/insects15110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Stick and leaf insects are a group among the Insecta that are famous for their extraordinary mimicry ability. Since the establishment of the Phasmatodea, their internal classification has been constantly revised. Mitochondrial genes as molecular markers have been widely used for species classification, but the phylogenetic relationships within the Phasmatodea remain to be thoroughly discussed. In the present study, five mitogenomes of Phasmatodea ranging from 15,746 bp to 16,747 bp in length were sequenced. Bayesian inference (BI) and maximum likelihood (ML) analyses were carried out based on a 13 PCGs data matrix (nt123) and a combined matrix of 13 PCGs and two rRNA genes (nt123_rRNA). The present study supports the conclusion that Phylliidae was the basal group of Neophasmatodea and confirms the monophyly of Lonchodinae and Necrosciinae, but it shows that Lonchodidae was polyphyletic. A sister group of Bacillidae and Pseudophasmatidae was also recovered. The phylogenetic tree based on the nt_123 dataset showed higher node support values. The construction of a divergent time tree in this study supported the conclusion that extant Phasmatodea originated in the Jurassic (170 Mya) and most lineages diverged after the Cretaceous-Paleogene extinction event. To explore whether the mitochondrial genes of Phraortes liaoningensis collected from high latitudes where low temperatures occur for eight months of the year are under selection pressure, this study used the branch-site model and the branch model to analyze the selection pressure on the 13 mitochondria protein-coding genes (PCGs). We found that both ND2 and ND4L of Ph. liaoningensis exhibited positive selection sites using the branch-site model. This study shows that a low-temperature environment causes mitochondrial genes to be selected to meet the energy requirements for survival.
Collapse
Affiliation(s)
- Yuxin Chen
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yani Yuan
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenhui Yang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Luczak ED, Wu Y, Granger JM, Joiner MLA, Wilson NR, Gupta A, Umapathi P, Murphy KR, Reyes Gaido OE, Sabet A, Corradini E, Tseng WW, Wang Y, Heck AJR, Wei AC, Weiss RG, Anderson ME. Mitochondrial CaMKII causes adverse metabolic reprogramming and dilated cardiomyopathy. Nat Commun 2020; 11:4416. [PMID: 32887881 PMCID: PMC7473864 DOI: 10.1038/s41467-020-18165-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/06/2020] [Indexed: 01/02/2023] Open
Abstract
Despite the clear association between myocardial injury, heart failure and depressed myocardial energetics, little is known about upstream signals responsible for remodeling myocardial metabolism after pathological stress. Here, we report increased mitochondrial calmodulin kinase II (CaMKII) activation and left ventricular dilation in mice one week after myocardial infarction (MI) surgery. By contrast, mice with genetic mitochondrial CaMKII inhibition are protected from left ventricular dilation and dysfunction after MI. Mice with myocardial and mitochondrial CaMKII overexpression (mtCaMKII) have severe dilated cardiomyopathy and decreased ATP that causes elevated cytoplasmic resting (diastolic) Ca2+ concentration and reduced mechanical performance. We map a metabolic pathway that rescues disease phenotypes in mtCaMKII mice, providing insights into physiological and pathological metabolic consequences of CaMKII signaling in mitochondria. Our findings suggest myocardial dilation, a disease phenotype lacking specific therapies, can be prevented by targeted replacement of mitochondrial creatine kinase or mitochondrial-targeted CaMKII inhibition.
Collapse
Affiliation(s)
- Elizabeth D Luczak
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yuejin Wu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan M Granger
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei-Ling A Joiner
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nicholas R Wilson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashish Gupta
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priya Umapathi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin R Murphy
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oscar E Reyes Gaido
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amin Sabet
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleonora Corradini
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wen-Wei Tseng
- Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - An-Chi Wei
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | - Robert G Weiss
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Liu C, Fetterman JL, Liu P, Luo Y, Larson MG, Vasan RS, Zhu J, Levy D. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes. Hum Genet 2018; 137:203-213. [PMID: 29423652 DOI: 10.1007/s00439-018-1873-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
Abstract
Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.
