1
|
Ge J, Li G, Chen Z, Xu W, Lei X, Zhu S. Kaempferol and nicotiflorin ameliorated alcohol-induced liver injury in mice by miR-138-5p/SIRT1/FXR and gut microbiota. Heliyon 2024; 10:e23336. [PMID: 38205320 PMCID: PMC10777378 DOI: 10.1016/j.heliyon.2023.e23336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Aims Excessive alcohol consumption can lead to alcoholic liver diseases (ALDs). Tetrastigma hemsleyanum Diels et Gilg is a rare Chinese medicinal herb. Tetrastigma hemsleyanum Diels et Gilg has been validated to be highly effective for treating hepatitis. Kaempferol and nicotiflorin are two highly representative flavonoids, which have exhibit therapeutic effects on liver disease. Therefore, the protective mechanism of kaempferol and nicotiflorin on alcohol-induced liver injury were investigated. Main methods Forty mice were used in this study. After treatment of Kaempferol and nicotiflorin, serum and liver were collected and used for determination of biochemical indicators, H&E staining, and molecular detection. The interaction of miRNAs from serum extracellular vehicles (EVs) with mRNAs and 16S rRNA sequencing of gut microbiota were also investigated. Key findings The results showed that kaempferol and nicotiflorins significantly ameliorated alcohol-induced liver damage and observably regulated gut microbiota. Specifically, the levels of malondialdehyde (MDA) and CYP2E1 in the liver significantly reduced, and the activity of superoxide dismutase (SOD) and glutathione (GSH) in the liver evidently increased. They also significantly relieved liver oxidative stress and lipid accumulation by suppressing miR-138-5p expression, inversely enhancing deacetylase silencing information regulator 2 related enzyme-1 (SIRT1) levels and then decreasing farnesoid X receptor (FXR) acetylation, which then modulated Nrf2 and SREBP-1c signaling pathways to regulate oxidative stress and lipid metabolism induced by alcohol. Significance Kaempferol and nicotiflorin reduced alcohol-induced liver damage by enhancing alcohol metabolism and reducing oxidative stress and lipid metabolism. The intestinal microorganism disorder was also ameliorated after oral kaempferol and nicotiflorin.
Collapse
Affiliation(s)
| | | | | | - Weijia Xu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Xuanhao Lei
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Shengnan Zhu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| |
Collapse
|
2
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Lee GH, Jeong YJ. Synergistic Effects of Vitis vinifera L. and Centella asiatica against CCl 4-Induced Liver Injury in Mice. Int J Mol Sci 2023; 24:11255. [PMID: 37511015 PMCID: PMC10379123 DOI: 10.3390/ijms241411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver injury can be acute or chronic, resulting from a variety of factors, including viral hepatitis, drug overdose, idiosyncratic drug reaction, or toxins, while the progression of pathogenesis in the liver rises due to the involvement of numerous cytokines and growth factor mediators. Thus, the identification of more effective biomarker-based active phytochemicals isolated from medicinal plants is a promising strategy to protect against CCl4-induced liver injury. Vitis vinifera L. (VE) and Centella asiatica (CE) are well-known medicinal plants that possess anti-inflammatory and antioxidant properties. However, synergism between the two has not previously been studied. Here, we investigated the synergistic effects of a V. vinifera L. (VE) leaf, C. asiatica (CE) extract combination (VCEC) against CCl4-induced liver injury. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 mL/kg). VCEC was administered orally for three consecutive days at various concentrations (100 and 200 mg/kg) prior to CCl4 injection. The extent of liver injury and the protective effects of VCEC were evaluated by biochemical analysis and histopathological studies. Oxidative stress was evaluated by measuring malondialdehyde (MDA) and glutathione (GSH) levels and Western blotting. VCEC treatment significantly reduced serum transaminase levels (AST and ALT), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by VCEC treatment by reducing cleaved caspase-3 and Bcl2-associated X protein (Bax). VCEC-treated mice significantly restored cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in CCl4-treated mice. In addition, VCEC downregulated overexpression of proinflammatory cytokines and hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4-mediated apoptosis. Collectively, VCEC exhibited synergistic protective effects against liver injury through its antioxidant, anti-inflammatory, and antiapoptotic ability against oxidative stress, inflammation, and apoptosis. Therefore, VCEC appears promising as a potential therapeutic agent for CCl4-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Jeonbuk National Hospital, Jeonju 54907, Republic of Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
3
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
4
|
Highly Accessible Computational Prediction and In Vivo/In Vitro Experimental Validation: Novel Synthetic Phenyl Ketone Derivatives as Promising Agents against NAFLD via Modulating Oxidoreductase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3782230. [PMID: 36659905 PMCID: PMC9844233 DOI: 10.1155/2023/3782230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions with no pharmacological treatment approved. Several highly accessible computational tools were employed to predict the activities of twelve novel compounds prior to actual chemical synthesis. We began our work by designing two or three hydroxyl groups appended to the phenyl ketone core, followed by prediction of drug-likeness and targets. Most predicted targets for each compound overlapped with NAFLD targets (≥80%). Enrichment analysis showed that these compounds might regulate oxidoreductase activity. Then, these compounds were synthesized and confirmed by IR, MS, 1H, and 13C NMR. Their cell viability demonstrated that twelve compounds exhibited appreciable potencies against NAFLD (EC50 values ≤ 13.5 μM). Furthermore, the most potent compound 5f effectively prevented NAFLD progression as evidenced by the change in histological features. 5f significantly reduced total cholesterol and triglyceride levels in vitro/in vivo, and the effects of 5f were significantly stronger than those of the control drug. The proteomic data showed that oxidoreductase activity was the most significantly enriched, and this finding was consistent with docking results. In summary, this validated presynthesis prediction approach was cost-saving and worthy of popularization. The novel synthetic phenyl ketone derivative 5f holds great therapeutic potential by modulating oxidoreductase activity to counter NAFLD.
Collapse
|
5
|
Pan Z, Guo J, Tang K, Chen Y, Gong X, Chen Y, Zhong Y, Xiao X, Duan S, Cui T, Wu X, Zhong Y, Yang X, Shen C, Gao Y. Ginsenoside Rc Modulates SIRT6-NRF2 Interaction to Alleviate Alcoholic Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14220-14234. [PMID: 36300841 DOI: 10.1021/acs.jafc.2c06146] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alcoholic liver disease (ALD) is a serious worldwide health problem. Ginsenoside Rc is a major active ingredient isolated from Panax ginseng, whose pharmacological effects counteract oxidative stress, inflammation, and lipid accumulation. However, it is still unclear whether ginsenoside Rc might exert beneficial effects on alcohol-induced liver injury. To this aim, mice primary hepatocytes (MPHs) were challenged with alcohol to test ginsenoside Rc's effects on their intracellular alcohol metabolism. C57BL/6J mice or SIRT6alb-/- mice were chronically fed a diet with added alcohol or given a single gavage of alcohol with or without ginsenoside Rc. Analyses of alcohol metabolism, oxidative stress, inflammation, lipid metabolism, and RNaseq expression were conducted to explore potential targets exploited by ginsenoside Rc to protect against ALD. Our results showed that ginsenoside Rc attenuated alcohol-induced liver injury by regulating oxidative stress, inflammation, and lipid accumulation both in vivo and in vitro. Ginsenoside Rc did increase the deacetylase activity of SIRT6, thereby lowering acetylated NRF2 levels, which elevated NRF2's stability, and subsequently exerting an antioxidant effect. In keeping with this, the hepatic knockout of SIRT6 almost abolished the hepatoprotective effects of ginsenoside Rc against ALD. Therefore, our results suggest that ginsenoside Rc attenuated hepatocytes' damage and oxidative stress in ALD by up-regulating the SIRT6/NRF2 pathway. Hence, ginsenoside Rc may be a promising drug to treat or relieve ALD.
