1
|
Singh S, Khan S, Shahid M, Sardar M, Hassan MI, Islam A. Targeting tau in Alzheimer's and beyond: Insights into pathology and therapeutic strategies. Ageing Res Rev 2025; 104:102639. [PMID: 39674375 DOI: 10.1016/j.arr.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Tauopathies encompass a group of approximately 20 neurodegenerative diseases characterized by the accumulation of the microtubule-associated protein tau in brain neurons. The pathogenesis of intracellular neurofibrillary tangles, a hallmark of tauopathies, is initiated by hyperphosphorylated tau protein isoforms that cause neuronal death and lead to diseases like Alzheimer's, Parkinson's disease, frontotemporal dementia, and other complex neurodegenerative diseases. Current applications of tau biomarkers, including imaging, cerebrospinal fluid, and blood-based assays, assist in the evaluation and diagnosis of tauopathies. Emerging research is providing various potential strategies to prevent cellular toxicity caused by tau aggregation such as: 1) suppressing toxic tau aggregation, 2) preventing post-translational modifications of tau, 3) stabilizing microtubules and 4) designing tau-directed immunogens. This review aims to discuss the role of tau in tauopathies along with neuropathological features of the different tauopathies and the new developments in treating tau aggregation with the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Sunidhi Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sumaiya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Arakawa A, Goto R, Higashihara M, Hiroyoshi Y, Shioya A, Hara M, Orita M, Matsubara T, Sengoku R, Kameyama M, Tokumaru AM, Hasegawa M, Toda T, Iwata A, Murayama S, Saito Y. Clinicopathological study of dementia with grains presenting with parkinsonism compared with a typical case. Neuropathology 2024; 44:376-387. [PMID: 38558069 DOI: 10.1111/neup.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Argyrophilic grain disease (AGD) is one of the major pathological backgrounds of senile dementia. Dementia with grains refers to cases of dementia for which AGD is the sole background pathology responsible for dementia. Recent studies have suggested an association between dementia with grains and parkinsonism. In this study, we aimed to present two autopsy cases of dementia with grains. Case 1 was an 85-year-old man who exhibited amnestic dementia and parkinsonism, including postural instability, upward gaze palsy, and neck and trunk rigidity. The patient was clinically diagnosed with progressive supranuclear palsy and Alzheimer's disease. Case 2 was a 90-year-old man with pure amnestic dementia, clinically diagnosed as Alzheimer's disease. Recently, we used cryo-electron microscopy to confirm that the tau accumulated in both cases had the same three-dimensional structure. In this study, we compared the detailed clinical picture and neuropathological findings using classical staining and immunostaining methods. Both cases exhibited argyrophilic grains and tau-immunoreactive structures in the brainstem and basal ganglia, especially in the nigrostriatal and limbic systems. However, Case 1 had more tau immunoreactive structures. Considering the absence of other disease-specific structures such as tufted astrocytes, astrocytic plaques and globular glial inclusions, lack of conspicuous cerebrovascular disease, and no history of medications that could cause parkinsonism, our findings suggest an association between AGD in the nigrostriatal system and parkinsonism.
Collapse
Affiliation(s)
- Akira Arakawa
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoji Goto
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Hiroyoshi
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ayako Shioya
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Manato Hara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Orita
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Renpei Sengoku
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masashi Kameyama
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
3
|
Wiesner D, Feldengut S, Woelfle S, Boeckers TM, Ludolph AC, Roselli F, Del Tredici K. Neuropeptide FF (NPFF)-positive nerve cells of the human cerebral cortex and white matter in controls, selected neurodegenerative diseases, and schizophrenia. Acta Neuropathol Commun 2024; 12:108. [PMID: 38943180 PMCID: PMC11212262 DOI: 10.1186/s40478-024-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 07/01/2024] Open
Abstract
We quantified and determined for the first time the distribution pattern of the neuropeptide NPFF in the human cerebral cortex and subjacent white matter. To do so, we studied n = 9 cases without neurological disorders and n = 22 cases with neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (ALS, n = 8), Alzheimer's disease (AD, n = 8), Pick's disease (PiD, n = 3), and schizophrenia (n = 3). NPFF-immunopositive cells were located chiefly, but not exclusively, in the superficial white matter and constituted there a subpopulation of white matter interstitial cells (WMIC): Pyramidal-like and multipolar somata predominated in the gyral crowns, whereas bipolar and ovoid somata predominated in the cortex surrounding the sulci. Their sparsely ramified axons were unmyelinated and exhibited NPFF-positive bead-like varicosities. We found significantly fewer NPFF-immunopositive cells in the gray matter of the frontal, cingulate, and superior temporal gyri of both sporadic ALS and late-stage AD patients than in controls, and significantly fewer NPFF-positive cells in the subjacent as well as deep white matter of the frontal gyrus of these patients compared to controls. Notably, the number of NPFF-positive cells was also significantly lower in the hippocampal formation in AD compared to controls. In PiD, NPFF-positive cells were present in significantly lower numbers in the gray and white matter of the cingulate and frontal gyrii in comparison to controls. In schizophrenic patients, lower wNPFF cell counts in the neocortex were significant and global (cingulate, frontal, superior temporal gyrus, medial, and inferior gyri). The precise functions of NPFF-positive cells and their relationship to the superficial corticocortical white matter U-fibers are currently unknown. Here, NPFF immunohistochemistry and expression characterize a previously unrecognized population of cells in the human brain, thereby providing a new entry-point for investigating their physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Diana Wiesner
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
- DZNE, Ulm Site, 89081, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| | - Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- DZNE, Ulm Site, 89081, Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany.
- DZNE, Ulm Site, 89081, Ulm, Germany.
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
4
|
Inoue K, Sugase S, Naka T, Ikeuchi T, Murayama S, Fujimura H. An autopsy case of diffuse atypical argyrophilic grain disease (AGD) with presenile onset and three-year course of motor and cognitive impairment. Neuropathology 2024; 44:200-207. [PMID: 37936523 DOI: 10.1111/neup.12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
We report a case of argyrophilic grain disease (AGD) with unique clinical and pathological presentations. A 52-year-old man presented with spastic quadriparesis, bulbar palsy, and mild cognitive decline. His condition deteriorated rapidly and he died of pneumonia three years from onset. Pathologically, neuronal degeneration was involved severely in the amygdala, ambient gyrus, midbrain tegmentum, and reticular formation. The neurons of the temporal lobe, cingulate gyrus, brainstem, and spinal gray matter were also lost moderately. There was diffuse 4-repeat tau-pathology with argyrophilic grains. There were pretangles, globose-type neurofibrillary tangles, and coiled bodies in the cerebral cortices, basal ganglia, thalami, brainstem, and the spinal cord except for the cerebellar cortices. There was no pathologic mutation in MAPT.
Collapse
Affiliation(s)
- Kimiko Inoue
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Satoko Sugase
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Japan
| | - Takashi Naka
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| |
Collapse
|
5
|
Chun MY, Chae W, Seo SW, Jang H, Yun J, Na DL, Kang D, Lee J, Hammers DB, Apostolova LG, Jang SI, Kim HJ. Effects of risk factors on the development and mortality of early- and late-onset dementia: an 11-year longitudinal nationwide population-based cohort study in South Korea. Alzheimers Res Ther 2024; 16:92. [PMID: 38664771 PMCID: PMC11044300 DOI: 10.1186/s13195-024-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Early-onset dementia (EOD, onset age < 65) and late-onset dementia (LOD, onset age ≥ 65) exhibit distinct features. Understanding the risk factors for dementia development and mortality in EOD and LOD respectively is crucial for personalized care. While risk factors are known for LOD development and mortality, their impact on EOD remains unclear. We aimed to investigate how hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation, and osteoporosis influence the development and mortality of EOD and LOD, respectively. METHODS Using the Korean National Health Insurance Service (NHIS) database, we collected 546,709 dementia-free individuals and followed up for 11 years. In the two study groups, the Younger group (< 65 years old) and the Older group (≥ 65 years old), we applied Cox proportional hazard models to assess risk factors for development of EOD and LOD, respectively. Then, we assessed risk factors for mortality among EOD and LOD. RESULTS Diabetes mellitus and osteoporosis increased the risk of EOD and LOD development. Hypertension increased the risk of EOD, while atrial fibrillation increased the risk of LOD. Conversely, hyperlipidemia exhibited a protective effect against LOD development. Additionally, diabetes mellitus increased mortality in EOD and LOD. Hypertension and atrial fibrillation increased mortality in LOD, while hyperlipidemia decreased mortality in EOD and LOD. CONCLUSIONS Risk factors influencing dementia development and mortality differed in EOD and LOD. Targeted public health interventions addressing age-related risk factors may reduce dementia incidence and mortality.