Collapse
Affiliation(s)
- Chunyu Liu
- Population Sciences Branch, NHLBI/NHI, Bethesda, MD, USA. .,Framingham Heart Study, Framingham, MA, USA. .,Department of Biostatistics, Boston University, Boston, MA, USA.
| | | | - Poching Liu
- DNA Sequencing and Genomics Core, NHLBI/NIH, Bethesda, MD, USA
| | - Yan Luo
- DNA Sequencing and Genomics Core, NHLBI/NIH, Bethesda, MD, USA
| | - Martin G Larson
- Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University, Boston, MA, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA.,School of Medicine, Boston University, Boston, MA, USA
| | - Jun Zhu
- System Biology Center, NHLBI/NHI, Bethesda, MD, USA
| | - Daniel Levy
- Population Sciences Branch, NHLBI/NHI, Bethesda, MD, USA. .,Framingham Heart Study, Framingham, MA, USA.
| |
Collapse
|
4
|
Kim C, Potluri P, Khalil A, Gaut D, McManus M, Compton S, Wallace DC, Yadava N. An X-chromosome linked mouse model (Ndufa1 S55A) for systemic partial Complex I deficiency for studying predisposition to neurodegeneration and other diseases. Neurochem Int 2017; 109:78-93. [PMID: 28506826 DOI: 10.1016/j.neuint.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 05/08/2017] [Indexed: 01/19/2023]
Abstract
The respiratory chain Complex I deficiencies are the most common cause of mitochondrial diseases. Complex I biogenesis is controlled by 58 genes and at least 47 of these cause mitochondrial disease in humans. Two of these are X-chromosome linked nuclear (nDNA) genes (NDUFA1 and NDUFB11), and 7 are mitochondrial (mtDNA, MT-ND1-6, -4L) genes, which may be responsible for sex-dependent variation in the presentation of mitochondrial diseases. In this study, we describe an X-chromosome linked mouse model (Ndufa1S55A) for systemic partial Complex I deficiency. By homologous recombination, a point mutation T > G within 55th codon of the Ndufa1 gene was introduced. The resulting allele Ndufa1S55A introduced systemic serine-55-alanine (S55A) mutation within the MWFE protein, which is essential for Complex I assembly and stability. The S55A mutation caused systemic partial Complex I deficiency of ∼50% in both sexes. The mutant males (Ndufa1S55A/Y) displayed reduced respiratory exchange ratio (RER) and produced less body heat. They were also hypoactive and ate less. They showed age-dependent Purkinje neurons degeneration. Metabolic profiling of brain, liver and serum from males showed reduced heme levels in mutants, which correlated with altered expressions of Fech and Hmox1 mRNAs in tissues. This is the first genuine X-chromosome linked mouse model for systemic partial Complex I deficiency, which shows age-dependent neurodegeneration. The effect of Complex I deficiency on survival patterns of males vs. females was different. We believe this model will be very useful for studying sex-dependent predisposition to both spontaneous and stress-induced neurodegeneration, cancer, diabetes and other diseases.
Collapse
Affiliation(s)
- Chul Kim
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ahmed Khalil
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Daria Gaut
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Meagan McManus
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shannon Compton
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nagendra Yadava
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA; Division of Endocrinology, Diabetes & Metabolism at Baystate Medical Center, Tufts University School of Medicine, Springfield, MA 01199, USA.
| |
Collapse
|
5
|
Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases. Front Mol Biosci 2016; 3:43. [PMID: 27597947 PMCID: PMC4992684 DOI: 10.3389/fmolb.2016.00043] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Serena Pantalone
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | | |
Collapse
|
6
|
Torraco A, Bianchi M, Verrigni D, Gelmetti V, Riley L, Niceta M, Martinelli D, Montanari A, Guo Y, Rizza T, Diodato D, Di Nottia M, Lucarelli B, Sorrentino F, Piemonte F, Francisci S, Tartaglia M, Valente E, Dionisi‐Vici C, Christodoulou J, Bertini E, Carrozzo R. A novel mutation in
NDUFB11
unveils a new clinical phenotype associated with lactic acidosis and sideroblastic anemia. Clin Genet 2016; 91:441-447. [DOI: 10.1111/cge.12790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Affiliation(s)
- A. Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - M. Bianchi
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - D. Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - V. Gelmetti
- Neurogenetics Unit, CSS‐Mendel LaboratoryIRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo Italy
| | - L. Riley
- Genetic Metabolic Disorders Research UnitChildren's Hospital at Westmead Sydney Australia
- Discipline of Paediatrics & Child HealthUniversity of Sydney Sydney Australia
| | - M. Niceta
- Division of Genetic Disorders and Rare DiseasesBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - D. Martinelli
- Division of MetabolismBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - A. Montanari
- Pasteur Institute – Cenci Bolognetti FoundationSapienza University of Rome Rome Italy
| | - Y. Guo
- Genetic Metabolic Disorders Research UnitChildren's Hospital at Westmead Sydney Australia
| | - T. Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - D. Diodato
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - M. Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - B. Lucarelli
- Stem Cell Transplant Unit, Department of Hematology and OncologyBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - F. Sorrentino
- UO Talassemici ‐Anemie Rare del Globulo Rosso, Ospedale S Eugenio Rome Italy
| | - F. Piemonte
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - S. Francisci
- Department of Biology and Biotechnologies “C. Darwin”Sapienza University of Rome Rome Italy
| | - M. Tartaglia
- Division of Genetic Disorders and Rare DiseasesBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - E.M. Valente