Collapse
Affiliation(s)
- Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yanling Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xun Gong
- Guangdong Country Garden School, Guangzhou, Guangdong 510000, China
| | - Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaoxia Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xiumei Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yanhua Zhong
- Department of Acupuncture-Rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chuangpeng Shen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| |
Collapse
|
6
|
Pérez-Juárez A, Aguilar-Faisal JL, Posadas-Mondragón A, Santiago-Cruz JA, Barrientos-Alvarado C, Mojica-Villegas MA, Chamorro-Cevallos GA, Morales-González JA. Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver. APPLIED SCIENCES 2022; 12:8626. [DOI: 10.3390/app12178626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
Spirulina (formerly Arthrospira) maxima (SP) is a cyanobacterium reported to have great nutritional and pharmacological potential. The objective of this study was to evaluate the protective properties of SP against ethanol-induced toxicity. Male Wistar rats were used in the study and subjected to a 70% partial hepatectomy (PH); they were then divided into five groups. During the experiment, animals in two groups drank an aqueous solution of ethanol (EtOH) (40%, v/v). Additionally, they were administered an SP extract daily at a dose of 200 mg/kg body weight intragastrically. To explore possible mechanisms of action, we examined antioxidant defense enzymes, as well as serum biochemical parameters and histopathological changes in the liver. SP administration normalized elevated glutathione reductase (GR), glutathione (GSH), and superoxide dismutase (SOD) levels, in addition to increased catalase (CAT) and glutathione peroxidase (GPX) enzymes. Alterations in biochemical parameters were observed in the groups with PH treated with EtOH associated with a reduction in cholesterol and albumin levels, while glucose and triglyceride levels increased. The histological study supported the protective activity of SP, reducing apoptosis, necrosis, and congestion in the liver. Our findings demonstrated a protective effect of SP against EtOH that is related to less inflammation, a lesser antioxidant effect, and less free radical scavenging activity.
Collapse
Affiliation(s)
- Angélica Pérez-Juárez
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Araceli Posadas-Mondragón
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - José Angel Santiago-Cruz
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Cornelio Barrientos-Alvarado
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - María Angélica Mojica-Villegas
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Germán Alberto Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
7
|
Sadasivam N, Kim YJ, Radhakrishnan K, Kim DK. Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022; 27:3159. [PMID: 35630636 PMCID: PMC9147071 DOI: 10.3390/molecules27103159] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Center, Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Medical School, Chonnam National University, Gwangju 58128, Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (N.S.); (Y.-J.K.)
| |
Collapse
|
8
|
Baek SM, Lee SW, Lee YJ, Kim HY, Seo MS, Sung SE, Lee AR, Kim TU, Choi SK, Park SJ, Kim TH, Jeong KS, Park JK. Vitamin C alleviates alcoholic liver injury by suppressing neutrophil infiltration in senescence marker protein 30-knockout mice irrespective of its antioxidant effects. Life Sci 2021; 297:120228. [DOI: 10.1016/j.lfs.2021.120228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
|
9
|
Chen C, Wang S, Yu L, Mueller J, Fortunato F, Rausch V, Mueller S. H 2O 2-mediated autophagy during ethanol metabolism. Redox Biol 2021; 46:102081. [PMID: 34343907 PMCID: PMC8350071 DOI: 10.1016/j.redox.2021.102081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) is the most common liver disease worldwide and its underlying molecular mechanisms are still poorly understood. Moreover, conflicting data have been reported on potentially protective autophagy, the exact role of ethanol-metabolizing enzymes and ROS. METHODS Expression of LC3B, CYP2E1, and NOX4 was studied in a mouse model of acute ethanol exposure by immunoblotting and immunohistochemistry. Autophagy was further studied in primary mouse hepatocytes and huh7 cells in response to ethanol and its major intermediator acetaldehyde. Experiments were carried out in cells overexpressing CYP2E1 and knock down of NOX4 using siRNA. The response to external H2O2 was studied by using the GOX/CAT system. Autophagic flux was monitored using the mRFP-GFP-LC3 plasmid, while rapamycin and chloroquine served as positive and negative controls. RESULTS Acute ethanol exposure of mice over 24 h significantly induced autophagy as measured by LC3B expression but also induced the ROS-generating CYP2E1 and NOX4 enzymes. Notably, ethanol but not its downstream metabolite acetaldehyde induced autophagy in primary mouse hepatocytes. In contrast, autophagy could only be induced in huh7 cells in the presence of overexpressed CYP2E1. In addition, overexpression of NOX4 also significantly increased autophagy, which could be blocked by siRNA mediated knock down. The antioxidant N-acetylcysteine (NAC) also efficiently blocked CYP2E1-and NOX4-mediated induction of autophagy. Finally, specific and non-toxic production of H2O2 by the GOX/CAT system as evidenced by elevated peroxiredoxin (Prx-2) also induced LC3B which was efficiently blocked by NAC. H2O2 strongly increased the autophagic flux as measured by mRFP-GFP-LC3 plasmid. CONCLUSION We here provide evidence that short-term ethanol exposure induces autophagy in hepatocytes both in vivo and in vitro through the generation of ROS. These data suggest that suppression of autophagy by ethanol is most likely due to longer alcohol exposure during chronic alcohol consumption with the accumulation of e.g. misfolded proteins.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Shijin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Linna Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Franco Fortunato
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Sang L, Kang K, Sun Y, Li Y, Chang B. FOXO4 ameliorates alcohol-induced chronic liver injury via inhibiting NF-κB and modulating gut microbiota in C57BL/6J mice. Int Immunopharmacol 2021; 96:107572. [PMID: 33798806 DOI: 10.1016/j.intimp.2021.107572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal mucosa barrier function and gut-liver axis are impaired by ethanol in chronic alcoholic liver disease (ALD). However, the possible mechanism is not clear. This study aimed to investigate the effects of Forkhead Box O4 (FOXO4) on alcohol-induced chronic liver injury and its molecular mechanism(s). METHODS Male C57BL/6J mice were injected with or without FOXO4-WT, FOXO4-TB or NF-κB vectors, and fed with Lieber-DeCarli liquid diets containing 36% ethanol for eight weeks to induce chronic ALD. Thereafter, blood, liver, colon and fecal samples were collected. Biochemical parameters, endotoxin and inflammatory cytokines in the blood and antioxidant enzymes in the liver were tested by commercial kits. Histopathological changes in the liver were evaluated by HE staining. In addition, the mRNA and protein expression of FOXO4, NF-κB, ZO-1 and Occluding in the colon were measured by quantitative real-time PCR and Western blot, respectively. Furthermore, gut microbiota composition in the fecal samples was investigated with 16S rDNA sequencing. RESULTS FOXO4 significantly ameliorated liver histopathological damage. Moreover, FOXO4 reduced the serum endotoxin, biochemical parameters (ALT, AST, ALP and TG), antioxidant enzymes (ROS and MDA), inflammatory cytokines (IL-6, IL-1β, and TNF-α), but restored the levels of GSH, SOD and IL-10. Furthermore, FOXO4 significantly inhibited the expression of NF-κB, p-NF-κB p65, p-IKKα and p-IKKβ, and up-regulated the expression of ZO-1 and Occludin. Additionally, FOXO4 modulated the gut microbiota composition and certain bacteria including Odoribacter, Parasutterella and Psychrobacter. CONCLUSION These findings suggest that FOXO4 protects against alcohol-induced chronic liver injury via inhibiting NF-κB and modulating gut microbiota in C57BL/6J mice.
