1
|
Chen J, Zhao H, Liu M, Chen L. A new perspective on the autophagic and non-autophagic functions of the GABARAP protein family: a potential therapeutic target for human diseases. Mol Cell Biochem 2024; 479:1415-1441. [PMID: 37440122 DOI: 10.1007/s11010-023-04800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Mammalian autophagy-related protein Atg8, including the LC3 subfamily and GABARAP subfamily. Atg8 proteins play a vital role in autophagy initiation, autophagosome formation and transport, and autophagy-lysosome fusion. GABARAP subfamily proteins (GABARAPs) share a high degree of homology with LC3 family proteins, and their unique roles are often overlooked. GABARAPs are as indispensable as LC3 in autophagy. Deletion of GABARAPs fails autophagy flux induction and autophagy lysosomal fusion, which leads to the failure of autophagy. GABARAPs are also involved in the transport of selective autophagy receptors. They are engaged in various particular autophagy processes, including mitochondrial autophagy, endoplasmic reticulum autophagy, Golgi autophagy, centrosome autophagy, and dorphagy. Furthermore, GABARAPs are closely related to the transport and delivery of the inhibitory neurotransmitter γ-GABAA and the angiotensin II AT1 receptor (AT1R), tumor growth, metastasis, and prognosis. GABARAPs also have been confirmed to be involved in various diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In order to better understand the role and therapeutic potential of GABARAPs, this article comprehensively reviews the autophagic and non-autophagic functions of GABARAPs, as well as the research progress of the role and mechanism of GABARAPs in cancer, cardiovascular diseases and neurodegenerative diseases. It emphasizes the significance of GABARAPs in the clinical prevention and treatment of diseases, and may provide new therapeutic ideas and targets for human diseases. GABARAP and GABARAPL1 in the serum of cancer patients are positively correlated with the prognosis of patients, which can be used as a clinical biomarker, predictor and potential therapeutic target.
Collapse
Affiliation(s)
- Jiawei Chen
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong Zhao
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meiqing Liu
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Yagita K, Sadashima S, Koyama S, Noguchi H, Hamasaki H, Sasagasako N, Honda H. Ribosomal protein SA is a common component of neuronal intranuclear inclusions in polyglutamine diseases and Marinesco bodies. Neuropathology 2024; 44:31-40. [PMID: 37340992 DOI: 10.1111/neup.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/22/2023]
Abstract
Neuronal intranuclear inclusions (NIIs) are common key structures in polyglutamine (polyQ) diseases such as Huntington disease (HD), spinocerebellar ataxia type 1 (SCA1), and SCA3. Marinesco bodies (MBs) of dopaminergic neurons in the substantia nigra are also intranuclear structures and are frequently seen in normal elderly people. Ribosomal dysfunction is closely related to two differential processes; therefore, we aimed to identify the pathological characteristics of ribosomal protein SA (RPSA), a ribosomal protein, in both states. To this end, we evaluated the autopsy findings in four patients with HD, two SCA3, and five normal elderly cases (NCs). Immunohistochemical studies demonstrated that both NIIs and MBs contain RPSA. In polyQ diseases, RPSA was co-localized with polyQ aggregations, and 3D-reconstructed images revealed their mosaic-like distribution. Assessments of the organization of RPSA and p62 in NIIs showed that RPSA was more localized toward the center than p62 and that this unique organization was more evident in the MBs. Immunoblotting of the temporal cortices revealed that the nuclear fraction of HD patients contained more RPSA than that of NCs. In conclusion, our study revealed that RPSA is a common component of both NIIs and MBs, indicating that a similar mechanism contributes to the formation of polyQ NIIs and MBs.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoko Sadashima
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Department of Neurology, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neuropathology Center, National Hospital Organization, Omuta National Hospital, Omuta, Japan
| |
Collapse
|
3
|
Chocarro J, Rico AJ, Ariznabarreta G, Roda E, Honrubia A, Collantes M, Peñuelas I, Vázquez A, Rodríguez-Pérez AI, Labandeira-García JL, Vila M, Lanciego JL. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates. Brain 2023; 146:5000-5014. [PMID: 37769648 PMCID: PMC10689915 DOI: 10.1093/brain/awad331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alberto J Rico
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elvira Roda
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Adriana Honrubia