- Section of Neurosciences, Department of Medicine and SurgeryUniversity of Salerno Salerno Italy
| | - C. Dionisi‐Vici
- Division of MetabolismBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - J. Christodoulou
- Genetic Metabolic Disorders Research UnitChildren's Hospital at Westmead Sydney Australia
- Discipline of Paediatrics & Child HealthUniversity of Sydney Sydney Australia
- Discipline of Genetic MedicineUniversity of Sydney Sydney Australia
| | - E. Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| | - R. Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular MedicineBambino Gesù Children's Hospital, IRCCS Rome Italy
| |
Collapse
|
7
|
Potluri P, Procaccio V, Scheffler IE, Wallace DC. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1336-1343. [PMID: 26946086 DOI: 10.1016/j.bbabio.2016.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vincent Procaccio
- Dépt. de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Immo E Scheffler
- Division of Biological Sciences, University of California - San Diego, La Jolla, CA, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Yadav N, Kumar S, Marlowe T, Chaudhary AK, Kumar R, Wang J, O'Malley J, Boland PM, Jayanthi S, Kumar TKS, Yadava N, Chandra D. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 2015; 6:e1969. [PMID: 26539916 PMCID: PMC4670921 DOI: 10.1038/cddis.2015.305] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 01/04/2023]
Abstract
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.
Collapse
Affiliation(s)
- N Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - S Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - T Marlowe
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - A K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - R Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - J Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - J O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - P M Boland
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - S Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - T K S Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - N Yadava
- Pioneer Valley Life Sciences Institute, Springfield, MA 01107, USA
| | - D Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
9
|
Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency. Int J Biochem Cell Biol 2015; 65:91-103. [PMID: 26024641 DOI: 10.1016/j.biocel.2015.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/11/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.
Collapse
|
10
|
Scheffler IE. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J Inherit Metab Dis 2015; 38:405-15. [PMID: 25224827 DOI: 10.1007/s10545-014-9768-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 01/09/2023]
Abstract
Mitochondrial diseases due to a reduced capacity for oxidative phosphorylation were first identified more than 20 years ago, and their incidence is now recognized to be quite significant. In a large proportion of cases the problem can be traced to a complex I (NADH-CoQ oxidoreductase) deficiency (Phenotype MIM #252010). Because the complex consists of 44 subunits, there are many potential targets for pathogenic mutations, both on the nuclear and mitochondrial genomes. Surprisingly, however, almost half of the complex I deficiencies are due to defects in as yet unidentified genes that encode proteins other than the structural proteins of the complex. This review attempts to summarize what we know about the molecular basis of complex I deficiencies: mutations in the known structural genes, and mutations in an increasing number of genes encoding "assembly factors", that is, proteins required for the biogenesis of a functional complex I that are not found in the final complex I. More such genes must be identified before definitive genetic counselling can be applied in all cases of affected families.
Collapse
Affiliation(s)
- Immo E Scheffler
- Division of Biology (Molecular Biology Section), University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0322, USA,
| |
Collapse
|
11
|
Vartak RS, Semwal MK, Bai Y. An update on complex I assembly: the assembly of players. J Bioenerg Biomembr 2014; 46:323-8. [PMID: 25030182 DOI: 10.1007/s10863-014-9564-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease.
Collapse
Affiliation(s)
- Rasika S Vartak
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
12
|
Panelli D, Lorusso FP, Papa F, Panelli P, Stella A, Caputi M, Sardanelli AM, Papa S. The mechanism of alternative splicing of the X-linked NDUFB11 gene of the respiratory chain complex I, impact of rotenone treatment in neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:211-8. [PMID: 23246602 DOI: 10.1016/j.bbagrm.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/12/2012] [Accepted: 12/05/2012] [Indexed: 12/25/2022]
Abstract
A study is presented on the regulation of alternative splicing (AS) of the Ndufb11 gene of complex I of the mitochondrial respiratory chain and the impact on this process of rotenone treatment in neuroblastoma cells. In physiological conditions the Ndufb11 gene produces at high level a short transcript isoform encoding for a 153 aa protein. This subunit is essential for the assembly of a functional and stable mammalian complex I. The gene produces also, at low level, a longer transcript isoform encoding for a 163 aa protein whose role is unknown. Evidence is presented here showing that the level of the two isoforms is regulated by three DGGGD ESS elements located in exon 2 which can bind the hnRNPH1 protein. In neuronal cells rotenone treatment affects the Ndufb11 alternative splicing pathway, with the increase of the 163/153 mRNAs ratio. This effect appears to be due to the down-regulation of the hnRNPH1 protein. Since rotenone induces apoptosis in neuronal cells, the post-transcriptional regulation of the Ndufb11 gene can be involved in the programmed cell death process.