Collapse
Affiliation(s)
- Lixuan Sang
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kai Kang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Sun
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Lai Y, Tan Q, Xv S, Huang S, Wang Y, Li Y, Zeng T, Mo C, Chen Y, Huang S, Zhou C, Gao L, Lv Z. Ginsenoside Rb1 Alleviates Alcohol-Induced Liver Injury by Inhibiting Steatosis, Oxidative Stress, and Inflammation. Front Pharmacol 2021; 12:616409. [PMID: 33716743 PMCID: PMC7952325 DOI: 10.3389/fphar.2021.616409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) has become a heavy burden on health worldwide. Ginsenoside Rb1 (GRb1), extracted from Panax quinquefolium L., has protective effects on many diseases, but the effect and mechanisms of GRb1 on ALD remain unknown. This study aimed to investigate the protective effects of GRb1 on ALD and to discover the potential mechanisms. Zebrafish larvae were exposed to 350 mM ethanol for 32 h to establish a model of acute alcoholic liver injury, and the larvae were then treated with 6.25, 12.5, or 25 μM GRb1 for 48 h. The human hepatocyte cell line was stimulated by 100 mM ethanol and meanwhile incubated with 6.25, 12.5, and 25 μM GRb1 for 24 h. The lipid changes were detected by Oil Red O staining, Nile Red staining, and triglyceride determination. The antioxidant capacity was assessed by fluorescent probes in vivo, and the expression levels of inflammatory cytokines were detected by immunohistochemistry, immunofluorescence, and quantitative real-time PCR. The results showed that GRb1 alleviated lipid deposition in hepatocytes at an optimal concentration of 12.5 μM in vivo. GRb1 reversed the reactive oxygen species accumulation caused by alcohol consumption and partially restored the level of glutathione. Furthermore, GRb1 ameliorated liver inflammation by inhibiting neutrophil infiltration in the liver parenchyma and downregulating the expression of nuclear factor-kappa B pathway-associated proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1β. This study revealed that GRb1 has a protective effect on alcohol-induced liver injury due to its resistance to lipid deposition as well as antioxidant and anti-inflammatory actions. These findings suggest that GRb1 may be a promising candidate against ALD.
Collapse
Affiliation(s)
- Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qinxiang Tan
- Renal Division, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Shu Xv
- Oncology Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
13
|
Wang G, Fu Y, Li J, Li Y, Zhao Q, Hu A, Xu C, Shao D, Chen W. Aqueous extract of Polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the Nrf2/ARE pathway. J Food Biochem 2020; 45:e13537. [PMID: 33107045 DOI: 10.1111/jfbc.13537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
This study investigates the hepatoprotective effect of the aqueous extract of Polygonatum sibiricum (AEPS) against ethanol-induced oxidative stress and explores underlying mechanisms. AEPS was administered by gavage to ICR mice for 30 days. The experimental mice were fed a 5% (v/v) ethanol on last 10 days and followed by a single megadose of ethanol (5 g/kg) to induce ethanol-induced liver injury. Pretreatment with AEPS significantly suppressed the ethanol-induced elevation of aminotransferase activities, total bilirubin (TBIL) level, triglyceride level, and alleviated liver histopathological lesions. Meanwhile, AEPS reduced the level of oxidative stress in the liver and significantly suppressed the mRNA levels of NOX1, p67phox, gp91phox, and CYP2E1. Additionally, AEPS significantly increased the mRNA and protein levels of Nrf2 and its downstream antioxidant genes and promoted the nuclear translocation of Nrf2 in mice liver. Therefore, AEPS can effectively reduce ethanol-induced liver injury via regulation of the Nrf2/ARE pathway. PRACTICAL APPLICATIONS: Alcohol abuse and alcoholism have become a serious public health problem worldwide. Since liver is the major organ of alcohol metabolism, the most impactful damage of alcohol occurs in the liver. Polygonatum sibiricum is a traditional Chinese galenical and it also can be used as food ingredients. Most studies have reported that polysaccharide, flavonoids and saponins are the main bioactive compounds in Polygonatum sibiricum which play important roles in anti-oxidation. AEPS is the aqueous extract of Polygonatum sibiricum and AEPS can protect the mice liver against ethanol-induced oxidative damage. Thus it can be potential antioxidants to product hepatoprotective food and the study also provides a theoretical basis for the development and application of food about Polygonatum sibiricum.
Collapse
Affiliation(s)
- Guangjun Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Youwei Fu
- Department of Health Education, Anhui Suzhou Center for Disease Control and Prevention, Suzhou Anhui, China
| | - Jiujiu Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yanni Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Chuande Xu
- Anhui Jingtian Food Co., Ltd., Chizhou, China
| | | | - Wenjun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Ajayi EIO, Molehin OR, Oloyede OI, Kumar V, Amara VR, Kaur J, Karpe P, Tikoo K. Liver mitochondrial membrane permeability modulation in insulin-resistant, uninephrectomised male rats by Clerodendrum volubile P. Beauv and Manihot esculenta Crantz. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0124-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundNon-alcoholic fatty liver disease, which occurs in people who are not alcohol drinkers, describes some of the pathogenic conditions that may be in the least characterized by simple steatosis or can be as serious as non-alcoholic steatohepatitis and cirrhosis. Its mechanistic pathogenesis has been said to arise from insulin resistance and oxidative stress, which may be compounded by obesity. An experimental model showing, systemic insulin resistance, obesity and accumulated hepatic fatty acids was created in adult male rats using high-fat diet manipulation and surgical removal of the left kidney (uninephrectomy). This study sought to identify the impact of these multiple burdens on the liver mitochondrial membrane permeability transition pore opening, and the possible in vitro effects of the extracts ofClerodendrum volubileandManihot esculentaleaves on the membrane permeabilization.ResultsThe results indicated that the methanolic extract ofClerodendrum volubileleaf inhibited mitochondrial membrane pore opening in the insulin resistance condition or when it is followed by uni-nephrectomy, while the ethanolic extract ofManihot esculentaleaf does the same in the insulin resistance condition both prior to and following uni-nephrectomy.ConclusionSince the vegetable extracts were able to abrogate mitochondrial pore opening at low concentrations, the structural integrity of the mitochondria can possibly be restored over time if treated by the vegetable extracts. Research efforts should, therefore, be made to harness the drugability of the bioactives of these vegetables for use in the treatment of non-alcoholic fatty liver disease arising from insulin resistance and renal failure.
Collapse
|
15
|
Choi WM, Kim MH, Jeong WI. Functions of hepatic non-parenchymal cells in alcoholic liver disease. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Kim SK, Rho SJ, Kim SH, Kim SY, Song SH, Yoo JY, Kim CH, Lee SH. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury. Clin Exp Pharmacol Physiol 2018; 46:153-162. [PMID: 30403294 DOI: 10.1111/1440-1681.13050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
NADPH oxidase (NOX) plays an important role in inflammatory response by producing reactive oxygen species (ROS). The inhibition of NOX has been shown to induce anti-inflammatory effects in a few experimental models. The aim of this study was to investigate the effects of diphenyleneiodonium (DPI), a NOX inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a rat model. Sprague-Dawley rats were intraperitoneally administered by DPI (5 mg/kg) 30 minutes after intratracheal instillation of LPS (3 mg/kg). After 6 hours, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The NOX activity in lung tissue was significantly increased in LPS-treated rats. It was significantly attenuated by DPI. DPI-treated rats showed significant reduction in the intracellular ROS, the number of inflammatory cells, and cytokines (TNF-α and IL-6) in BALF compared with LPS-treated rats. In lung tissue, DPI-treated rats showed significantly decreased malondialdehyde content and increased activity of glutathione peroxidase and superoxide dismutase compared with LPS-treated rats. Lung injury score, myeloperoxidase activity, and inducible nitric oxide synthase expression were significantly decreased in DPI-treated rats compared with LPS-treated animals. Western blotting analysis demonstrated that DPI significantly suppressed LPS-induced activation of NF-κB and ERK1/2 and SAPK/JNK in MAPK pathway. Our results suggest that DPI may have protective effects on LPS-induced ALI thorough anti-oxidative and anti-inflammatory effects which may be due to inactivation of the NF-κB, ERK1/2, and SAPK/JNK pathway. These results suggest the therapeutic potential of DPI as an anti-inflammatory agent in ALI.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Seung Joon Rho
- Research Institute of Medical Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Seung Hoon Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Shin Young Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - So Hyang Song
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Young Yoo
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Chi Hong Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
17
|
Ali H, Assiri MA, Shearn CT, Fritz KS. Lipid peroxidation derived reactive aldehydes in alcoholic liver disease. CURRENT OPINION IN TOXICOLOGY 2018; 13:110-117. [PMID: 31263795 DOI: 10.1016/j.cotox.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation is a known consequence of oxidative stress and is thought to play a key role in numerous disease pathologies, including alcoholic liver disease (ALD). The overaccumulation of lipid peroxidation products during chronic alcohol consumption results in pathogenic lesions on protein, DNA, and lipids throughout the cell. Molecular adducts due to secondary end products of lipid peroxidation impact a host of biochemical processes, including inflammation, antioxidant defense, and metabolism. The aggregate burden of lipid peroxidation which occurs due to chronic alcohol metabolism, including downstream signaling events, contributes to the development and progression of ALD. In this current opinion we highlight recent studies and approaches relating cellular mechanisms of lipid peroxidation to the pathogenesis of alcoholic liver disease.