Collapse
Affiliation(s)
- Min Young Chun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Neurology, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero, Giheung-gu, , Yongin-si, Gyeonggi-do, 16995, South Korea
| | - Wonjeong Chae
- Office of Strategic Planning, Healthcare Policy and Strategy Task Force, Yonsei University Health System, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-Gu, Bucheon-si, Gyeonggi-do, 14574, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Dongwoo Kang
- Department of Data Science, Hanmi Pharm. Co., Ltd, 14, Wiryeseong-daero, Songpa-gu, Seoul, South Korea
| | - Jungkuk Lee
- Department of Data Science, Hanmi Pharm. Co., Ltd, 14, Wiryeseong-daero, Songpa-gu, Seoul, South Korea
| | - Dustin B Hammers
- Department of Neurology, Indiana University School of Medicine, 355 W 16th St, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, 355 W 16th St, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, 355W 16th St, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 355W 16th St, Indianapolis, IN, USA
| | - Sung-In Jang
- Department of Preventive Medicine, College of Medicine, Yonsei University, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Department of Neurology, Indiana University School of Medicine, 355 W 16th St, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Inui S, Kaneda D, Sakurai K, Morimoto S, Uchida Y, Abe O, Hashizume Y. The influence of limbic-predominant age-related TDP-43 encephalopathy on argyrophilic grain disease: A voxel-based morphometry analysis of pathologically confirmed cases. J Neurol Sci 2024; 457:122894. [PMID: 38266517 DOI: 10.1016/j.jns.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The influence of limbic-predominant age-related TAR DNA-binding protein of 43 kDa encephalopathy neuropathological change (LATE-NC) on structural alterations in argyrophilic grain disease (AGD) have not been documented. This study aimed to investigate the morphological impact of LATE-NC on AGD through voxel-based morphometry (VBM) technique. MATERIALS AND METHODS Fifteen individuals with pathologically verified AGD, comprising 6 with LATE-NC (comorbid AGD [cAGD]) and 9 without LATE-NC (pure AGD [pAGD]), along with 10 healthy controls (HC) were enrolled. Whole-brain 3D-T1-weighted images were captured and preprocessed utilizing the Computational Anatomy Toolbox 12. VBM was employed to compare gray matter volume among (i) pAGD and HC, (ii) cAGD and HC, and (iii) pAGD and cAGD. RESULTS In comparison to HC, the pAGD group exhibited slightly asymmetric gray matter volume loss, particularly in the ambient gyrus, amygdala, hippocampus, anterior cingulate gyrus, and insula. Alternatively, the cAGD group exhibited greater gray matter volume loss, with a predominant focus on the inferolateral regions encompassing the ambient gyrus, amygdala, hippocampus, and the inferior temporal area, including the anterior temporal pole. The atrophy of the bilateral anterior temporal pole and right inferior temporal gyrus persisted when contrasting the pAGD and cAGD groups. CONCLUSION Comorbidity with LATE-NC is linked to different atrophic distribution, particularly affecting the inferolateral regions in AGD. Consequently, the consideration of comorbid LATE-NC is crucial in individuals with AGD exhibiting more widespread temporal atrophy.
Collapse
Affiliation(s)
- Shohei Inui
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
7
|
Kameyama H, Tagai K, Takasaki E, Kashibayashi T, Takahashi R, Kanemoto H, Ishii K, Ikeda M, Shigeta M, Shinagawa S, Kazui H. Examining Frontal Lobe Asymmetry and Its Potential Role in Aggressive Behaviors in Early Alzheimer's Disease. J Alzheimers Dis 2024; 98:539-547. [PMID: 38393911 DOI: 10.3233/jad-231306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Neuropsychiatric symptoms (NPS) in patients with dementia lead to caregiver burdens and worsen the patient's prognosis. Although many neuroimaging studies have been conducted, the etiology of NPS remains complex. We hypothesize that brain structural asymmetry could play a role in the appearance of NPS. Objective This study explores the relationship between NPS and brain asymmetry in patients with Alzheimer's disease (AD). Methods Demographic and MRI data for 121 mild AD cases were extracted from a multicenter Japanese database. Brain asymmetry was assessed by comparing the volumes of gray matter in the left and right brain regions. NPS was evaluated using the Neuropsychiatric Inventory (NPI). Subsequently, a comprehensive assessment of the correlation between brain asymmetry and NPS was conducted. Results Among each NPS, aggressive NPS showed a significant correlation with asymmetry in the frontal lobe, indicative of right-side atrophy (r = 0.235, p = 0.009). This correlation remained statistically significant even after adjustments for multiple comparisons (p < 0.01). Post-hoc analysis further confirmed this association (p < 0.05). In contrast, no significant correlations were found for other NPS subtypes, including affective and apathetic symptoms. Conclusions The study suggests frontal lobe asymmetry, particularly relative atrophy in the right hemisphere, may be linked to aggressive behaviors in early AD. These findings shed light on the neurobiological underpinnings of NPS, contributing to the development of potential interventions.
Collapse
Affiliation(s)
- Hiroshi Kameyama
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Tagai
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Emi Takasaki
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuo Kashibayashi
- Dementia-Related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, Hyogo, Japan
| | - Ryuichi Takahashi
- Dementia-Related Disease Medical Center, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, Hyogo, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazunari Ishii
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masatoshi Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
8
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
9
|
Yoshida K, Hata Y, Ichimata S, Okada K, Nishida N. Argyrophilic grain disease is common in older adults and may be a risk factor for suicide: a study of Japanese forensic autopsy cases. Transl Neurodegener 2023; 12:16. [PMID: 37004112 PMCID: PMC10067165 DOI: 10.1186/s40035-023-00352-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Neuropathological diagnosis of argyrophilic grain disease (AGD) is currently based primarily on the combination of argyrophilic grain (AG) visualized using Gallyas-Braak silver staining, phosphorylated tau-positive pretangles, coiled bodies, and ballooned neuron detection. Although AGD is common in patients with dementia and/or prominent psychiatric symptoms, whether it is a distinct neurological disease entity or a by-product of the aging process remains unclear. METHODS In 1449 serial forensic autopsy cases > 40 years old (823 males and 525 females, aged 40-101 years, mean age 70.0 ± 14.1 years), we examined the frequency and comorbid pathology of AGD cases and investigated the clinical appearance by comparing those with non-AGD cases using the propensity score. RESULTS Of the 1449 cases, we detected 342 AGD cases (23.6%; mean age 79.7 years; 177 males and 165 females). The AGD frequency and stage increased with age (P < 0.001). Among AGD cases, 80 (23.4%) patients had dementia, and 51 (15.2%) had a history of psychiatric hospital visits. The frequency of suicide and history of psychiatric disorders were significantly higher in AGD cases than in AGD-negative cases, matched for age, sex, and comorbidity pathology, with a relative risk of suicide of 1.72 (1.30-2.26). The frequency of suicide was significantly higher in AGD cases than in non-AGD cases in female but not male cases. The relative risk of suicide increased to 2.27 (1.20-4.30) and 6.50 (1.58-26.76) in AGD patients with Lewy and progressive supranuclear palsy pathology, respectively, and decreased to 0.88 (0.38-2.10) in those with advanced AD pathology. In AGD cases, 23.4% had dementia; however, the difference was not significant after controlling for age, sex, and comorbid pathology. CONCLUSION Our study demonstrated that AGD is a significant and isolated risk factor for psychiatric hospital visits and suicide completion. In older adults, AGs may contribute to the progression of functional impairment of the limbic system, which leads to psychiatric disorders and suicide attempts.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave Toronto On, Toronto, ON, M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yukiko Hata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan
| | - Shojiro Ichimata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave Toronto On, Toronto, ON, M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Keitaro Okada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan.