Collapse
Affiliation(s)
- Damiano Panelli
- Department of Basic Medical Sciences, University of Bari Aldo Moro, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dieteren CEJ, Koopman WJH, Swarts HG, Peters JGP, Maczuga P, van Gemst JJ, Masereeuw R, Smeitink JAM, Nijtmans LGJ, Willems PHGM. Subunit-specific incorporation efficiency and kinetics in mitochondrial complex I homeostasis. J Biol Chem 2012; 287:41851-60. [PMID: 23038253 DOI: 10.1074/jbc.m112.391151] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Studies employing native PAGE suggest that most nDNA-encoded CI subunits form subassemblies before assembling into holo-CI. In addition, in vitro evidence suggests that some subunits can directly exchange in holo-CI. Presently, data on the kinetics of these two incorporation modes for individual CI subunits during CI maintenance are sparse. Here, we used inducible HEK293 cell lines stably expressing AcGFP1-tagged CI subunits and quantified the amount of tagged subunit in mitoplasts and holo-CI by non-native and native PAGE, respectively, to determine their CI incorporation efficiency. Analysis of time courses of induction revealed three subunit-specific patterns. A first pattern, represented by NDUFS1, showed overlapping time courses, indicating that imported subunits predominantly incorporate into holo-CI. A second pattern, represented by NDUFV1, consisted of parallel time courses, which were, however, not quantitatively overlapping, suggesting that imported subunits incorporate at similar rates into holo-CI and CI assembly intermediates. The third pattern, represented by NDUFS3 and NDUFA2, revealed a delayed incorporation into holo-CI, suggesting their prior appearance in CI assembly intermediates and/or as free monomers. Our analysis showed the same maximum incorporation into holo-CI for NDUFV1, NDUFV2, NDUFS1, NDUFS3, NDUFS4, NDUFA2, and NDUFA12 with nearly complete loss of endogenous subunit at 24 h of induction, indicative of an equimolar stoichiometry and unexpectedly rapid turnover. In conclusion, the results presented demonstrate that newly formed nDNA-encoded CI subunits rapidly incorporate into holo-CI in a subunit-specific manner.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dieteren CEJ, Willems PHGM, Swarts HG, Fransen J, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Defective mitochondrial translation differently affects the live cell dynamics of complex I subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1624-33. [PMID: 21978538 DOI: 10.1016/j.bbabio.2011.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/16/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
Complex I (CI) of the oxidative phosphorylation system is assembled from 45 subunits encoded by both the mitochondrial and nuclear DNA. Defective mitochondrial translation is a major cause of mitochondrial disorders and proper understanding of its mechanisms and consequences is fundamental to rational treatment design. Here, we used a live cell approach to assess its consequences on CI assembly. The approach consisted of fluorescence recovery after photobleaching (FRAP) imaging of the effect of mitochondrial translation inhibition by chloramphenicol (CAP) on the dynamics of AcGFP1-tagged CI subunits NDUFV1, NDUFS3, NDUFA2 and NDUFB6 and assembly factor NDUFAF4. CAP increased the mobile fraction of the subunits, but not NDUFAF4, and decreased the amount of CI, demonstrating that CI is relatively immobile and does not associate with NDUFAF4. CAP increased the recovery kinetics of NDUFV1-AcGFP1 to the same value as obtained with AcGFP1 alone, indicative of the removal of unbound NDUFV1 from the mitochondrial matrix. Conversely, CAP decreased the mobility of NDUFS3-AcGFP1 and, to a lesser extent, NDUFB6-AcGFP1, suggestive of their enrichment in less mobile subassemblies. Little, if any, change in mobility of NDUFA2-AcGFP1 could be detected, suggesting that the dynamics of this accessory subunit of the matrix arm remains unaltered. Finally, CAP increased the mobility of NDUFAF4-AcGFP1, indicative of interaction with a more mobile membrane-bound subassembly. Our results show that the protein interactions of CI subunits and assembly factors are differently altered when mitochondrial translation is defective.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Papa S, Rasmo DD, Technikova-Dobrova Z, Panelli D, Signorile A, Scacco S, Petruzzella V, Papa F, Palmisano G, Gnoni A, Micelli L, Sardanelli AM. Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 2011; 586:568-77. [PMID: 21945319 DOI: 10.1016/j.febslet.2011.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022]
Abstract
In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, Section of Medical Biochemistry, University of Bari Aldo Moro, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Understanding mitochondrial complex I assembly in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:851-62. [PMID: 21924235 DOI: 10.1016/j.bbabio.2011.08.010] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/17/2011] [Accepted: 08/27/2011] [Indexed: 12/12/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
17
|
Compton S, Kim C, Griner NB, Potluri P, Scheffler IE, Sen S, Jerry DJ, Schneider S, Yadava N. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem 2011; 286:20297-312. [PMID: 21502317 PMCID: PMC3121470 DOI: 10.1074/jbc.m110.163063] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/29/2011] [Indexed: 11/06/2022] Open
Abstract
Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy.