Collapse
Affiliation(s)
- Hadi Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mohammed A Assiri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
18
|
Xia T, Zhang J, Yao J, Zhang B, Duan W, Xia M, Song J, Zheng Y, Wang M. Shanxi aged vinegar prevents alcoholic liver injury by inhibiting CYP2E1 and NADPH oxidase activities. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review. Cell Biochem Funct 2018; 36:292-302. [PMID: 30028028 DOI: 10.1002/cbf.3351] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are key producer of reactive oxygen species in liver cells. Hepatic stellate cells (HSCs) and Kupffer cells (KCs) are the two key cells for expression of NOX in liver. KCs produce only NOX2, while HSCs produce NOX1, 2, and 4, all of which play essential roles in the process of fibrogenesis within liver. These NOX subtypes are contributed to induction of liver fibrosis by acting through multiple pathways including induction of HSC activation, proliferation, survival and migration, stimulation of hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both KCs and HSCs. SIGNIFICANCE KCs and HSCs are two key cells for production of NOX in liver in relation to the pathology of liver fibrosis. NOX subtypes 1, 2, and 4 are inducers of fibrogenesis in liver. NOX activation favors hepatocyte apoptosis, HSC activation, and KC-mediated inflammatory cascade in liver, all of which are responsible for generation of liver fibrosis.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
20
|
Rajapaksha IG, Mak KY, Huang P, Burrell LM, Angus PW, Herath CB. The small molecule drug diminazene aceturate inhibits liver injury and biliary fibrosis in mice. Sci Rep 2018; 8:10175. [PMID: 29977014 PMCID: PMC6033899 DOI: 10.1038/s41598-018-28490-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
There is no established medical therapy to treat biliary fibrosis resulting from chronic inflammation in the biliary tree. We have recently shown that liver-specific over-expression of angiotensin converting enzyme 2 (ACE2) of the renin angiotensin system (RAS) ameliorated liver fibrosis in mice. Diminazene aceturate (DIZE), a small molecule drug approved by the US Food and Drug Administration, which is used to treat human trypanosomiasis, has been shown to have antifibrotic properties by enhancing ACE2 activity. In this study we sought to determine the therapeutic potential of DIZE in biliary fibrosis using bile duct ligated and multiple drug resistant gene-2 knockout mice. Additionally, human hepatic stellate (LX-2) and mouse Kupffer (KUP5) cell lines were used to delineate intracellular pathways. DIZE treatment, both in vivo and in vitro, markedly inhibited the activation of fibroblastic stellate cells which was associated with a reduced activation of Kupffer cells. Moreover, DIZE-inhibited NOX enzyme assembly and ROS generation, activation of profibrotic transcription factors including p38, Erk1/2 and Smad2/3 proteins and proinflammatory and profibrotic cytokine release. These changes led to a major reduction in biliary fibrosis in both models without affecting liver ACE2 activity. We conclude that DIZE has a potential to treat biliary fibrosis.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Kai Y Mak
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Ping Huang
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Peter W Angus
- Department of Gastroenterology, Austin Health, Heidelberg, Victoria, Australia.
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
21
|
Kharbanda KK, Ronis MJJ, Shearn CT, Petersen DR, Zakhari S, Warner DR, Feldstein AE, McClain CJ, Kirpich IA. Role of Nutrition in Alcoholic Liver Disease: Summary of the Symposium at the ESBRA 2017 Congress. Biomolecules 2018; 8:16. [PMID: 29587455 PMCID: PMC6022870 DOI: 10.3390/biom8020016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
The symposium, "Role of Nutrition in Alcoholic Liver Disease", was held at the European Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece. The goal of the symposium was to highlight recent advances and developments in the field of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of alcoholic liver disease (ALD). The following is a summary of key research presented at this session. The speakers discussed the role of dietary fats and carbohydrates in the development and progression of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Martin J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA.
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA.
| | - Samir Zakhari
- Distilled Spirits Council, Washington, DC 20005, USA.
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Ariel E Feldstein
- Division of Gastroenterology, Department of Pediatrics, University of California, San Diego, CA 92037, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 402202, USA;.
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA.
- Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 402202, USA.
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 402202, USA;.
- University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 402202, USA.
| |
Collapse
|
22
|
Arizuka N, Murakami T, Suzuki K. The effect of β-caryophyllene on nonalcoholic steatohepatitis. J Toxicol Pathol 2017; 30:263-273. [PMID: 29097836 PMCID: PMC5660948 DOI: 10.1293/tox.2017-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is not fully understood, but many studies have suggested that oxidative stress plays a key role. The methionine- and choline-deficient diet (MCD) administration model can reproduce histopathological features of human NASH and is widely used for investigating NASH. C57BL/6J mice have been used in many studies, but strain differences in pathogenesis have not been sufficiently investigated. We administred MCD to two mouse strains and then compared difference between strains and investigated the effects of β-caryophyllene (BCP), which possesses an antioxidant effect, on development and progression of NASH. ICR and C57BL/6J mice were administred a control diet, MCD, MCD containing 0.02% BCP, or MCD containing 0.2% BCP. After 4 or 8 weeks, mice were sacrificed. In both strains, MCD administration induced hepatic steatosis and inflammation. These lesions were more severe in C57BL/6J mice than ICR mice, and liver fibrosis was observed at 8 weeks in C57BL/6J mice. These changes were attenuated by BCP coadministration. The mRNA expression of monocyte chemotactic and activating factor (MCP)-1 and fibrosis-related factors increased in C57BL/6J mice, and these increases were reduced by BCP coadministration. The mRNA expression of antioxidant-related factors decreased in both strains, and these decreases were attenuated by BCP coadministration. Based on these results, the C57BL/6J mouse was a more suitable model for MCD-induced NASH than the ICR mouse. In addition, it was suggested that antioxidant effect of BCP might suppressed the damage of hepatocytes caused by oxidative stress and following inflammation and fibrosis.
Collapse
Affiliation(s)
- Naoya Arizuka
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Cooperative Department
of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho,
Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
23
|
Ding Y, Wang L, Song J, Zhou S. Protective effects of ellagic acid against tetrachloride-induced cirrhosis in mice through the inhibition of reactive oxygen species formation and angiogenesis. Exp Ther Med 2017; 14:3375-3380. [PMID: 29042921 PMCID: PMC5639323 DOI: 10.3892/etm.2017.4966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Ellagic acid has been proven to have anticancer, antimutation, antimicrobial and antiviral functions. The present study investigated whether treatment with ellagic acid was able to prevent tetrachloride (CCl4)-induced cirrhosis through the inhibition of reactive oxygen species (ROS) formation and angiogenesis. CCl4 diluted in olive oil at a final concentration of 10% was used to induce a cirrhosis model. A total of 40 mice were random allocated into four groups, as follows: Control, cirrhosis model, 7.5 mg/kg ellagic acid and 15 mg/kg ellagic acid groups. In the control group, mice were given normal saline. The results indicated that ellagic acid exerted a protective effect, evidently preventing CCl4-induced cirrhosis. In addition, treatment with ellagic acid significantly inhibited collagen I and inducible nitric oxide synthase protein expression levels in CCl4-induced cirrhosis mice. Oxidative stress and ROS formation were also significantly reduced by ellagic acid treatment. The protein expression levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2), and the caspase-3 activity were significantly inhibited by treatment with ellagic acid. In conclusions, these results suggest that ellagic acid exerted protective effects against CCl4-induced cirrhosis through the inhibition of ROS formation and angiogenesis.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lizhou Wang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jie Song
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
24
|
NOX4 Regulates CCR2 and CCL2 mRNA Stability in Alcoholic Liver Disease. Sci Rep 2017; 7:46144. [PMID: 28383062 PMCID: PMC5382722 DOI: 10.1038/srep46144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines.