| |
Collapse
|
10
|
Sakurai K, Kaneda D, Morimoto S, Uchida Y, Inui S, Kimura Y, Kan H, Kato T, Ito K, Hashizume Y. Voxel-Based and Surface-Based Morphometry Analysis in Patients with Pathologically Confirmed Argyrophilic Grain Disease and Alzheimer’s Disease. J Alzheimers Dis 2023; 93:379-387. [PMID: 37005887 DOI: 10.3233/jad-230068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Background: Due to clinicoradiological similarities, including amnestic cognitive impairment and limbic atrophy, differentiation of argyrophilic grain disease (AGD) from Alzheimer’s disease (AD) is often challenging. Minimally invasive biomarkers, especially magnetic resonance imaging (MRI), are valuable in routine clinical practice. Although it is necessary to explore radiological clues, morphometry analyses using new automated analytical methods, including whole-brain voxel-based morphometry (VBM) and surface-based morphometry (SBM), have not been sufficiently investigated in patients with pathologically confirmed AGD and AD. Objective: This study aimed to determine the volumetric differences in VBM and SBM analyses between patients with pathologically confirmed AGD and AD. Methods: Eight patients with pathologically confirmed AGD with a lower Braak neurofibrillary tangle stage (<III), 11 patients with pathologically confirmed AD without comorbid AGD, and 10 healthy controls (HC) were investigated. Gray matter volumetric changes in VBM and cortical thickness changes in SBM were compared between the two patient groups (i.e., AGD and AD) and the HC group. Results: In contrast to widespread gray matter volume or cortical thickness loss in the bilateral limbic, temporoparietal, and frontal lobes of the AD group, these were limited, especially in the limbic lobes, in the AGD group, compared with that of the HC group. Although bilateral posterior dominant gray matter volume loss was identified in the AD group compared with the AGD group on VBM, there was no significant cluster between these patient groups on SBM. Conclusion: VBM and SBM analyses both showed a different distribution of atrophic changes between AGD and AD.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | |
Collapse
|
11
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
12
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
13
|
Gallo D, Ruiz A, Sánchez-Juan P. Genetic architecture of primary tauopathies. Neuroscience 2022; 518:27-37. [PMID: 35609758 DOI: 10.1016/j.neuroscience.2022.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Primary Tauopathies are a group of diseases defined by the accumulation of Tau, in which the alteration of this protein is the primary driver of the neurodegenerative process. In addition to the classical syndromes (Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD)), new entities, like primary age-related Tauopathy (PART), have been recently described. Except for the classical Richardson's syndrome phenotype in PSP, the correlation between the clinical picture of the primary Tauopathies and underlying pathology is poor. This fact has challenged genetic studies. However, thanks to multicenter collaborations, several genome-wide association studies are helping us unravel the genetic structure of these diseases. The most relevant risk factor revealed by these studies is the Tau gene (MAPT), which, in addition to mutations causing rare familial forms, plays a fundamental role in sporadic cases of PSP and CBD in which there is a strong predominance of the H1 and H1c haplotypes. But outside of MAPT, several other genes have been robustly associated with PSP. These findings, pointing towards multifactorial causation, imply the participation of several pathways involving the myelin sheath integrity, the endoplasmic reticulum unfolded protein response, microglia, intracellular vesicle trafficking, or the ubiquitin-proteasome system. Additionally, GWAS show a high degree of genetic overlap across different Tauopathies. This is especially salient between PSP and CBD, but also GWAS studying the recently described PART phenotype shows genetic overlap with genes that promote Tau pathology and with others associated with Alzheimer's disease.
Collapse
|
14
|
Sakurai K, Iwase T, Kaneda D, Uchida Y, Inui S, Morimoto S, Kimura Y, Kato T, Nihashi T, Ito K, Hashizume Y. Sloping Shoulders Sign: A Practical Radiological Sign for the Differentiation of Alzheimer's Disease and Argyrophilic Grain Disease. J Alzheimers Dis 2021; 84:1719-1727. [PMID: 34744080 DOI: 10.3233/jad-210638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tamaki Iwase
- Department of Neurology, Nagoya City Koseiin Medical Welfare Center, Nagoya, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Fukushima, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | |
Collapse
|
15
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
16
|
Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, van Beers M, Tarutani A, Kametani F, Garringer HJ, Vidal R, Hallinan GI, Lashley T, Saito Y, Murayama S, Yoshida M, Tanaka H, Kakita A, Ikeuchi T, Robinson AC, Mann DMA, Kovacs GG, Revesz T, Ghetti B, Hasegawa M, Goedert M, Scheres SHW. Structure-based classification of tauopathies. Nature 2021; 598:359-363. [PMID: 34588692 DOI: 10.1038/s41586-021-03911-7] [Citation(s) in RCA: 496] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022]
Abstract
The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.
Collapse
Affiliation(s)
- Yang Shi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Yang Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | - Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, University of Osaka, Osaka, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hidetomo Tanaka
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Andrew C Robinson
- Clinical Sciences Building, University of Manchester, Salford Royal Foundation Trust, Salford, UK
| | - David M A Mann
- Clinical Sciences Building, University of Manchester, Salford Royal Foundation Trust, Salford, UK
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tamas Revesz
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Hayashi H, Kobayashi R, Kawakatsu S, Ohba M, Morioka D, Otani K. Comparison of the decreases in regional cerebral blood flow in the posterior cingulate cortex, precuneus, and parietal lobe between suspected non-Alzheimer's disease pathophysiology and Alzheimer's disease. Psychogeriatrics 2021; 21:716-721. [PMID: 34101304 DOI: 10.1111/psyg.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Suspected non-Alzheimer's disease pathophysiology (SNAP) shows Alzheimer's disease (AD)-like neurodegeneration; however, amyloid β, which is a biological marker in AD, remains within normal levels. Since the effectiveness of anti-dementia drugs for AD on SNAP is unknown, it is important to distinguish between patients with SNAP and AD. We aimed to compare decreases in regional cerebral blood flow (rCBF) of the posterior cingulate cortex (PCC), precuneus, and parietal lobe critical to AD between SNAP and AD groups using the easy Z-score imaging system in single-photon emission computed tomography (eZIS-SPECT). METHODS We retrospectively analysed eZIS-SPECT data of 13 SNAP and 24 AD patients. The three indicators (severity, extent, and ratio) that distinguished AD patients from healthy controls in previous studies were automatically calculated and were compared between the SNAP and AD groups. Receiver operating characteristic curve analysis and the area under the curve (AUC) were used to evaluate the diagnostic performance of the three indicators of eZIS in discriminating between the two groups. RESULTS The mean values of severity, extent, and ratio were significantly lower in the SNAP group than in the AD group (P = 0.024, P = 0.044, and P = 0.045, respectively). The AUC values for severity, extent, and ratio were 0.668, 0.683, and 0.692, respectively. CONCLUSIONS The present study suggests that SNAP shows milder reduction of rCBF in the PCC, precuneus, and parietal lobe as compared to AD. However, it may be difficult to distinguish between SNAP and AD with the degrees of decrease in rCBF in these regions.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Makoto Ohba
- Department of Radiology, Yamagata University Hospital, Yamagata, Japan
| | - Daichi Morioka
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
18
|
Sakurai K, Kaneda D, Inui S, Uchida Y, Morimoto S, Nihashi T, Kato T, Ito K, Hashizume Y. Simple Quantitative Indices for the Differentiation of Advanced-Stage Alzheimer's Disease and Other Limbic Tauopathies. J Alzheimers Dis 2021; 81:1093-1102. [PMID: 33843680 DOI: 10.3233/jad-210043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The differentiation of Alzheimer's disease (AD) from age-related limbic tauopathies (LT), including argyrophilic grain disease (AGD) and senile dementia of the neurofibrillary tangle type (SD-NFT), is often challenging because specific clinical diagnostic criteria have not yet been established. Despite the utility of specific biomarkers evaluating amyloid and tau to detect the AD-related pathophysiological changes, the expense and associated invasiveness preclude their use as first-line diagnostic tools for all demented patients. Therefore, less invasive and costly biomarkers would be valuable in routine clinical practice for the differentiation of AD and LT. OBJECTIVE The purpose of this study is to develop a simple reproducible method on magnetic resonance imaging (MRI) that could be adopted in daily clinical practice for the differentiation of AD and other forms of LT. METHODS Our newly proposed three quantitative indices and well-known medial temporal atrophy (MTA) score were evaluated using MRI of pathologically-proven advanced-stage 21 AD, 10 AGD, and 2 SD-NFT patients. RESULTS Contrary to MTA score, hippocampal angle (HPA), inferior horn area (IHA), and ratio between HPA and IHA (i.e., IHPA index) demonstrated higher diagnostic performance and reproducibility, especially to differentiate advanced-stage AD patients with Braak neurofibrillary tangle stage V/VI from LT patients (the area under the receiver-operating-characteristic curve of 0.83, 089, and 0.91; intraclass correlation coefficients of 0.930, 0.998, and 0.995, respectively). CONCLUSION Quantitative indices reflecting hippocampal deformation with ventricular enlargement are useful to differentiate advanced-stage AD from LT. This simple and convenient method could be useful in daily clinical practice.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Toyohashi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | |
Collapse
|
19
|
Walker JM, Fudym Y, Farrell K, Iida MA, Bieniek KF, Seshadri S, White CL, Crary JF, Richardson TE. Asymmetry of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:436-445. [PMID: 33860327 PMCID: PMC8054137 DOI: 10.1093/jnen/nlab032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as neurofibrillary degeneration generally restricted to the medial temporal region (Braak stage I-IV) with complete or near absence of diffuse and neuritic plaques. Symptoms range in severity but are generally milder and later in onset than in Alzheimer disease (AD). Recently, an early predilection for neurofibrillary degeneration in the hippocampal CA2 subregion has been demonstrated in PART, whereas AD neuropathologic change (ADNC) typically displays relative sparing of CA2 until later stages. In this study, we utilized a semiquantitative scoring system to evaluate asymmetry of neurofibrillary degeneration between left and right hippocampi in 67 PART cases and 17 ADNC cases. 49% of PART cases demonstrated asymmetric findings in at least one hippocampal subregion, and 79% of the asymmetric cases displayed some degree of CA2 asymmetry. Additionally, 19% of cases revealed a difference in Braak score between the right and left hippocampi. There was a significant difference in CA2 neurofibrillary degeneration (p = 0.0006) and CA2/CA1 ratio (p < 0.0001) when comparing the contralateral sides, but neither right nor left was more consistently affected. These data show the importance of analyzing bilateral hippocampi in the diagnostic evaluation of PART and potentially of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin F Bieniek
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas, USA
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
20
|
Bieniek KF, Cairns NJ, Crary JF, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl DP, Stein TD, Vonsattel JP, Stewart W, Dams-O’Connor K, Gordon WA, Tripodis Y, Alvarez VE, Mez J, Alosco ML, McKee AC. The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2021; 80:210-219. [PMID: 33611507 PMCID: PMC7899277 DOI: 10.1093/jnen/nlab001] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder associated with exposure to head trauma. In 2015, a panel of neuropathologists funded by the NINDS/NIBIB defined preliminary consensus neuropathological criteria for CTE, including the pathognomonic lesion of CTE as "an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern," based on review of 25 tauopathy cases. In 2016, the consensus panel met again to review and refine the preliminary criteria, with consideration around the minimum threshold for diagnosis and the reproducibility of a proposed pathological staging scheme. Eight neuropathologists evaluated 27 cases of tauopathies (17 CTE cases), blinded to clinical and demographic information. Generalized estimating equation analyses showed a statistically significant association between the raters and CTE diagnosis for both the blinded (OR = 72.11, 95% CI = 19.5-267.0) and unblinded rounds (OR = 256.91, 95% CI = 63.6-1558.6). Based on the challenges in assigning CTE stage, the panel proposed a working protocol including a minimum threshold for CTE diagnosis and an algorithm for the assessment of CTE severity as "Low CTE" or "High CTE" for use in future clinical, pathological, and molecular studies.