Collapse
Affiliation(s)
- Shannon Compton
- From the Pioneer Valley Life Sciences Institute, Springfield, Massachusetts 01107
| | - Chul Kim
- From the Pioneer Valley Life Sciences Institute, Springfield, Massachusetts 01107
| | - Nicholas B. Griner
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Prasanth Potluri
- the Section of Molecular Biology, University of California San Diego, La Jolla, California 92093
| | - Immo E. Scheffler
- the Section of Molecular Biology, University of California San Diego, La Jolla, California 92093
| | - Sabyasachi Sen
- From the Pioneer Valley Life Sciences Institute, Springfield, Massachusetts 01107
- the Division of Endocrinology, Diabetes, and Metabolism, Baystate Medical Center, Tufts University School of Medicine, Springfield, Massachusetts 01199
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - D. Joseph Jerry
- From the Pioneer Valley Life Sciences Institute, Springfield, Massachusetts 01107
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Sallie Schneider
- From the Pioneer Valley Life Sciences Institute, Springfield, Massachusetts 01107
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Nagendra Yadava
- From the Pioneer Valley Life Sciences Institute, Springfield, Massachusetts 01107
- the Division of Endocrinology, Diabetes, and Metabolism, Baystate Medical Center, Tufts University School of Medicine, Springfield, Massachusetts 01199
- the Departments of Biology and
| |
Collapse
|
18
|
Abstract
This review focuses on the evidence accumulated in humans and animal models to the effect that mitochondria are key players in the progression of heart failure (HF). Mitochondria are the primary source of energy in the form of adenosine triphosphate that fuels the contractile apparatus, and are thus essential for the pumping activity of the heart. We evaluate changes in mitochondrial morphology and alterations in the main components of mitochondrial energetics, such as substrate utilization and oxidative phosphorylation coupled with the level of respirasomes, in the context of their contribution to the chronic energy deficit and mechanical dysfunction in HF.
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
19
|
Zickermann V, Angerer H, Ding MG, Nübel E, Brandt U. Small single transmembrane domain (STMD) proteins organize the hydrophobic subunits of large membrane protein complexes. FEBS Lett 2010; 584:2516-25. [PMID: 20398659 DOI: 10.1016/j.febslet.2010.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/30/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
The large membrane protein complexes of mitochondrial oxidative phosphorylation are composed of central subunits that are essential for their bioenergetic core function and accessory subunits that may assist in regulation, assembly or stabilization. Although sequence conservation is low, a significant proportion of the accessory subunits is characterized by a common single transmembrane (STMD) topology. The STMD signature is also found in subunits of other membrane protein complexes. We hypothesize that the general function of STMD subunits is to organize the hydrophobic subunits of large membrane protein complexes in specialized environments like the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Volker Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, Cluster of Excellence Frankfurt "Macromolecular Complexes", Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
20
|
Potluri P, Davila A, Ruiz-Pesini E, Mishmar D, O'Hearn S, Hancock S, Simon M, Scheffler IE, Wallace DC, Procaccio V. A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol Genet Metab 2009; 96:189-95. [PMID: 19185523 PMCID: PMC2693342 DOI: 10.1016/j.ymgme.2008.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Mitochondrial diseases have been shown to result from mutations in mitochondrial genes located in either the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Mitochondrial OXPHOS complex I has 45 subunits encoded by 38 nuclear and 7 mitochondrial genes. Two male patients in a putative X-linked pedigree exhibiting a progressive neurodegenerative disorder and a severe muscle complex I enzyme defect were analyzed for mutations in the 38 nDNA and seven mtDNA encoded complex I subunits. The nDNA X-linked NDUFA1 gene (MWFE polypeptide) was discovered to harbor a novel missense mutation which changed a highly conserved glycine at position 32 to an arginine, shown to segregate with the disease. When this mutation was introduced into a NDUFA1 null hamster cell line, a substantial decrease in the complex I assembly and activity was observed. When the mtDNA of the patient was analyzed, potentially relevant missense mutations were observed in the complex I genes. Transmitochondrial cybrids containing the patient's mtDNA resulted in a mild complex I deficiency. Interestingly enough, the nDNA encoded MWFE polypeptide has been shown to interact with various mtDNA encoded complex I subunits. Therefore, we hypothesize that the novel G32R mutation in NDUFA1 is causing complex I deficiency either by itself or in synergy with additional mtDNA variants.