Collapse
|
25
|
Amer MG, Mazen NF, Mohamed AM. Caffeine intake decreases oxidative stress and inflammatory biomarkers in experimental liver diseases induced by thioacetamide: Biochemical and histological study. Int J Immunopathol Pharmacol 2017; 30:13-24. [PMID: 28281876 PMCID: PMC5806787 DOI: 10.1177/0394632017694898] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liver disease remains a significant global health problem. Increased caffeine consumption has been associated with a lower prevalence of chronic liver disease. This study aimed to investigate the modifying effects of caffeine on liver injury induced by thioacetamide (TAA) administration in male rats and the possible underlying mechanisms. Forty adult male rats were equally classified into four groups: control group, received only tap water; caffeine-treated group, received caffeine (37.5 mg/kg per day); TAA-treated group, received intraperitoneal (i.p.) TAA (200 mg/kg b.w.) twice a week; and caffeine + TAA-treated group, received combined TAA and caffeine in the same previous doses. After eight weeks of treatment, blood samples were collected for biochemical analysis and liver specimens were prepared for histological and immunohistochemical studies and for assessment of oxidative stress. TAA induced liver toxicity with elevated liver enzymes and histological alterations, fatty changes, apoptosis, and fibrosis evidenced by increased immunohistochemical reaction to matrix metalloproteinase-9 (MMP-9) and collagen type IV in hepatocytes. Also, the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in serum were significantly elevated. Co-treatment with caffeine and TAA restored normal liver structure and function. Caffeine provided an anti-fibrogenic, anti-inflammatory, and antioxidant effect that was associated with recovery of hepatic histological and functional alterations from TAA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Mona G Amer
- 1 Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehad F Mazen
- 1 Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed M Mohamed
- 2 Department of Medical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Wen J, Wu Y, Wei W, Li Z, Wang P, Zhu S, Dong W. Protective effects of recombinant human cytoglobin against chronic alcohol-induced liver disease in vivo and in vitro. Sci Rep 2017; 7:41647. [PMID: 28128325 PMCID: PMC5269723 DOI: 10.1038/srep41647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is an important worldwide public health issue with no satisfying treatment available since now. Here we explore the effects of recombinant human cytoglobin (rhCygb) on chronic alcohol-induced liver injury and the underlying mechanisms. In vivo studies showed that rhCygb was able to ameliorate alcohol-induced liver injury, significantly reversed increased serum index (ALT, AST, TG, TC and LDL-C) and decreased serum HDL-C. Histopathology observation of the liver of rats treated with rhCygb confirmed the biochemical data. Furthermore, rhCygb significantly inhibited Kupffer cells (KCs) proliferation and TNF-α expression in LPS-induced KCs. rhCygb also inhibited LPS-induced NADPH oxidase activity and ROS, NO and O2•- generation. These results collectively indicate that rhCygb exert the protective effect on chronic alcohol-induced liver injury through suppression of KC activation and oxidative stress. In view of its anti-oxidative stress and anti-inflammatory features, rhCygb might be a promising candidate for development as a therapeutic agent against ALD.
Collapse
Affiliation(s)
- Jian Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China.,Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Yongbin Wu
- Department of Clinical Laboratory, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Wei Wei
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Zhen Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Ping Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| | - Shiwei Zhu
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Wenqi Dong
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong Province 510515, P.R. China
| |
Collapse
|
27
|
Vidal S, Tapia-Paniagua ST, Moriñigo JM, Lobo C, García de la Banda I, Balebona MDC, Moriñigo MÁ. Effects on intestinal microbiota and immune genes of Solea senegalensis after suspension of the administration of Shewanella putrefaciens Pdp11. FISH & SHELLFISH IMMUNOLOGY 2016; 58:274-283. [PMID: 27623340 DOI: 10.1016/j.fsi.2016.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/04/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
The interaction host-intestinal microbiota is essential for the immunological homeostasis of the host. Probiotics, prebiotics and synbiotics are promising tools for the manipulation of the intestinal microbiota towards beneficial effects to the host. The objective of this study was to evaluate the modulation effect on the intestinal microbiota and the transcription of genes involved in the immune response in head kidney of Solea senegalensis after administration of diet supplemented with the prebiotic alginate and the probiotic Shewanella putrefaciens Pdp11 CECT 7627 (SpPdp11). The results showed higher adaptability to dietary changes in the intestinal microbiota of fish fed diet with alginate and SpPdp11 together compared to those fish that received an alginate-supplemented diet. The alginate-supplemented diet produced up-regulation of genes encoding proteins involved in immunological responses, such as complement, lysozyme G and transferrin, and oxidative stress, such as NADPH oxidase and glutation peroxidase. On the other hand, the administration of alginate combined with SpPdp11 resulted in a significant increase of the transcription of genes encoding for glutation peroxidase and HSP70, indicating a potential protective effect of SpPdp11 against oxidative stress. In addition, these effects were maintained after the suspension of the probiotic treatment. The relationship between the modulation of the intestinal microbiota and the expression of genes with protective effect against the oxidative stress was demonstrated by the Principal Components Analysis.
Collapse
Affiliation(s)
- Sara Vidal
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departament of Microbiology, Campus de Teatinos s/n, Universidad de Málaga, 29071-Málaga, Spain
| | - Silvana Teresa Tapia-Paniagua
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departament of Microbiology, Campus de Teatinos s/n, Universidad de Málaga, 29071-Málaga, Spain
| | - Jesús Miguel Moriñigo
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departament of Microbiology, Campus de Teatinos s/n, Universidad de Málaga, 29071-Málaga, Spain
| | - Carmen Lobo
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander, 39080-Santander, Spain
| | - Inés García de la Banda
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander, 39080-Santander, Spain
| | - María Del Carmen Balebona
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departament of Microbiology, Campus de Teatinos s/n, Universidad de Málaga, 29071-Málaga, Spain
| | - Miguel Ángel Moriñigo
- Group of Prophylaxis and Biocontrol of Fish Diseases, Departament of Microbiology, Campus de Teatinos s/n, Universidad de Málaga, 29071-Málaga, Spain.
| |
Collapse
|
28
|
Perilipin 5 restores the formation of lipid droplets in activated hepatic stellate cells and inhibits their activation. J Transl Med 2016; 96:791-806. [PMID: 27135793 DOI: 10.1038/labinvest.2016.53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatic stellate cells (HSC) are major effectors during hepatic fibrogenesis. The activation of HSC is coupled to the loss of lipid droplets (LDs), which are specialized organelles composed of neutral lipids surrounded by perilipins. LDs have emerged as a focal point of interest in understanding the metabolic regulation of intrahepatic lipids during lipid-mediated liver fibrogenesis. Perilipin 5 (Plin5) is a newly identified LD protein in the perilipin family, which plays a key role in regulating aspects of intracellular trafficking, signaling, and cytoskeletal organization in hepatocytes. Recent work in Plin5 knockout mice suggests a role in high fat diet-induced hepatic lipotoxicity. The current report is to evaluate the impact of Plin5 on HSC activation and to elucidate the underlying mechanisms. We now show that high fat diet-induced liver fibrosis is accompanied by an approximate 75% reduction in Plin5 in HSC, and that spontaneous activation of primary HSC produces temporally coincident loss of Plin5 expression and LD depletion. As modulating lipid content in HSC is a suggested strategy for inhibition of HSC activation and treatment of hepatic fibrosis, we asked whether exogenous Plin5 expression in primary HSC would reverse the activation phenotype and promote LD formation. Recombinant lentiviral Plin5 expression in primary mouse HSC restored the formation of LDs, increased lipid content by inducing expression of pro-lipogenic genes and suppressing expression of pro-lipolytic genes, and suppressed HSC activation (~two fold reduction in expression of procollagen and α-smooth muscle actin, two unique biomarkers for activated HSC). In addition, the expression of exogenous Plin5 in HSC attenuated cellular oxidative stress by reducing cellular reactive oxygen species, elevating cellular glutathione, and inducing gene expression of glutamate-cysteine ligase. Taken together, our results indicate that expression of Plin5 plays a critical role in the formation of LDs, the elevation of lipid content in HSC, and the inhibition of the activation of HSC.