Collapse
Affiliation(s)
- Kevin F Bieniek
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas
| | - Nigel J Cairns
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri
| | - John F Crary
- Departments of Pathology & Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai School, New York, New York
| | | | - Rebecca D Folkerth
- New York City Office of Chief Medical Examiner and Department of Forensic Medicine, New York University School of Medicine, New York, New York
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Thor D Stein
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Jean-Paul Vonsattel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York
| | - William Stewart
- Department of Neuropathology, University of Glasgow Institute of Neuroscience and Psychology and Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Kristen Dams-O’Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neurology (KD-O), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wayne A Gordon
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yorghos Tripodis
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Victor E Alvarez
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Michael L Alosco
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| | - Ann C McKee
- VA Boston Healthcare System, Boston, Massachusetts
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, Boston, Massachusetts; Department of Veteran Affairs Medical Center, Bedford, Massachusetts
| |
Collapse
|
21
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
22
|
Sakae N, Santos OA, Pedraza O, Litvan I, Murray ME, Duara R, Uitti RJ, Wszolek ZK, Graff-Radford NR, Josephs KA, Dickson DW. Clinical and pathologic features of cognitive-predominant corticobasal degeneration. Neurology 2020; 95:e35-e45. [PMID: 32518146 PMCID: PMC7371382 DOI: 10.1212/wnl.0000000000009734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To describe clinical and pathologic characteristics of corticobasal degeneration (CBD) with cognitive predominant problems during the disease course. METHODS In a series of autopsy-confirmed cases of CBD, we identified patients with cognitive rather than motor predominant features (CBD-Cog), including 5 patients thought to have Alzheimer disease (AD) and 10 patients thought to have behavioral variant frontotemporal dementia (FTD). We compared clinical and pathologic features of CBD-Cog with those from a series of 31 patients with corticobasal syndrome (CBD-CBS). For pathologic comparisons between CBD-Cog and CBD-CBS, we used semiquantitative scoring of neuronal and glial lesion types in multiple brain regions and quantitative assessments of tau burden from image analysis. RESULTS Five of 15 patients with CBD-Cog never had significant motor problems during their disease course. The most common cognitive abnormalities in CBD-Cog were executive and visuospatial dysfunction. The frequency of language problems did not differ between CBD-Cog and CBD-CBS. Argyrophilic grain disease, which is a medial temporal tauopathy associated with mild cognitive impairment, was more frequent in CBD-Cog. Apathy was also more frequent in CBD-Cog. Tau pathology in CBD-Cog was greater in the temporal and less in perirolandic cortices than in CBD-CBS. CONCLUSION A subset of patients with CBD has a cognitive predominant syndrome than can be mistaken for AD or FTD. Our findings suggest that distribution of tau cortical pathology (greater in temporal and less in perirolandic cortices) may be the basis of this uncommon clinical variant of CBD.
Collapse
Affiliation(s)
- Nobutaka Sakae
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Octavio A Santos
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Otto Pedraza
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Irene Litvan
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Melissa E Murray
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Ranjan Duara
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Ryan J Uitti
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Zbigniew K Wszolek
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Neill R Graff-Radford
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Keith A Josephs
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN
| | - Dennis W Dickson
- From the Departments of Neuroscience (N.S., M.E.M., D.W.D.), Psychiatry and Psychology (O.A.S., O.P.), and Neurology (R.J.U., Z.K.W., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Department of Neurology (I.L.), University of California San Diego, La Jolla; Department of Neurology (R.D.), Mount Sinai Medical Center, Miami Beach, FL; and Department of Neurology (K.A.J.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
23
|
Ferrer I, Andrés-Benito P, Sala-Jarque J, Gil V, Del Rio JA. Capacity for Seeding and Spreading of Argyrophilic Grain Disease in a Wild-Type Murine Model; Comparisons With Primary Age-Related Tauopathy. Front Mol Neurosci 2020; 13:101. [PMID: 32670019 PMCID: PMC7326954 DOI: 10.3389/fnmol.2020.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Argyrophilic grain disease (AGD) is a common 4R-tauopathy, causing or contributing to cognitive impairment in the elderly. AGD is characterized neuropathologically by pre-tangles in neurons, dendritic swellings called grains, threads, thorn-shaped astrocytes, and coiled bodies in oligodendrocytes in the limbic system. AGD has a characteristic pattern progressively involving the entorhinal cortex, amygdala, hippocampus, dentate gyrus, presubiculum, subiculum, hypothalamic nuclei, temporal cortex, and neocortex and brainstem, thus suggesting that argyrophilic grain pathology is a natural model of tau propagation. One series of WT mice was unilaterally inoculated in the hippocampus with sarkosyl-insoluble and sarkosyl-soluble fractions from “pure” AGD at the age of 3 or 7/12 months and killed 3 or 7 months later. Abnormal hyper-phosphorylated tau deposits were found in ipsilateral hippocampal neurons, grains (dots) in the hippocampus, and threads, dots and coiled bodies in the fimbria, as well as the ipsilateral and contralateral corpus callosum. The extension of lesions was wider in animals surviving 7 months compared with those surviving 3 months. Astrocytic inclusions were not observed at any time. Tau deposits were mainly composed of 4Rtau, but also 3Rtau. For comparative purposes, another series of WT mice was inoculated with sarkosyl-insoluble fractions from primary age-related tauopathy (PART), a pure neuronal neurofibrillary tangle 3Rtau + 4Rtau tauopathy involving the deep temporal cortex and limbic system. Abnormal hyper-phosphorylated tau deposits were found in neurons in the ipsilateral hippocampus, coiled bodies and threads in the fimbria, and the ipsilateral and contralateral corpus callosum, which extended with time along the anterior-posterior axis and distant regions such as hypothalamic nuclei and nuclei of the septum when comparing mice surviving 7 months with mice surviving 3 months. Astrocytic inclusions were not observed. Tau deposits were mainly composed of 4Rtau and 3Rtau. These results show the capacity for seeding and spreading of AGD tau and PART tau in the brain of WT mouse, and suggest that characteristics of host tau, in addition to those of inoculated tau, are key to identifying commonalities and differences between human tauopathies and corresponding murine models.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Julia Sala-Jarque
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Wurm R, Klotz S, Rahimi J, Katzenschlager R, Lindeck-Pozza E, Regelsberger G, Danics K, Kapas I, Bíró ZA, Stögmann E, Gelpi E, Kovacs GG. Argyrophilic grain disease in individuals younger than 75 years: clinical variability in an under-recognized limbic tauopathy. Eur J Neurol 2020; 27:1856-1866. [PMID: 32402145 DOI: 10.1111/ene.14321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Argyrophilic grain disease (AGD) is a limbic-predominant 4R-tauopathy. AGD is thought to be an age-related disorder and is frequently detected as a concomitant pathology with other neurodegenerative conditions. There is a paucity of data on the clinical phenotype of pure AGD. In elderly patients, however, AGD pathology frequently associates with cognitive decline, personality changes, urine incontinence and cachexia. In this study, clinicopathological findings were analysed in individuals younger than 75. METHODS Patients were identified retrospectively based on neuropathological examinations during 2006-2017 and selected when AGD was the primary and dominant pathological finding. Clinical data were obtained retrospectively through medical records. RESULTS In all, 55 patients (2% of all examinations performed during that period) with AGD were identified. In seven cases (13%) AGD was the primary neuropathological diagnosis without significant concomitant pathologies. Two patients were female, median age at the time of death was 64 years (range 51-74) and the median duration of disease was 3 months (range 0.5-36). The most frequent symptoms were progressive cognitive decline, urinary incontinence, seizures and psychiatric symptoms. Brain magnetic resonance imaging revealed mild temporal atrophy. CONCLUSIONS Argyrophilic grain disease is a rarely recognized limbic tauopathy in younger individuals. Widening the clinicopathological spectrum of tauopathies may allow identification of further patients who could benefit from tau-based therapeutic strategies.