Collapse
Affiliation(s)
- Prasanth Potluri
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California, 2034 Hewitt Hall, Irvine, CA 92697-3940, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lazarou M, Thorburn DR, Ryan MT, McKenzie M. Assembly of mitochondrial complex I and defects in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:78-88. [PMID: 18501715 DOI: 10.1016/j.bbamcr.2008.04.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 12/19/2022]
Abstract
Isolated complex I deficiency is the most common cause of respiratory chain dysfunction. Defects in human complex I result in energy generation disorders and they are also implicated in neurodegenerative disease and altered apoptotic signaling. Complex I dysfunction often occurs as a result of its impaired assembly. The assembly process of complex I is poorly understood, complicated by the fact that in mammals, it is composed of 45 different subunits and is regulated by both nuclear and mitochondrial genomes. However, in recent years we have gained new insights into complex I biogenesis and a number of assembly factors involved in this process have also been identified. In most cases, these factors have been discovered through their gene mutations that lead to specific complex I defects and result in mitochondrial disease. Here we review how complex I is assembled and the factors required to mediate this process.
Collapse
Affiliation(s)
- Michael Lazarou
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | | | | | |
Collapse
|
22
|
Vogel RO, Smeitink JAM, Nijtmans LGJ. Human mitochondrial complex I assembly: A dynamic and versatile process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1215-27. [PMID: 17854760 DOI: 10.1016/j.bbabio.2007.07.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 12/12/2022]
Abstract
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of >80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.
Collapse
Affiliation(s)
- Rutger O Vogel
- Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
23
|
Yadava N, Potluri P, Scheffler IE. Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. Int J Biochem Cell Biol 2007; 40:447-60. [PMID: 17931954 DOI: 10.1016/j.biocel.2007.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/18/2022]
Abstract
There have been several reports on the phosphorylation of various subunits of NADH-ubiquinone oxidoreductase (complex I) in mammalian mitochondria. The effects of phosphorylation on assembly or activity of these subunits have not been investigated directly. The cAMP-dependent phosphorylation of the MWFE and ESSS subunits in isolated bovine heart mitochondria has been recently reported. We have investigated the significance of potential phosphorylation of these two subunits in complex I assembly and function by mutational analysis of the phosphorylation sites. Chinese hamster mutant cell lines missing either the MWFE or the ESSS subunits were transfected and complemented with the corresponding wild type and mutant cDNAs made by site-directed mutagenesis. In MWFE the serine 55 was substituted by alanine, glutamate, glutamine, and aspartate (S55A, S55E, S55Q, and S55D, respectively). The glutamate substitutions might be expected to mimic the phosphorylated state of the protein. With the exception of the MWFE(S55A) mutant protein the assembly of complex I was completely blocked, and no activity could be detected. Various substitutions in the ESSS protein (S2A, S2E, S8A, S8E, T21A, T21E, S30A, S30E) appeared to cause lower levels of mature protein and a significantly reduced complex I activity measured polarographically. The ESSS (S2/8A) double mutant protein caused a complete failure to assemble. These mutational analyses suggest that if phosphorylation occurs in vivo, the effects on complex I activity are significant.
Collapse
Affiliation(s)
- N Yadava
- Buck Institute for Age Research, Novato, CA 94945, United States
| | | | | |
Collapse
|
24
|
Sonoda J, Laganière J, Mehl IR, Barish GD, Chong LW, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F, Lee CH, Giguère V, Evans RM. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev 2007; 21:1909-20. [PMID: 17671090 PMCID: PMC1935029 DOI: 10.1101/gad.1553007] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 06/19/2007] [Indexed: 12/21/2022]
Abstract
Macrophage activation by the proinflammatory cytokine interferon-gamma (IFN-gamma) is a critical component of the host innate response to bacterial pathogenesis. However, the precise nature of the IFN-gamma-induced activation pathway is not known. Here we show using genome-wide expression and chromatin-binding profiling that IFN-gamma induces the expression of many nuclear genes encoding mitochondrial respiratory chain machinery via activation of the nuclear receptor ERR alpha (estrogen-related receptor alpha, NR3B1). Studies with macrophages lacking ERR alpha demonstrate that it is required for induction of mitochondrial reactive oxygen species (ROS) production and efficient clearance of Listeria monocytogenes (LM) in response to IFN-gamma. As a result, mice lacking ERR alpha are susceptible to LM infection, a phenotype that is localized to bone marrow-derived cells. Furthermore, we found that IFN-gamma-induced activation of ERR alpha depends on coactivator PGC-1 beta (peroxisome proliferator-activated receptor gamma coactivator-1 beta), which appears to be a direct target for the IFN-gamma/STAT-1 signaling cascade. Thus, ERR alpha and PGC-1 beta act together as a key effector of IFN-gamma-induced mitochondrial ROS production and host defense.