Collapse
|
29
|
Dong D, Zhong W, Sun Q, Zhang W, Sun X, Zhou Z. Oxidative products from alcohol metabolism differentially modulate pro-inflammatory cytokine expression in Kupffer cells and hepatocytes. Cytokine 2016; 85:109-19. [PMID: 27314544 DOI: 10.1016/j.cyto.2016.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability.
Collapse
Affiliation(s)
- Daoyin Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Qian Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
30
|
Liver-Specific Deletion of Phosphatase and Tensin Homolog Deleted on Chromosome 10 Significantly Ameliorates Chronic EtOH-Induced Increases in Hepatocellular Damage. PLoS One 2016; 11:e0154152. [PMID: 27124661 PMCID: PMC4849752 DOI: 10.1371/journal.pone.0154152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease is a significant contributor to global liver failure. In murine models, chronic ethanol consumption dysregulates PTEN/Akt signaling. Hepatospecific deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTENLKO) mice possess constitutive activation of Akt(s) and increased de novo lipogenesis resulting in increased hepatocellular steatosis. This makes PTENLKO a viable model to examine the effects of ethanol in an environment of preexisting steatosis. The aim of this study was to determine the impact of chronic ethanol consumption and the absence of PTEN (PTENLKO) compared to Alb-Cre control mice (PTENf/f) on hepatocellular damage as evidenced by changes in lipid accumulation, protein carbonylation and alanine amino transferase (ALT). In the control PTENf/f animals, ethanol significantly increased ALT, liver triglycerides and steatosis. In contrast, chronic ethanol consumption in PTENLKO mice decreased hepatocellular damage when compared to PTENLKO pair-fed controls. Consumption of ethanol elevated protein carbonylation in PTENf/f animals but had no effect in PTENLKO animals. In PTENLKO mice, overall hepatic mRNA expression of genes that contribute to GSH homeostasis as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations were significantly elevated compared to respective PTENf/f counterparts. These data indicate that during conditions of constitutive Akt activation and steatosis, increased GSH homeostasis assists in mitigation of ethanol-dependent induction of oxidative stress and hepatocellular damage. Furthermore, data herein suggest a divergence in EtOH-induced hepatocellular damage and increases in steatosis due to polyunsaturated fatty acids downstream of PTEN.
Collapse
|
31
|
Seo W, Jeong WI. Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease? World J Gastroenterol 2016; 22:1348-1356. [PMID: 26819504 PMCID: PMC4721970 DOI: 10.3748/wjg.v22.i4.1348] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/28/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol consumption is one of the most common causes of the progression of alcoholic liver disease (ALD). In the past, alcohol-mediated hepatocyte injury was assumed to be a significantly major cause of ALD. However, a huge number of recent and brilliant studies have demonstrated that hepatic non-parenchymal cells including Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells and diverse types of lymphocytes play crucial roles in the pathogenesis of ALD by producing inflammatory mediators such as cytokines, oxidative stress, microRNA, and lipid-originated metabolites (retinoic acid and endocannabinoids) or by directly interacting with parenchymal cells (hepatocytes). Therefore, understanding the comprehensive roles of hepatic non-parenchymal cells during the development of ALD will provide new integrative directions for the treatment of ALD. This review will address the roles of non-parenchymal cells in alcoholic steatosis, inflammation, and liver fibrosis and might help us to discover possible therapeutic targets and treatments involving modulating the non-parenchymal cells in ALD.
Collapse
|
32
|
Mohamed WA, Schaalan MF, El-Abhar HS. Camel Milk: Potential Utility as an Adjunctive Therapy to Peg-IFN/RBV in HCV-4 Infected Patients in Egypt. Nutr Cancer 2015; 67:1305-13. [PMID: 26492130 DOI: 10.1080/01635581.2015.1087041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present prospective study aims to investigate the potential therapeutic effect and the underlying mechanisms of drinking camel milk for 60 days as an adjunctive therapy to the standard treatment PEG/RBV. Twenty-five hepatitis C virus (HCV)-infected Egyptian patients, with mild to moderate parenchymal affection to mild cirrhosis were enrolled in this study after proper history taking and clinical examination. Their biomarkers were evaluated before and after the addition of camel milk. The improving effect of camel milk was reflected on the marked inhibition of the serum levels of the proinflammatory markers, viz., tumor necrosis factor-α, monocyte chemotactic protein-1, hyaluronic acid, and TGF-β1, besides PCR, AST, ALT, GGT, bilirubin, prothrombin time, INR, and alpha-fetoprotein. In addition, camel milk elevated significantly (P < 0.001) the serum levels of albumin, the antiapoptotic protein BCL-2, the total antioxidant capacity, interleukin-10, and vitamin D. In conclusion, our study revealed a regulatory function of camel milk on multiple parameters of inflammatory mediators, immunomodulators, antiapoptosis, and antioxidants, giving insight into the potential therapeutic benefit underlying the anti-HCV actions of camel milk. The limitations of the current study include the small sample size recruited and the failure to test it on cohorts with severe stages of hepatitis; like Child-Pugh stage C, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Walid A Mohamed
- a Department of Chemistry , Cairo University , Cairo , Egypt
| | - Mona F Schaalan
- b Department of Biochemistry , Faculty of Pharmacy, Misr International University , Cairo , Egypt
| | - Hanan S El-Abhar
- c Department of Pharmacology and Toxicology , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| |
Collapse
|
33
|
Tapia-Paniagua ST, Vidal S, Lobo C, García de la Banda I, Esteban MA, Balebona MC, Moriñigo MA. Dietary administration of the probiotic SpPdp11: Effects on the intestinal microbiota and immune-related gene expression of farmed Solea senegalensis treated with oxytetracycline. FISH & SHELLFISH IMMUNOLOGY 2015; 46:449-458. [PMID: 26190256 DOI: 10.1016/j.fsi.2015.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Few antimicrobials are currently authorised in the aquaculture industry to treat infectious diseases. Among them, oxytetracycline (OTC) is one of the first-choice drugs for nearly all bacterial diseases. The objective of this study was to evaluate the effect of the dietary administration of OTC both alone and jointly with the probiotic Shewanella putrefaciens Pdp11 (SpPdp11) on the intestinal microbiota and hepatic expression of genes related to immunity in Senegalese sole (Solea senegalensis) juveniles. The results demonstrated that the richness and diversity of the intestinal microbiota of fish treated with OTC decreased compared with those of the control group but that these effects were lessened by the simultaneous administration of SpPdp11. In addition, specimens that received OTC and SpPdp11 jointly showed a decreased intensity of the Denaturing Gradient Gel Electrophoresis (DGGE) bands related to Vibrio genus and the presence of DGGE bands related to Lactobacillus and Shewanella genera. The relationship among the intestinal microbiota of fish fed with control and OTC diets and the expression of the NADPH oxidase and CASPASE-6 genes was demonstrated by a Principal Components Analysis (PCA) carried out in this study. In contrast, a close relationship between the transcription of genes, such as NKEF, IGF-β, HSP70 and GP96, and the DGGE bands of fish treated jointly with OTC and SpPdp11 was observed in the PCA study. In summary, the results obtained in this study demonstrate that the administration of OTC results in the up-regulation of genes related to apoptosis but that the joint administration of OTC and S. putrefaciens Pdp11 increases the transcription of genes related to antiapoptotic effects and oxidative stress regulation. Further, a clear relationship between these changes and those detected in the intestinal microbiota is established.