Collapse
Affiliation(s)
- R Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - S Klotz
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - J Rahimi
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - R Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - E Lindeck-Pozza
- Department of Neurology, Sozialmedizinisches Zentrum Süd Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - G Regelsberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - K Danics
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - I Kapas
- Neurology and Stroke Department, Szt. Janos Hospital, Budapest, Hungary
| | - Z A Bíró
- Department of Neurology, Pest County Flor Ferenc Hospital, Kistarcsa, Hungary
| | - E Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - E Gelpi
- Department of Neurology, Sozialmedizinisches Zentrum Süd Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - G G Kovacs
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
25
|
Brunello CA, Merezhko M, Uronen RL, Huttunen HJ. Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 2020; 77:1721-1744. [PMID: 31667556 PMCID: PMC7190606 DOI: 10.1007/s00018-019-03349-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.
Collapse
Affiliation(s)
- Cecilia A Brunello
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Maria Merezhko
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
26
|
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 2019; 10:1008. [PMID: 31572186 PMCID: PMC6751310 DOI: 10.3389/fphar.2019.01008] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases share the fact that they derive from altered proteins that undergo an unfolding process followed by formation of β-structures and a pathological tendency to self-aggregate in neuronal cells. This is a characteristic of tau protein in Alzheimer’s disease and several tauopathies associated with tau unfolding, α-synuclein in Parkinson’s disease, and huntingtin in Huntington disease. Usually, the self-aggregation products are toxic to these cells, and toxicity spreads all over different brain areas. We have postulated that these protein unfolding events are the molecular alterations that trigger several neurodegenerative disorders. Most interestingly, these events occur as a result of neuroinflammatory cascades involving alterations in the cross-talks between glial cells and neurons as a consequence of the activation of microglia and astrocytes. The model we have hypothesized for Alzheimer’s disease involves damage signals that promote glial activation, followed by nuclear factor NF-kβ activation, synthesis, and release of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-12 that affect neuronal receptors with an overactivation of protein kinases. These patterns of pathological events can be applied to several neurodegenerative disorders. In this context, the involvement of innate immunity seems to be a major paradigm in the pathogenesis of these diseases. This is an important element for the search for potential therapeutic approaches for all these brain disorders.
Collapse
Affiliation(s)
- Leonardo Guzman-Martinez
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Patricio Navarrete
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - María Gabriela Pastor
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Nicolas Ramos-Escobar
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
27
|
Characteristic asymmetric limbic and anterior temporal atrophy in demented patients with pathologically confirmed argyrophilic grain disease. Neuroradiology 2019; 61:1239-1249. [DOI: 10.1007/s00234-019-02247-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
|
28
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
29
|
Gil MJ, Manzano MS, Cuadrado ML, Fernández C, Góméz E, Matesanz C, Calero M, Rábano A. Argyrophilic Grain Pathology in Frontotemporal Lobar Degeneration: Demographic, Clinical, Neuropathological, and Genetic Features. J Alzheimers Dis 2019; 63:1109-1117. [PMID: 29758948 DOI: 10.3233/jad-171115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically, pathologically, and genetically heterogeneous group of disorders that affect the frontal and temporal lobes of the brain. FTLD classification distinguishes three main neuropathological groups: FTLD-tau, FTLD-TDP, and FTLD-FUS. As a four-repeat tauopathy, argyrophilic grain disease (AGD) is included in the FTLD-tau group. AGD may also appear in association with other neuropathological disorders. We describe the demographic, clinical, neuropathological, and genetic characteristics of a series of FTLD cases presenting with AGD. For this purpose, a clinico-pathological study of 71 autopsy-confirmed FTLD cases from different tissue banks was performed. AGD was found in 52.1% of FTLD cases. The presence of AGD increased with the increasing age (up to 88.9% in cases older than 80 years; p < 0.001) and was associated with higher ages at onset (p < 0.001) and death (p < 0.001). In AGD cases, progressive supranuclear palsy (PSP) was the most frequent clinical diagnosis (29.7%) and gait disturbance was the most common symptom (64.5%); behavioral and language symptoms were less frequent as compared with non-AGD cases (p = 0.055; p = 0.012). PSP was the most frequent neuropathological diagnosis among cases with AGD (32.4%). This group also showed less brain atrophy (p = 0.094) and higher prevalence of Alzheimer (p = 0.002) and vascular pathology (p = 0.047) as compared to the non-AGD group. We also observed that H1/H1 genotype was overrepresented in AGD cases (p = 0.018) and that there was no association with any specific APOE allele. A subanalysis of PSP cases according to the AGD status was carried out, yielding no significant differences.
Collapse
Affiliation(s)
- María José Gil
- Servicio de Neurología, Hospital Universitario de Torrejón, Torrejón de Ardoz, Madrid, Spain.,Banco de Tejidos, Departamento de Neuropatología, Fundación Centro de Investigación en Enfermedades Neurológicas, Instituto de Salud Carlos III (FCIEN-ISCIII), Madrid, Spain
| | | | - María Luz Cuadrado
- Servicio de Neurología, Hospital Clínico San Carlos, Departamento de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cristina Fernández
- Unidad de Gestión Clínica de Medicina Preventiva, Hospital Clínico San Carlos, Facultad de Enfermería, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Elena Góméz
- Banco de Tejidos, Departamento de Neuropatología, Fundación Centro de Investigación en Enfermedades Neurológicas, Instituto de Salud Carlos III (FCIEN-ISCIII), Madrid, Spain
| | - Carmen Matesanz
- Departamento de Biología Molecular, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Calero
- Banco de Tejidos, Departamento de Neuropatología, Fundación Centro de Investigación en Enfermedades Neurológicas, Instituto de Salud Carlos III (FCIEN-ISCIII), Madrid, Spain.,Departamento de Biología Molecular, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alberto Rábano
- Banco de Tejidos, Departamento de Neuropatología, Fundación Centro de Investigación en Enfermedades Neurológicas, Instituto de Salud Carlos III (FCIEN-ISCIII), Madrid, Spain
| |
Collapse
|
30
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
31
|
Zhang X, Gao F, Wang D, Li C, Fu Y, He W, Zhang J. Tau Pathology in Parkinson's Disease. Front Neurol 2018; 9:809. [PMID: 30333786 PMCID: PMC6176019 DOI: 10.3389/fneur.2018.00809] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/07/2018] [Indexed: 02/03/2023] Open
Abstract
Tau protein—a member of the microtubule-associated protein family—is a key protein involved in many neurodegenerative diseases. Tau pathology in neurodegenerative diseases is characterized by pathological tau aggregation in neurofibrillary tangles (NFTs). Diseases with this typical pathological feature are called tauopathies. Parkinson's disease (PD) was not initially considered to be a typical tauopathy. However, recent studies have demonstrated increasing evidence of tau pathology in PD. A genome-wide association (GWA) study indicated a potential association between tauopathy and sporadic PD. The aggregation and deposition of tau were also observed in ~50% of PD brains, and it seems to be transported from neuron to neuron. The aggregation of NFTs, the abnormal hyperphosphorylation of tau protein, and the interaction between tau and alpha-synuclein may all contribute to the cell death and poor axonal transport observed in PD and Parkinsonism.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Fei Gao
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
32
|
Kovacs GG, Xie SX, Robinson JL, Lee EB, Smith DH, Schuck T, Lee VMY, Trojanowski JQ. Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol Commun 2018; 6:50. [PMID: 29891013 PMCID: PMC5996526 DOI: 10.1186/s40478-018-0552-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Aging-related tau astrogliopathy (ARTAG) describes tau pathology in astrocytes in different locations and anatomical regions. In the present study we addressed the question of whether sequential distribution patterns can be recognized for ARTAG or astroglial tau pathologies in both primary FTLD-tauopathies and non-FTLD-tauopathy cases. By evaluating 687 postmortem brains with diverse disorders we identified ARTAG in 455. We evaluated frequencies and hierarchical clustering of anatomical involvement and used conditional probability and logistic regression to model the sequential distribution of ARTAG and astroglial tau pathologies across different brain regions. For subpial and white matter ARTAG we recognize three and two patterns, respectively, each with three stages initiated or ending in the amygdala. Subependymal ARTAG does not show a clear sequential pattern. For grey matter (GM) ARTAG we recognize four stages including a striatal pathway of spreading towards the cortex and/or amygdala, and the brainstem, and an amygdala pathway, which precedes the involvement of the striatum and/or cortex and proceeds towards the brainstem. GM ARTAG and astrocytic plaque pathology in corticobasal degeneration follows a predominantly frontal-parietal cortical to temporal-occipital cortical, to subcortical, to brainstem pathway (four stages). GM ARTAG and tufted astrocyte pathology in progressive supranuclear palsy shows a striatum to frontal-parietal cortical to temporal to occipital, to amygdala, and to brainstem sequence (four stages). In Pick’s disease cases with astroglial tau pathology an overlapping pattern with PSP can be appreciated. We conclude that tau-astrogliopathy type-specific sequential patterns cannot be simplified as neuron-based staging systems. The proposed cytopathological and hierarchical stages provide a conceptual approach to identify the initial steps of the pathogenesis of tau pathologies in ARTAG and primary FTLD-tauopathies.