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - María Collantes
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Vázquez
- Department of Neurosurgery, Hospital Universitario de Navarra, Servicio Navarro de Salud, 31008 Pamplona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Vall d’Hebron Research Institute, Neurodegenerative Diseses Research Group, 08035 Barcelona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José L Lanciego
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
5
|
Weijs R, Okkersen K, van Engelen B, Küsters B, Lammens M, Aronica E, Raaphorst J, van Cappellen van Walsum AM. Human brain pathology in myotonic dystrophy type 1: A systematic review. Neuropathology 2021; 41:3-20. [PMID: 33599033 PMCID: PMC7986875 DOI: 10.1111/neup.12721] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Brain involvement in myotonic dystrophy type 1 (DM1) is characterized by heterogeneous cognitive, behavioral, and affective symptoms and imaging alterations indicative of widespread grey and white matter involvement. The aim of the present study was to systematically review the literature on brain pathology in DM1. We conducted a structured search in EMBASE (index period 1974–2017) and MEDLINE (index period 1887–2017) on December 11, 2017, using free text and index search terms related to myotonic dystrophy type 1 and brain structures or regions. Eligible studies were full‐text studies reporting on microscopic brain pathology of DM1 patients without potentially interfering comorbidity. We discussed the findings based on the anatomical region and the nature of the anomaly. Neuropathological findings in DM1 can be classified as follows: (1) protein and nucleotide deposits; (2) changes in neurons and glial cells; and (3) white matter alterations. Most findings are unspecific to DM1 and may occur with physiological aging, albeit to a lesser degree. There are similarities and contrasts with Alzheimer's disease; both show the appearance of neurofibrillary tangles in the limbic system without plaque occurrence. Likewise, there is myelin loss and gliosis, and there are dilated perivascular spaces in the white matter resemblant of cerebral small vessel disease. However, we did not find evidence of lacunar infarction or microbleeding. The various neuropathological findings in DM1 are reflective of the heterogeneous clinical and neuroimaging features of the disease. The strength of conclusions from this study's findings is bounded by limited numbers of participants in studies, methodological constraints, and lack of assessed associations between histopathology and clinical or neuroimaging findings.
Collapse
Affiliation(s)
- Ralf Weijs
- Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Lammens
- Department of Pathological Anatomy, University of Antwerp, Antwerp, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Pathology, Amsterdam Neuroscience Institute, Amsterdam, the Netherlands
| | - Joost Raaphorst
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Pathology, Amsterdam Neuroscience Institute, Amsterdam, the Netherlands
| | - Anne-Marie van Cappellen van Walsum
- Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Amano R, Toru S, Yamane M, Kitagawa M, Hirokawa K, Uchihara T. Parallel enlargement of Marinesco bodies and nuclei and progressive deposition of p62 in pigmented neurons of the substantia nigra. Neuropathology 2020; 40:328-335. [PMID: 32202001 DOI: 10.1111/neup.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/30/2022]
Abstract
Marinesco bodies (MBs) are spherical nuclear inclusions found in pigmented neurons of the substantia nigra. Although MBs are abundant in senescent brains, how they are related to aging processes remains unclear. Here, we performed a morphometric analysis of midbrain pigmented neurons to identify the possible influence of MBs on nuclear size. The transected area of the nucleus (nuclear area) was larger in the presence of MBs and was correlated with the area of MB (MB area) in all tested brains. The MB-associated nuclear enlargement was significant even after MB areas were subtracted from nuclear areas. Moreover, higher MB immunoreactivity of p62 was detected in the nucleoplasm of the enlarged MB-associated nuclei. This study on human brains is the first quantitative approach demonstrating MB-associated nuclear enlargement and progressive accumulation of small nucleoplasmic materials. Although cellular hypertrophy is usually considered to be an indication of the upregulation of cellular function, this might not always be the case. These findings suggest that an age-related decline of ubiquitin-proteasome and autophagy system activity and stagnation of undegradable materials are one of the candidate mechanisms to explain the age-related decline of neural activity in the substantia nigra.