Collapse
Affiliation(s)
- Junichiro Sonoda
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Josée Laganière
- Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montréal, Québec H3A 1A1, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Isaac R. Mehl
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Grant D. Barish
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, San Francisco, California 94121, USA
| | - Ling-Wa Chong
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Xiangli Li
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Immo E. Scheffler
- Division of Biology, Molecular Biology Section, University of California, San Diego, La Jolla, California 92093 USA
| | - Dennis C. Mock
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Alain R. Bataille
- Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - François Robert
- Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Chih-Hao Lee
- Harvard School of Public Health, Department of Genetics and Complex Diseases, Boston, Massachusetts 02115, USA
| | - Vincent Giguère
- Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montréal, Québec H3A 1A1, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Ronald M. Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
25
|
Vogel RO, Dieteren CEJ, van den Heuvel LPWJ, Willems PHGM, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 2007; 282:7582-90. [PMID: 17209039 DOI: 10.1074/jbc.m609410200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of human mitochondrial complex I (CI) requires the coordinated assembly of 45 subunits derived from both the mitochondrial and nuclear genome. The presence of CI subcomplexes in CI-deficient cells suggests that assembly occurs in distinct steps. However, discriminating between products of assembly or instability is problematic. Using an inducible NDUFS3-green fluorescent protein (GFP) expression system in HEK293 cells, we here provide direct evidence for the stepwise assembly of CI. Upon induction, six distinct NDUFS3-GFP-containing subcomplexes gradually appeared on a blue native Western blot also observed in wild type HEK293 mitochondria. Their stability was demonstrated by differential solubilization and heat incubation, which additionally allowed their distinction from specific products of CI instability and breakdown. Inhibition of mitochondrial translation under conditions of steady state labeling resulted in an accumulation of two of the NDUFS3-GFP-containing subcomplexes (100 and 150 kDa) and concomitant disappearance of the fully assembled complex. Lifting inhibition reversed this effect, demonstrating that these two subcomplexes are true assembly intermediates. Composition analysis showed that this event was accompanied by the incorporation of at least one mitochondrial DNA-encoded subunit, thereby revealing the first entry point of these subunits.
Collapse
Affiliation(s)
- Rutger O Vogel
- Nijmegen Centre for Mitochondrial Disorders, Department of Paediatrics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Janssen RJRJ, Nijtmans LG, van den Heuvel LP, Smeitink JAM. Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 2006; 29:499-515. [PMID: 16838076 DOI: 10.1007/s10545-006-0362-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Oxidative phosphorylation (OXPHOS) has a prominent role in energy metabolism of the cell. Being under bigenomic control, correct biogenesis and functioning of the OXPHOS system is dependent on the finely tuned interaction between the nuclear and the mitochondrial genome. This suggests that disturbances of the system can be caused by numerous genetic defects and can result in a variety of metabolic and biochemical alterations. Consequently, OXPHOS deficiencies manifest as a broad clinical spectrum. Complex I, the biggest and most complicated enzyme complex of the OXPHOS system, has been subjected to thorough investigation in recent years. Significant progress has been made in the field of structure, composition, assembly, and pathology. Important gains in the understanding of the Goliath of the OXPHOS system are: exposing the electron transfer mechanism and solving the crystal structure of the peripheral arm, characterization of almost all subunits and some of their functions, and creating models to elucidate the assembly process with concomitant identification of assembly chaperones. Unravelling the intricate mechanisms underlying the functioning of this membrane-bound enzyme complex in health and disease will pave the way for developing adequate diagnostic procedures and advanced therapeutic treatment strategies.