Collapse
|
33
|
Neuroprotective Effects of Macrovipera lebetina Snake Venom in the Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The spectrum of tau pathologies expands beyond the traditionally discussed disease forms like Pick disease, progressive supranuclear palsy, corticobasal degeneration, and argyrophilic grain disease. Emerging entities and pathologies include globular glial tauopathies, primary age-related tauopathy, which includes neurofibrillary tangle dementia, chronic traumatic encephalopathy (CTE), and aging-related tau astrogliopathy. Clinical symptoms include frontotemporal dementia, corticobasal syndrome, Richardson syndrome, parkinsonism, pure akinesia with gait freezing and, rarely, motor neuron symptoms or cerebellar ataxia. Some disorders show specific neuroimaging features, while examination of the cerebrospinal fluid awaits markers for in vivo stratification of cases. The possibility of cell-to-cell propagation is a novel aspect of the pathogenesis of tauopathies, which is partly reflected by the hierarchic involvement of anatomic regions. This concept might have relevance for the development of therapies. For cost-effective screening for tau pathologies in neuropathologic practice, examination of the hippocampus, amygdala, and basal ganglia is recommended. Uncommon morphologies or unusually extensive forms of tau pathologies should raise the suspicion of a genetic background. Ongoing multidisciplinary studies are needed to understand the whole spectrum and significance of tau pathologies.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Clavaguera F, Tolnay M, Goedert M. The Prion-Like Behavior of Assembled Tau in Transgenic Mice. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024372. [PMID: 27940600 DOI: 10.1101/cshperspect.a024372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tauopathies constitute neurodegenerative diseases that are characterized by the intracellular deposition of filaments made of hyperphosphorylated tau protein. The pattern of tau deposition in Alzheimer's disease follows a stereotypical progression, with the first lesions appearing in the locus coeruleus and entorhinal cortex, from where they appear to spread to the hippocampus and neocortex. Propagation of pathological tau is also characteristic of argyrophilic grain disease, where the lesions seem to spread through distinct regions of the limbic system. In chronic traumatic encephalopathy, tauopathy appears to spread from the neocortex to the brainstem. These findings implicate neuron-to-neuron propagation of tau aggregates. Isoform compositions and morphologies of tau filaments can differ between tauopathies, which is consistent with the existence of distinct tau strains. Here, we review recent findings that support prion-like mechanisms in the pathogenesis of tauopathies through the experimental use of transgenic mice.
Collapse
Affiliation(s)
| | - Markus Tolnay
- Institute of Pathology, University Hospital, CH-4031 Basel, Switzerland
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
36
|
Takeda T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology 2017; 38:72-81. [PMID: 28960544 DOI: 10.1111/neup.12428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Transactivation response DNA-binding protein 43 kDa (TDP-43) has been regarded as a major component of ubiquitin-positive/tau-negative inclusions of motor neurons and the frontotemporal cortices in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Neurofibrillary tangles (NFT), an example of tau-positive inclusions, are biochemically and morphologically distinguished from TDP-43-positive inclusions, and are one of the pathological core features of Alzheimer disease (AD). Although ALS/FTLD and AD are distinct clinical entities, they can coexist in an individual patient. Whether concurrence of ALS/FTLD-TDP-43 and AD-tau is incidental is still controversial, because aging is a common risk factor for ALS/FTLD and AD development. Indeed, it remains unclear whether the pathogenesis of ALS/FTLD is a direct causal link to tau accumulation. Recent studies suggested that AD pathogenesis could cause the accumulation of TDP-43, while abnormal TDP-43 accumulation could also lead to abnormal tau expression. Overlapping presence of TDP-43 and tau, when observed in a brain during autopsy, should attract attention, and should initiate the search for the pathological substrate for this abnormal protein accumulation. In addition to tau, other proteins including α-synuclein and amyloid β should be also taken into account as candidates for an interaction with TDP-43. Awareness of a possible comorbidity between TDP-43, tau and other proteins in patients with ALS/FTLD will be useful for our understanding of the influence of these proteins on the disease development and its clinical manifestation.
Collapse
Affiliation(s)
- Takahiro Takeda
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
37
|
Argyrophilic grain disease in a 46-year-old male suicide victim. J Neurol Sci 2017; 380:223-225. [PMID: 28870574 DOI: 10.1016/j.jns.2017.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 07/27/2017] [Indexed: 01/11/2023]
|
38
|
Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028035. [PMID: 28062563 DOI: 10.1101/cshperspect.a028035] [Citation(s) in RCA: 940] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of selectively vulnerable populations of neurons, which contrasts with select static neuronal loss because of metabolic or toxic disorders. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormality. The most common neurodegenerative disorders are amyloidoses, tauopathies, α-synucleinopathies, and TDP-43 proteinopathies. The protein abnormalities in these disorders have abnormal conformational properties. Growing experimental evidence suggests that abnormal protein conformers may spread from cell to cell along anatomically connected pathways, which may in part explain the specific anatomical patterns observed at autopsy. In this review, we detail the human pathology of select neurodegenerative disorders, focusing on their main protein aggregates.
Collapse
Affiliation(s)
- Brittany N Dugger
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| | | |
Collapse
|
39
|
Martin WRW, Hartlein J, Racette BA, Cairns N, Perlmutter JS. Pathologic correlates of supranuclear gaze palsy with parkinsonism. Parkinsonism Relat Disord 2017; 38:68-71. [PMID: 28256434 PMCID: PMC5397329 DOI: 10.1016/j.parkreldis.2017.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Supranuclear gaze palsy (SGP) is a classic clinical feature of progressive supranuclear palsy (PSP) but is not specific for this diagnosis and has been reported to occur in several other neurodegenerative parkinsonian conditions. Our objective was to evaluate the association between SGP and autopsy-proven diagnoses in a large population of patients with parkinsonism referred to a tertiary movement disorders clinic. METHODS We reviewed clinical and autopsy data maintained in an electronic medical record from all patients seen in the Movement Disorders Clinic at Washington University, St. Louis between 1996 and 2015. All patients with parkinsonism from this population who had subsequent autopsy confirmation of diagnosis underwent further analysis. RESULTS 221 unique parkinsonian patients had autopsy-proven diagnoses, 27 of whom had SGP documented at some point during their illness. Major diagnoses associated with SGP were: PSP (9 patients), Parkinson disease (PD) (10 patients), multiple system atrophy (2 patients), corticobasal degeneration (2 patients), Creutzfeld-Jakob disease (1 patient) and Huntington disease (1 patient). In none of the diagnostic groups was the age of onset or disease duration significantly different between cases with SGP and those without SGP. In the PD patients, the UPDRS motor score differed significantly between groups (p = 0.01) with the PD/SGP patients having greater motor deficit than those without SGP. CONCLUSION Although a common feature of PSP, SGP is not diagnostic for this condition and can be associated with other neurodegenerative causes of parkinsonism including PD.
Collapse
Affiliation(s)
- W R W Martin
- Neurology, University of Alberta, Edmonton, AB, Canada.
| | - J Hartlein
- Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - B A Racette
- Neurology, Washington University in St. Louis, St. Louis, MO, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - N Cairns
- Neurology, Washington University in St. Louis, St. Louis, MO, USA; Pathology, Washington University in St. Louis, St. Louis, MO, USA
| | - J S Perlmutter
- Neurology, Washington University in St. Louis, St. Louis, MO, USA; Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
40
|
Kasahata N, Sato T, Onishi I, Kitagawa M, Uchihara T, Hirokawa K. Three-Repeat Tau with Grain-Like Structures and Distribution in an 83-Year-Old Man. J Alzheimers Dis 2017; 58:681-685. [PMID: 28453470 DOI: 10.3233/jad-160672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We encountered an 83-year-old man with 3-repeat dominant grain-like tau deposition. Tau-positive lesions exhibited apparent similarity to argyrophilic grains in terms of their distribution in the ambient gyrus, amygdala, and dorsomedial temporal tip and the characteristic comma-like morphology. The abundant oligodendroglial tau immunoreactivities were 3-repeat dominant. Tuft-shaped astrocytes showed partial 3-repeat tau immnoreactivities. These grain-like structures, as well as tuft-shaped astrocytes and oligodendroglia, exhibited predominant 3-repeat tau immunoreactivity, suggesting that grain-like structures and their characteristic distribution are mutually linked and not unique to 4-repeat tau deposition. pTDP immunoreactivity, extensive macrophage infiltration, and spongiosis were associated with these 3-repeat tau deposits.