Collapse
Affiliation(s)
- Ryota Amano
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Michio Yamane
- Department of Internal Medicine, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan.,Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Toshiki Uchihara
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Raza HK, Singh S, Rai P, Chansysouphanthong T, Amir A, Cui G, Song W, Bao L, Zhou S, Shi H, Chen H. Recent progress in neuronal intranuclear inclusion disease: a review of the literature. Neurol Sci 2020; 41:1019-1025. [DOI: 10.1007/s10072-019-04195-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
|
8
|
Pagida MA, Konstantinidou AE, Chrysanthou-Piterou MA, Patsouris ES, Panayotacopoulou MT. Apoptotic Markers in the Midbrain of the Human Neonate After Perinatal Hypoxic/Ischemic Injury. J Neuropathol Exp Neurol 2020; 79:86-101. [PMID: 31803912 DOI: 10.1093/jnen/nlz114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Our previous postmortem studies on neonates with neuropathological injury of perinatal hypoxia/ischemia (PHI) showed a dramatic reduction of tyrosine hydroxylase expression (dopamine synthesis enzyme) in substantia nigra (SN) neurons, with reduction of their cellular size. In order to investigate if the above observations represent an early stage of SN degeneration, we immunohistochemically studied the expression of cleaved caspase-3 (CCP3), apoptosis inducing factor (AIF), and DNA fragmentation by using terminal deoxynucleotidyltransferase-mediated dUTP-biotin 3'-end-labeling (TUNEL) technique in the SN of 22 autopsied neonates (corrected age ranging from 34 to 46.5 gestational weeks), in relation to the severity/duration of PHI injury, as estimated by neuropathological criteria. No CCP3-immunoreactive neurons and a limited number of apoptotic TUNEL-positive neurons with pyknotic characteristics were found in the SN. Nuclear AIF staining was revealed only in few SN neurons, indicating the presence of early signs of AIF-mediated degeneration. By contrast, motor neurons of the oculomotor nucleus showed higher cytoplasmic AIF expression and nuclear translocation, possibly attributed to the combined effect of developmental processes and increased oxidative stress induced by antemortem and postmortem factors. Our study indicates the activation of AIF, but not CCP3, in the SN and oculomotor nucleus of the human neonate in the developmentally critical perinatal period.
Collapse
Affiliation(s)
- Marianna A Pagida
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia E Konstantinidou
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita A Chrysanthou-Piterou
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios S Patsouris
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| | - Maria T Panayotacopoulou
- 1st Department of Psychiatry (MPag, MC-P, MPan); Laboratory of Neurobiology and Histochemistry, University Mental Health Research Institute (MPag, MC-P, MPan); and 1st Department of Pathology (AK, EP), National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Schwertheim S, Theurer S, Jastrow H, Herold T, Ting S, Westerwick D, Bertram S, Schaefer CM, Kälsch J, Baba HA, Schmid KW. New insights into intranuclear inclusions in thyroid carcinoma: Association with autophagy and with BRAFV600E mutation. PLoS One 2019; 14:e0226199. [PMID: 31841566 PMCID: PMC6913918 DOI: 10.1371/journal.pone.0226199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Intranuclear inclusions (NI) in normal and neoplastic tissues have been known for years, representing one of the diagnostic criteria for papillary thyroid carcinoma (PTC). BRAF activation is involved among others in autophagy. NI in hepatocellular carcinoma contain autophagy-associated proteins. Our aim was to clarify if NI in thyroid carcinoma (TC) have a biological function. Methods NI in 107 paraffin-embedded specimens of TC including all major subtypes were analyzed. We considered an inclusion as positive if it was delimited by a lamin AC (nuclear membrane marker) stained intact membrane and completely closed. Transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence (IF) and 3D reconstruction were performed to investigate content and shape of NI; BRAFV600E mutation was analyzed by next generation sequencing. Results In 29% of the TCs at least one lamin AC positive intranuclear inclusion