Collapse
Affiliation(s)
- Rolf J R J Janssen
- Nijmegen Centre for Mitochondrial Disorders, Laboratory of Paediatrics and Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
27
|
Gurok U, Bork K, Nuber U, Spörle R, Nöhring S, Horstkorte R. Expression of Ndufb11 encoding the neuronal protein 15.6 during neurite outgrowth and development. Gene Expr Patterns 2006; 7:370-4. [PMID: 16962385 DOI: 10.1016/j.modgep.2006.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 12/24/2022]
Abstract
Neurite outgrowth (e.g. axonal or dendrite outgrowth) of neurons is necessary for the development and functioning of the central nervous system. It is well accepted that the differentiation of neurons and neurite outgrowth involve alterations in gene expression. Furthermore, mitochondria play a role in different aspects of neurite outgrowth. Here we show that the expression of Ndufb11, a gene encoding the mitochondrial protein NP15.6 is decreased in the course of neuronal differentiation. NP15.6 is homologous to the bovine protein ESSS, a component of the mitochondrial complex 1. The homologous human NDUFB11 gene is localized to Xp11.3-Xp11.23, a region associated with neurogenetic disorders. The down-regulation of NP15.6 correlates with neurite outgrowth of PC12 cells induced by nerve growth factor. Furthermore, we analyzed the expression of Ndufb11 in the embryonic and adult mouse.
Collapse
Affiliation(s)
- Ulf Gurok
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195 Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Krause F. Detection and analysis of protein–protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 2006; 27:2759-81. [PMID: 16817166 DOI: 10.1002/elps.200600049] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is an essential and challenging task to unravel protein-protein interactions in their actual in vivo context. Native gel systems provide a separation platform allowing the analysis of protein complexes on a rather proteome-wide scale in a single experiment. This review focus on blue-native (BN)-PAGE as the most versatile and successful gel-based approach to separate soluble and membrane protein complexes of intricate protein mixtures derived from all biological sources. BN-PAGE is a charge-shift method with a running pH of 7.5 relying on the gentle binding of anionic CBB dye to all membrane and many soluble protein complexes, leading to separation of protein species essentially according to their size and superior resolution than other fractionation techniques can offer. The closely related colorless-native (CN)-PAGE, whose applicability is restricted to protein species with intrinsic negative net charge, proved to provide an especially mild separation capable of preserving weak protein-protein interactions better than BN-PAGE. The essential conditions determining the success of detecting protein-protein interactions are the sample preparations, e.g. the efficiency/mildness of the detergent solubilization of membrane protein complexes. A broad overview about the achievements of BN- and CN-PAGE studies to elucidate protein-protein interactions in organelles and prokaryotes is presented, e.g. the mitochondrial protein import machinery and oxidative phosphorylation supercomplexes. In many cases, solubilization with digitonin was demonstrated to facilitate an efficient and particularly gentle extraction of membrane protein complexes prone to dissociation by treatment with other detergents. In general, analyses of protein interactomes should be carried out by both BN- and CN-PAGE.
Collapse
Affiliation(s)
- Frank Krause
- Department of Chemistry, Physical Biochemistry, Darmstadt University of Technology, Germany.
| |
Collapse
|
29
|
Scheffler IE, Yadava N, Potluri P. Molecular genetics of complex I-deficient Chinese hamster cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1659:160-71. [PMID: 15576048 DOI: 10.1016/j.bbabio.2004.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/28/2004] [Accepted: 08/09/2004] [Indexed: 11/22/2022]
Abstract
The work from our laboratory on complex I-deficient Chinese hamster cell mutants is reviewed. Several complementation groups with a complete defect have been identified. Three of these are due to X-linked mutations, and the mutated genes for two have been identified. We describe null mutants in the genes for the subunits MWFE (gene: NDUFA1) and ESSS. They represent small integral membrane proteins localized in the Ialpha (Igamma) and Ibeta subcomplexes, respectively [J. Hirst, J. Carroll, I.M. Fearnley, R.J. Shannon, J.E. Walker. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604 (7-10-2003) 135-150.]. Both are absolutely essential for assembly and activity of complex I. Epitope-tagged versions of these proteins can be expressed from a poly-cistronic vector to complement the mutants, or to be co-expressed with the endogenous proteins in other hamster cell lines (mutant or wild type), or human cells. Structure-function analyses can be performed with proteins altered by site-directed mutagenesis. A cell line has been constructed in which the MWFE subunit is conditionally expressed, opening a window on the kinetics of assembly of complex I. Its targeting, import into mitochondria, and orientation in the inner membrane have also been investigated. The two proteins have recently been shown to be the targets for a cAMP-dependent kinase [R. Chen, I.M. Fearnley, S.Y. Peak_Chew, J.E. Walker. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. xx (2004) xx-xx.]. The epitope-tagged proteins can be cross-linked with other complex I subunits.
Collapse
Affiliation(s)
- Immo E Scheffler
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA.
| | | | | |
Collapse
|