Collapse
Affiliation(s)
- Naoki Kasahata
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Medicine, Division of Neurology, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Tomohide Sato
- Department of Pulmonary Medicine, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Pathology, Tokyo Medical Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Pathology, Tokyo Medical Dental University, Tokyo, Japan
| | - Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| |
Collapse
|
41
|
Audouard E, Houben S, Masaracchia C, Yilmaz Z, Suain V, Authelet M, De Decker R, Buée L, Boom A, Leroy K, Ando K, Brion JP. High-Molecular-Weight Paired Helical Filaments from Alzheimer Brain Induces Seeding of Wild-Type Mouse Tau into an Argyrophilic 4R Tau Pathology in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2709-22. [PMID: 27497324 DOI: 10.1016/j.ajpath.2016.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/14/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022]
Abstract
In Alzheimer disease, the development of tau pathology follows neuroanatomically connected pathways, suggesting that abnormal tau species might recruit normal tau by passage from cell to cell. Herein, we analyzed the effect of stereotaxic brain injection of human Alzheimer high-molecular-weight paired helical filaments (PHFs) in the dentate gyrus of wild-type and mutant tau THY-Tau22 mice. After 3 months of incubation, wild-type and THY-Tau22 mice developed an atrophy of the dentate gyrus and a tau pathology characterized by Gallyas and tau-positive grain-like inclusions into granule cells that extended in the hippocampal hilus and eventually away into the alveus, and the fimbria. Gallyas-positive neuropil threads and oligodendroglial coiled bodies were also observed. These tau inclusions were composed only of mouse tau, and were immunoreactive with antibodies to 4R tau, phosphotau, misfolded tau, ubiquitin, and p62. Although local hyperphosphorylation of tau was increased in the dentate gyrus in THY-Tau22 mice, the development of neurofibrillary tangles made of mutant human tau was not accelerated in the hippocampus, indicating that wild-type human PHFs were inefficient in seeding tau aggregates made of G272V/P301S mutant human tau. Our results indicate thus that injection of human wild-type Alzheimer PHF seeded aggregation of wild-type murine tau into an argyrophilic 4R tau pathology, and constitutes an interesting model independent of expression of a mutant tau protein.
Collapse
Affiliation(s)
- Emilie Audouard
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Caterina Masaracchia
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Valérie Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Michèle Authelet
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Robert De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Luc Buée
- INSERM, U837, Université de Lille 2, Lille, France
| | - Alain Boom
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium.
| |
Collapse
|
42
|
Kumari S, Sundararajan T, Caro MA, Oliver J, Wright CA, Prayson R, Havemann J, Jimenez XF. Argyrophilic Grain Disease Presenting as Excited Catatonia: A Case Report. PSYCHOSOMATICS 2016; 57:431-8. [DOI: 10.1016/j.psym.2016.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
43
|
Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, Kantarci K, Boeve BF, Pandey MK, Bruinsma T, Knopman DS, Jones DT, Petrucelli L, Cook CN, Graff-Radford NR, Dickson DW, Petersen RC, Jack CR, Murray ME. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 2016; 4:58. [PMID: 27296779 PMCID: PMC4906968 DOI: 10.1186/s40478-016-0315-6] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022] Open
Abstract
Background It is essential to determine the specificity of AV-1451 PET for tau in brain imaging by using pathological comparisons. We performed autoradiography in autopsy-confirmed Alzheimer disease and other neurodegenerative disorders to evaluate the specificity of AV-1451 binding for tau aggregates. Methods Tissue samples were selected that had a variety of dementia-related neuropathologies including Alzheimer disease, primary age-related tauopathy, tangle predominant dementia, non-Alzheimer disease tauopathies, frontotemporal dementia, parkinsonism, Lewy body disease and multiple system atrophy (n = 38). Brain tissue sections were stained for tau, TAR DNA-binding protein-43, and α-synuclein and compared to AV-1451 autoradiography on adjacent sections. Results AV-1451 preferentially localized to neurofibrillary tangles, with less binding to areas enriched in neuritic pathology and less mature tau. The strength of AV-1451 binding with respect to tau isoforms in various neurodegenerative disorders was: 3R + 4R tau (e.g., AD) > 3R tau (e.g., Pick disease) or 4R tau. Only minimal binding of AV-1451 to TAR DNA-binding protein-43 positive regions was detected. No binding of AV-1451 to α-synuclein was detected. “Off-target” binding was seen in vessels, iron-associated regions, substantia nigra, calcifications in the choroid plexus, and leptomeningeal melanin. Conclusions Reduced AV-1451 binding in neuritic pathology compared to neurofibrillary tangles suggests that the maturity of tau pathology may affect AV-1451 binding and suggests complexity in AV-1451 binding. Poor association of AV-1451 with tauopathies that have preferential accumulation of either 4R tau or 3R tau suggests limited clinical utility in detecting these pathologies. In contrast, for disorders associated with 3R + 4R tau, such as Alzheimer disease, AV-1451 binds tau avidly but does not completely reflect the early stage tau progression suggested by Braak neurofibrillary tangle staging. AV-1451 binding to TAR DNA-binding protein-43 or TAR DNA-binding protein-43 positive regions can be weakly positive. Clinical use of AV-1451 will require a familiarity with distinct types of “off-target” binding. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0315-6) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Rodriguez RD, Suemoto CK, Molina M, Nascimento CF, Leite REP, de Lucena Ferretti-Rebustini RE, Farfel JM, Heinsen H, Nitrini R, Ueda K, Pasqualucci CA, Jacob-Filho W, Yaffe K, Grinberg LT. Argyrophilic Grain Disease: Demographics, Clinical, and Neuropathological Features From a Large Autopsy Study. J Neuropathol Exp Neurol 2016; 75:628-35. [PMID: 27283329 DOI: 10.1093/jnen/nlw034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Argyrophilic grain disease (AGD) is a frequent late-onset, 4-repeat tauopathy reported in Caucasians with high educational attainment. Little is known about AGD in non-Caucasians or in those with low educational attainment. We describe AGD demographics, clinical, and neuropathological features in a multiethnic cohort of 983 subjects ≥50 years of age from São Paulo, Brazil. Clinical data were collected through semistructured interviews with an informant and included in the Informant Questionnaire on Cognitive Decline in the Elderly, the Clinical Dementia Rating, and the Neuropsychiatric Inventory. Neuropathologic assessment relied on internationally accepted criteria. AGD was frequent (15.2%) and was the only neuropathological diagnosis in 8.9% of all cases (mean, 78.9 ± 9.4 years); it rarely occurred as an isolated neuropathological finding. AGD was associated with older age, lower socioeconomic status (SES), and appetite disorders. This is the first study of demographic, clinical, and neuropathological aspects of AGD in different ethnicities and subjects from all socioeconomic strata. The results suggest that prospective studies of AGD patients include levels of hormones related to appetite control as possible antemortem markers. Moreover, understanding the mechanisms behind higher susceptibility to AGD of low SES subjects may disclose novel environmental risk factors for AGD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberta Diehl Rodriguez
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Claudia Kimie Suemoto
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Mariana Molina
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Camila Fernandes Nascimento
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Renata Elaine Paraizo Leite
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Renata Eloah de Lucena Ferretti-Rebustini
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - José Marcelo Farfel
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Helmut Heinsen
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Ricardo Nitrini
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Kenji Ueda
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Carlos Augusto Pasqualucci
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Wilson Jacob-Filho
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Kristine Yaffe
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Lea Tenenholz Grinberg
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY).
| |
Collapse
|
45
|
McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl DP, Stein TD, Vonsattel JP, Stewart W, Tripodis Y, Crary JF, Bieniek KF, Dams-O'Connor K, Alvarez VE, Gordon WA. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 2016; 131:75-86. [PMID: 26667418 PMCID: PMC4698281 DOI: 10.1007/s00401-015-1515-z] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/29/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegeneration characterized by the abnormal accumulation of hyperphosphorylated tau protein within the brain. Like many other neurodegenerative conditions, at present, CTE can only be definitively diagnosed by post-mortem examination of brain tissue. As the first part of a series of consensus panels funded by the NINDS/NIBIB to define the neuropathological criteria for CTE, preliminary neuropathological criteria were used by 7 neuropathologists to blindly evaluate 25 cases of various tauopathies, including CTE, Alzheimer's disease, progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, primary age-related tauopathy, and parkinsonism dementia complex of Guam. The results demonstrated that there was good agreement among the neuropathologists who reviewed the cases (Cohen's kappa, 0.67) and even better agreement between reviewers and the diagnosis of CTE (Cohen's kappa, 0.78). Based on these results, the panel defined the pathognomonic lesion of CTE as an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern. The group also defined supportive but non-specific p-tau-immunoreactive features of CTE as: pretangles and NFTs affecting superficial layers (layers II-III) of cerebral cortex; pretangles, NFTs or extracellular tangles in CA2 and pretangles and proximal dendritic swellings in CA4 of the hippocampus; neuronal and astrocytic aggregates in subcortical nuclei; thorn-shaped astrocytes at the glial limitans of the subpial and periventricular regions; and large grain-like and dot-like structures. Supportive non-p-tau pathologies include TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in the hippocampus, anteromedial temporal cortex and amygdala. The panel also recommended a minimum blocking and staining scheme for pathological evaluation and made recommendations for future study. This study provides the first step towards the development of validated neuropathological criteria for CTE and will pave the way towards future clinical and mechanistic studies.