Collapse
Affiliation(s)
- S T Tapia-Paniagua
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - S Vidal
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - C Lobo
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain
| | - I García de la Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain
| | - M A Esteban
- Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M C Balebona
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
34
|
Caro AA, Bell M, Ejiofor S, Zurcher G, Petersen DR, Ronis MJJ. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically. Alcohol Clin Exp Res 2015; 38:2896-906. [PMID: 25581647 DOI: 10.1111/acer.12576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/06/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative stress is a factor that triggers mitochondrial biogenesis after chronic EtOH feeding. If our hypothesis is correct, co-administration of antioxidants should prevent up-regulation of mitochondrial biogenesis genes. METHODS Rats were fed an EtOH-containing diet intragastrically by total enteral nutrition for 150 days, in the absence or presence of the antioxidant N-acetylcysteine (NAC) at 1.7 g/kg/d; control rats were administered isocaloric diets where carbohydrates substituted for EtOH calories. RESULTS EtOH administration significantly increased hepatic oxidative stress, evidenced as decreased liver total glutathione and reduced glutathione/glutathione disulfide ratio. These effects were inhibited by co-administration of EtOH and NAC. Chronic EtOH increased the expression of mitochondrial biogenesis genes including peroxisome proliferator-activated receptor gamma-coactivator-1 alpha and mitochondrial transcription factor A, and mitochondrial DNA; co-administration of EtOH and NAC prevented these effects. Chronic EtOH administration was associated with decreased mitochondrial mass, inactivation and depletion of mitochondrial complex I and complex IV, and increased hepatic mitochondrial oxidative damage, effects that were not prevented by NAC. CONCLUSIONS These results suggest that oxidative stress caused by chronic EtOH triggered the up-regulation of mitochondrial biogenesis genes in rat liver, because an antioxidant such as NAC prevented both effects. Because NAC did not prevent liver mitochondrial oxidative damage, extra-mitochondrial effects of reactive oxygen species may regulate mitochondrial biogenesis. In spite of the induction of hepatic mitochondrial biogenesis genes by chronic EtOH, mitochondrial mass and function decreased probably in association with mitochondrial oxidative damage. These results also predict that the effectiveness of NAC as an antioxidant therapy for chronic alcoholism will be limited by its limited antioxidant effects in mitochondria, and its inhibitory effect on mitochondrial biogenesis.
Collapse
Affiliation(s)
- Andres A Caro
- Chemistry Department , Hendrix College, Conway, Arkansas
| | | | | | | | | | | |
Collapse
|
35
|
Mak KY, Chin R, Cunningham SC, Habib MR, Torresi J, Sharland AF, Alexander IE, Angus PW, Herath CB. ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice. Mol Ther 2015; 23:1434-43. [PMID: 25997428 DOI: 10.1038/mt.2015.92] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) which breaks down profibrotic peptide angiotensin II to antifibrotic peptide angiotensin-(1-7) is a potential therapeutic target in liver fibrosis. We therefore investigated the long-term therapeutic effect of recombinant ACE2 using a liver-specific adeno-associated viral genome 2 serotype 8 vector (rAAV2/8-ACE2) with a liver-specific promoter in three murine models of chronic liver disease, including carbon tetrachloride-induced toxic injury, bile duct ligation-induced cholestatic injury, and methionine- and choline-deficient diet-induced steatotic injury. A single injection of rAAV2/8-ACE2 was administered after liver disease has established. Hepatic fibrosis, gene and protein expression, and the mechanisms that rAAV2/8-ACE2 therapy associated reduction in liver fibrosis were analyzed. Compared with control group, rAAV2/8-ACE2 therapy produced rapid and sustained upregulation of hepatic ACE2, resulting in a profound reduction in fibrosis and profibrotic markers in all diseased models. These changes were accompanied by reduction in hepatic angiotensin II levels with concomitant increases in hepatic angiotensin-(1-7) levels, resulting in significant reductions of NADPH oxidase assembly, oxidative stress and ERK1/2 and p38 phosphorylation. Moreover, rAAV2/8-ACE2 therapy normalized increased intrahepatic vascular tone in fibrotic livers. We conclude that rAAV2/8-ACE2 is an effective liver-targeted, long-term therapy for liver fibrosis and its complications without producing unwanted systemic effects.
Collapse
Affiliation(s)
- Kai Y Mak
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Ruth Chin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Miriam R Habib
- Transplantation Research Group, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Alexandra F Sharland
- Transplantation Research Group, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Peter W Angus
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
36
|
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide spectrum of hepatic lesions, from steatosis to cirrhosis. Cell injury, inflammation, oxidative stress, regeneration and bacterial translocation are key drivers of alcohol-induced liver injury. Alcoholic hepatitis is the most severe form of all the alcohol-induced liver lesions. Animal models of ALD mainly involve mild liver damage (that is, steatosis and moderate inflammation), whereas severe alcoholic hepatitis in humans occurs in the setting of cirrhosis and is associated with severe liver failure. For this reason, translational studies using humans and human samples are crucial for the development of new therapeutic strategies. Although multiple attempts have been made to improve patient outcome, the treatment of alcoholic hepatitis is still based on abstinence from alcohol and brief exposure to corticosteroids. However, nearly 40% of patients with the most severe forms of alcoholic hepatitis will not benefit from treatment. We suggest that future clinical trials need to focus on end points other than mortality. This Review discusses the main pathways associated with the progression of liver disease, as well as potential therapeutic strategies targeting these pathways.
Collapse
|
37
|
Wang Q, Dai X, Yang W, Wang H, Zhao H, Yang F, Yang Y, Li J, Lv X. Caffeine protects against alcohol-induced liver fibrosis by dampening the cAMP/PKA/CREB pathway in rat hepatic stellate cells. Int Immunopharmacol 2015; 25:340-52. [PMID: 25701503 DOI: 10.1016/j.intimp.2015.02.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Abstract
Alcoholic liver fibrosis (ALF) is characterized by hyperplasia of extracellular matrix under long-term alcohol stimulation. Hepatic stellate cell (HSC) activation plays an important role in promoting hepatic fibrogenesis. Caffeine, as the main active component of coffee and tea, was widely consumed in daily life. It was always a thought that caffeine can reduce the probability of suffering from liver diseases. In this study, we attempt to validate the hypothesis that caffeine inhibits activation of HSCs which were isolated from rat ALF model. The rats were gavaged by ethanol to establish ALF model and then treated with different concentrations of caffeine or colchicine. Serum was collected to measure the contents of serum alanine aminotransferase (ALT), aspartate transaminase (AST), hyaluronic acid (HA), laminin (LN), N-terminal peptide of type III procollagen (PIIINP) and type IV collagen (CIV). Then liver tissues were obtained for hematoxylin-eosin staining and Sirius-red staining. Others were treated through liver perfusion to isolate primary rat HSCs. Interestingly, we found that caffeine significantly decreased ALT, AST, HA, LN, PIIINP and CIV levels and reversed liver fibrosis in rat ALF models. Results of immunohistochemistry, real-time PCR and western blot indicated that caffeine could reduce fibrosis and inhibit cAMP/PKA/CREB signal pathway in HSC. Caffeine has a preventive effect on ALF. The mechanism may be interpreted that caffeine inhibits the cAMP/PKA/CREB signal pathway through adenosine A2A receptors in HSC.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China.
| | - Xuefei Dai
- The Fourth Affiliated Hospital of Anhui Medical University, Tun Xi Road, Hefei, Anhui Province, 230000, China
| | - Wanzhi Yang
- The First Hospital of Anqing, Xiao Su Road, Anqing, Anhui Province, 246003, China
| | - He Wang
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China
| | - Han Zhao
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China
| | - Feng Yang
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China
| | - Yan Yang
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China
| | - Xiongwen Lv
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China; Institute for Liver Disease of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
38
|
Wang Z, Su B, Fan S, Fei H, Zhao W. Protective effect of oligomeric proanthocyanidins against alcohol-induced liver steatosis and injury in mice. Biochem Biophys Res Commun 2015; 458:757-62. [PMID: 25680468 DOI: 10.1016/j.bbrc.2015.01.153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
The long-term consumption of alcohol has been associated with multiple pathologies at all levels, such as alcoholism, chronic pancreatitis, malnutrition, alcoholic liver disease (ALD) and cancer. In the current study, we investigated the protective effect of oligomeric proanthocyanidins (OPC) against alcohol-induced liver steatosis and injury and the possible mechanisms using ethanol-induced chronic liver damage mouse models. The results showed that OPC significantly improved alcohol-induced dyslipidemia and alleviated liver steatosis by reducing levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-c) and liver malondialdehyde (MDA), and increasing levels of serum high-density lipoprotein (HDL-c), liver superoxide dismutase (SOD). Further investigation indicated that OPC markedly decreased the expressions of lipid synthesis genes and inflammation genes such as sterol regulatory element-binding protein-1c (Srebp-1c), protein-2 (Srebp2), interleukin IL-1β, IL-6 and TNF-α. Furthermore, AML-12 cells line was used to investigate the possible mechanisms which indicated that OPC might alleviate liver steatosis and damage through AMP-activated protein kinase (AMPK) activation involving oxidative stress. In conclusion, our study demonstrated excellent protective effect of OPC against alcohol-induced liver steatosis and injury, which could a potential drug for the treatment of alcohol-induced liver injury in the future.
Collapse
Affiliation(s)
- Zhiguo Wang
- Hospital of Integrated Chinese and Western Medicine in Jiangsu Province, Jiangsu, China
| | - Bo Su
- Huai'an Maternity and Child Health-Care Hospital, Huai'an, China
| | - Sumei Fan
- Huai'an Second People's Hospital, Huai'an, China
| | - Haixia Fei
- Jiangsu Province Official Hospital, Jiangsu, China.
| | - Wei Zhao
- Nanjing Maternity and Child Health-Care Hospital, Nanjing, China.
| |
Collapse
|
39
|
Shearn CT, Petersen DR. Understanding the Tumor Suppressor PTEN in Chronic Alcoholism and Hepatocellular Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:173-84. [DOI: 10.1007/978-3-319-09614-8_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Abstract
Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases.
Collapse
|
41
|
Li B, Zhu L, Wu T, Zhang J, Jiao X, Liu X, Wang Y, Meng X. Effects of Triterpenoid From Schisandra chinensis on Oxidative Stress in Alcohol-Induced Liver Injury in Rats. Cell Biochem Biophys 2014; 71:803-11. [DOI: 10.1007/s12013-014-0266-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014; 20:8082-8091. [PMID: 25009380 PMCID: PMC4081679 DOI: 10.3748/wjg.v20.i25.8082] [Citation(s) in RCA: 758] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/08/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Redox state constitutes an important background of numerous liver disorders. The redox state participates in the course of inflammatory, metabolic and proliferative liver diseases. Reactive oxygen species (ROS) are primarily produced in the mitochondria and in the endoplasmic reticulum of hepatocytes via the cytochrome P450 enzymes. Under the proper conditions, cells are equipped with special molecular strategies that control the level of oxidative stress and maintain a balance between oxidant and antioxidant particles. Oxidative stress represents an imbalance between oxidant and antioxidant agents. Hepatocytic proteins, lipids and DNA are among the cellular structures that are primarily affected by ROS and reactive nitrogen species. The process results in structural and functional abnormalities in the liver. Thus, the phenomenon of oxidative stress should be investigated for several reasons. First, it may explain the pathogenesis of various liver disorders. Moreover, monitoring oxidative markers among hepatocytes offers the potential to diagnose the degree of liver damage and ultimately to observe the response to pharmacological therapies. The present report focuses on the role of oxidative stress in selected liver diseases.
Collapse
|
43
|
Marchi KC, Muniz JJ, Tirapelli CR. Hypertension and chronic ethanol consumption: What do we know after a century of study? World J Cardiol 2014; 6:283-294. [PMID: 24944758 PMCID: PMC4062120 DOI: 10.4330/wjc.v6.i5.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/11/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The influences of life habits on the cardiovascular system may have important implications for public health, as cardiovascular diseases are among the leading causes of shorter life expectancy worldwide. A link between excessive ethyl alcohol (ethanol) consumption and arterial hypertension was first suggested early last century. Since then, this proposition has received considerable attention. Support for the concept of ethanol as a cause of hypertension derives from several epidemiologic studies demonstrating that in the general population, increased blood pressure is significantly correlated with ethanol consumption. Although the link between ethanol consumption and hypertension is well established, the mechanism through which ethanol increases blood pressure remains elusive. Possible mechanisms underlying ethanol-induced hypertension were proposed based on clinical and experimental observations. These mechanisms include an increase in sympathetic nervous system activity, stimulation of the renin-angiotensin-aldosterone system, an increase of intracellular Ca2+ in vascular smooth muscle, increased oxidative stress and endothelial dysfunction. The present report reviews the relationship between ethanol intake and hypertension and highlights some mechanisms underlying this response. These issues are of interest for the public health, as ethanol consumption contributes to blood pressure elevation in the population.
Collapse
|
44
|
Depression by a Green Tea Extract of Alcohol-Induced Oxidative Stress and Lipogenesis in Rat Liver. Biosci Biotechnol Biochem 2014; 75:1668-76. [DOI: 10.1271/bbb.110163] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Galicia-Moreno M, Gutiérrez-Reyes G. Papel del estrés oxidativo en el desarrollo de la enfermedad hepática alcohólica. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014; 79:135-44. [DOI: 10.1016/j.rgmx.2014.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022]
|
46
|
Galicia-Moreno M, Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014. [DOI: 10.1016/j.rgmxen.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
The Protective Effect of a Metallic Selenopeptide with Superoxide Dismutase and Glutathione Peroxidase Activities Against Alcohol Induced Injury in Hepatic L02 Cells. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Abstract
BACKGROUND There is a growing body of evidence that caffeine exerts beneficial effects on the liver; however, the molecular mechanisms by which caffeine exerts beneficial effects on the liver are poorly defined. AIMS The aim of the present study was to examine the efficacy of caffeine in preventing thioacetamide (TAA)-induced cirrhosis in rats. MATERIALS AND METHODS Cirrhosis was induced by chronic TAA administration and the effects of coadministration of caffeine for 8 weeks were evaluated, including control groups. RESULTS The administration of TAA induced liver cirrhosis, which was inhibited by caffeine. Caffeine prevents elevation of liver enzymes. Liver histopathology and hydroxyproline levels were significantly lower in the rats treated with TAA plus caffeine compared with TAA only. Caffeine shows antioxidant properties by restoring the redox equilibrium [lipid peroxidation and glutathione peroxidase (GPx) levels]. Western blot assays showed blockade of the expression of transforming growth factor-β and its downstream inductor connective tissue growth factor. Similarly, caffeine decreases messenger RNA levels of these profibrogenic proteins. In addition, caffeine inhibits hepatic stellate cells because of blockade of the expression of α-smooth muscle actin; in the western blot assay, we also found low levels of mRNA of collagen α1. Zymography assays showed that caffeine had an effect on the activity of matrix metalloproteinases 2 and 9, but no effect on the expression of tissue inhibitor of metalloproteinases-1, using RT-PCR. CONCLUSION Our results show that caffeine prevents experimental cirrhosis; the mechanisms of action are associated with its antioxidant properties and mainly by its ability to block the elevation of the profibrogenic cytokine transforming growth factor-β, which may be associated with attenuation of the inflammatory and fibrotic processes.
Collapse
|
49
|
Sergent O, Podechard N, Aliche-Djoudi F, Lagadic-Gossmann D. Acides gras polyinsaturés oméga 3 et toxicité hépatique de l’éthanol : rôle du remodelage membranaire. NUTR CLIN METAB 2014. [DOI: 10.1016/j.nupar.2013.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Kim MJ, Nepal S, Lee ES, Jeong TC, Kim SH, Park PH. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages. Toxicol Appl Pharmacol 2013; 273:77-89. [DOI: 10.1016/j.taap.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 12/12/2022]
|