Collapse
Affiliation(s)
- Ann C McKee
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Department of Pathology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, 02130, MA, USA.
- Department of Veteran Affairs Medical Center, 200 Springs Road, Bedford, MA, 01730, USA.
| | - Nigel J Cairns
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rebecca D Folkerth
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, 325 Ninth Avenue, Seattle, WA, 98104, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Daniel P Perl
- Department of Pathology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Thor D Stein
- Department of Pathology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, 02130, MA, USA
- Department of Veteran Affairs Medical Center, 200 Springs Road, Bedford, MA, 01730, USA
| | - Jean-Paul Vonsattel
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - William Stewart
- Department of Neuropathology, University of Glasgow Institute of Neuroscience and Psychology and Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Yorghos Tripodis
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA, 02118, USA
| | - John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai School, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kevin F Bieniek
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, 3 East 101st Street, New York, NY, 10029, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Pathology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Alzheimer's Disease Center, CTE Program, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, 02130, MA, USA
| | - Wayne A Gordon
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, 3 East 101st Street, New York, NY, 10029, USA
| |
Collapse
|
46
|
Clavaguera F, Hench J, Goedert M, Tolnay M. Invited review: Prion-like transmission and spreading of tau pathology. Neuropathol Appl Neurobiol 2015; 41:47-58. [PMID: 25399729 DOI: 10.1111/nan.12197] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Filaments made of hyperphosphorylated tau protein are encountered in a number of neurodegenerative diseases referred to as 'tauopathies'. In the most prevalent tauopathy, Alzheimer's disease, tau pathology progresses in a stereotypical manner with the first lesions appearing in the locus coeruleus and the entorhinal cortex from where they appear to spread to the hippocampus and neocortex. Propagation of tau pathology is also characteristic of argyrophilic grain disease, where the tau lesions appear to spread throughout distinct regions of the limbic system. These findings strongly implicate neurone-to-neurone propagation of tau aggregates. Isoform composition and morphology of tau filaments can differ between tauopathies suggesting the existence of conformationally diverse tau strains. Altogether, this points to prion-like mechanisms in the pathogenesis of tauopathies.
Collapse
Affiliation(s)
- F Clavaguera
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
47
|
Kovacs GG. Invited review: Neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 2015; 41:3-23. [PMID: 25495175 DOI: 10.1111/nan.12208] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022]
Abstract
Tauopathies are clinically, morphologically and biochemically heterogeneous neurodegenerative diseases characterized by the deposition of abnormal tau protein in the brain. The neuropathological phenotypes are distinguished based on the involvement of different anatomical areas, cell types and presence of distinct isoforms of tau in the pathological deposits. The nomenclature of primary tauopathies overlaps with the modern classification of frontotemporal lobar degeneration. Neuropathological phenotypes comprise Pick's disease, progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, primary age-related tauopathy, formerly called also as neurofibrillary tangle-only dementia, and a recently characterized entity called globular glial tauopathy. Mutations in the gene encoding the microtubule-associated protein tau are associated with frontotemporal dementia and parkinsonism linked to chromosome 17. In addition, further neurodegenerative conditions with diverse aetiologies may be associated with tau pathologies. Thus, the spectrum of tau pathologies and tauopathy entities expands beyond the traditionally discussed disease forms. Detailed multidisciplinary studies are still required to understand their significance.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Homma T, Mochizuki Y, Takahashi K, Komori T. Medial temporal regional argyrophilic grain as a possible important factor affecting dementia in Parkinson's disease. Neuropathology 2015; 35:441-51. [PMID: 26079638 DOI: 10.1111/neup.12208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/20/2015] [Indexed: 11/29/2022]
Abstract
Argyrophilic grain (ArG) is the main pathological feature of argyrophilic grain disease (AGD) and is clinically characterized by cognitive impairment, behavioral abnormalities, personality changes, and emotional imbalances. However, ArG can not only be found in AGD but also in various other neurological disorders, including Parkinson's disease (PD). The association of ArG with psychosis and/or dementia in various neurological disorders remains unknown; in this study, we have investigated this in PD. The distribution and degree of ArG deposition, spongiform change in the transentorhinal cortex (TER SpC), and phosphorylated alpha-synuclein-positive neurites in CA2/3 were assessed, and we used formalin-fixed, paraffin-embedded specimens obtained from the anterior/posterior medial temporal region of 20 autopsy cases diagnosed as PD. These cases were clinically divided into two groups: PD without dementia (PDND) and PD with dementia (PDD). Most PDD cases revealed scattered to numerous ArG or moderate to severe TER SpC, both of which were rarely observed in the PDND group. Furthermore, by the degree of ArG density and TER SpC, the PDD group was further divided into three subtypes: PDD with ArG, with TER SpC and without ArG/TER SpC. Scattered-to-numerous ArG and/or moderate-to-severe TER SpC were observed only in PDD, which suggested that both ArG and TER SpC could be important factors affecting dementia in PD and that their distribution and degree are equally important.
Collapse
Affiliation(s)
- Taku Homma
- Department of Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoko Mochizuki
- Department of Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Centre for the Disabled, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.,Department of Neurology, Saitama Medical University, Saitama, Japan
| | - Takashi Komori
- Department of Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
49
|
Abstract
Argyrophilic grain disease (AGD) is an under-recognized, distinct, highly frequent sporadic tauopathy, with a prevalence reaching 31.3% in centenarians. The most common AGD manifestation is slowly progressive amnestic mild cognitive impairment, accompanied by a high prevalence of neuropsychiatric symptoms. AGD diagnosis can only be achieved postmortem based on the finding of its three main pathologic features: argyrophilic grains, oligodendrocytic coiled bodies and neuronal pretangles. AGD is frequently seen together with Alzheimer's disease-type pathology or in association with other neurodegenerative diseases. Recent studies suggest that AGD may be a defense mechanism against the spread of other neuropathological entities, particularly Alzheimer's disease. This review aims to provide an in-depth overview of the current understanding on AGD.
Collapse
Affiliation(s)
- Roberta Diehl Rodriguez
- MD, Department of Pathology, University of São Paulo, SP, Brazil; Brazilian Aging Brain Study Group, LIM-22, University of São Paulo, São Paulo, Brazil
| | - Lea Tenenholz Grinberg
- MD, PhD, Department of Pathology, University of São Paulo, SP, Brazil; Memory and Aging Center, Department of Neurology and Pathology, University of California, San Francisco; Brazilian Aging Brain Study Group, LIM-22, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Stamenova V, Roy EA, Szilagyi G, Honjo K, Black SE, Masellis M. Progression of limb apraxia in corticobasal syndrome: neuropychological and functional neuroimaging report of a case series. Neurocase 2015; 21:642-59. [PMID: 25325827 DOI: 10.1080/13554794.2014.964730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current study described the progression of limb apraxia in seven corticobasal syndrome patients through a comprehensive battery, including both gesture production tasks and conceptual tool/action knowledge tasks. The examination of the behavioral and neuroimaging (SPECT) data revealed two patient subgroups. One group consisted of patients with preserved conceptual tool/action knowledge, relatively mild gesture production and neuropsychological deficits with few significantly hypoperfused regions of interest. The other group consisted of those whose conceptual tool/action knowledge and general cognition eventually deteriorated and who were quite severely affected in their gesture production performance. These patients were characterized by bilateral hypoperfusion in parietal regions and in one case bilateral anterior cingulate regions.
Collapse
Affiliation(s)
- Vessela Stamenova
- a Rotman Research Institute , Baycrest/University of Toronto , Toronto , ON , Canada
| | | | | | | | | | | |
Collapse
|