was detected; most frequently (76%) in PTCs. TEM analyses revealed degenerated organelles and heterolysosomes within such NI; 3D reconstruction of IF stained nuclei confirmed complete closure by the nuclear membrane without any contact to the cytoplasm. NI were positively stained for the autophagy-associated proteins LC3B, ubiquitin, cathepsin D, p62/sequestosome1 and cathepsin B in 14–29% of the cases. Double-IF revealed co-localization of LC3B & ubiquitin, p62 & ubiquitin and LC3B & p62 in the same NI. BRAFV600E mutation, exclusively detected in PTCs, was significantly associated with the number of NI/PTC (p = 0.042) and with immunoreactivity for autophagy-associated proteins in the NI (p≤0.035). BRAF-IHC revealed that some of these BRAF-positive thyrocytes contained mutant BRAF in their NI co-localized with autophagy-associated proteins. Conclusions NI are completely delimited by nuclear membrane in TC. The presence of autophagy-associated proteins within the NI together with degenerated organelles and lysosomal proteases suggests their involvement in autophagy and proteolysis. Whether and how BRAFV600E protein is degraded in NI needs further investigation.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy and Electron Microscopy Unit of Imaging Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M. Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A. Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Kurt W. Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Schwertheim S, Westerwick D, Jastrow H, Theurer S, Schaefer CM, Kälsch J, Möllmann D, Schlattjan M, Wedemeyer H, Schmid KW, Baba HA. Intranuclear inclusions in hepatocellular carcinoma contain autophagy-associated proteins and correlate with prolonged survival. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:164-176. [PMID: 30859721 PMCID: PMC6648385 DOI: 10.1002/cjp2.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
For decades, intranuclear inclusions in many normal and neoplastic cells have been considered to be mere invaginations of cytoplasm into the nucleus without any notable function or influence on disease. We investigated such inclusions in 75 specimens of hepatocellular carcinoma (HCC). In this context we demonstrate that these inclusions are true inclusions, completely closed and delimited by the nuclear membrane, containing degenerate cell organelles and lysosomal proteins. Moreover, their occurrence was positively associated with patient survival but not with tumour grade or stage. In a standardised area a mean of 124 inclusions per specimen was present in the tumorous liver tissue in contrast to 5 inclusions in the non‐tumorous adjacent section and 89% of all scrutinised HCC showed at least one membrane‐bound nuclear inclusion. Ultrastructural characterisation by transmission electron microscopy revealed degenerative materials such as residues of lysosomes, endoplasmic reticulum and Golgi apparatus within the inclusions. Due to the fact that the content of the inclusions appears to be more condensed than cytoplasm and contains fewer intact cell organelles, we assume that they are not mere invaginations of cytoplasm. Three dimensional (3D) reconstruction of isolated and immunofluorescence stained nuclei showed that the inclusions are completely located within the nucleus without any connection to the cytoplasm. The limiting membrane of the inclusions contained lamin B suggesting nuclear membrane origin. The content of the inclusions stained for the autophagy‐associated proteins p62, ubiquitin, LC3B, cathepsin B and cathepsin D. Triple immunofluorescence staining followed by 3D reconstruction revealed co‐localisation of p62, ubiquitin and LC3B in the same inclusion. Our observations uncover that these inclusions are real inclusions completely surrounded by the nucleus. We propose that the presence of autophagy‐associated proteins and proteases within the inclusions contribute to beneficial survival.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dorothe Möllmann
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Schlattjan
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,West German Cancer Centre Essen (WTZE), University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Opris I, Nestianu VS, Nestianu A, Bilteanu L, Ciurea J. George Marinesco in the Constellation of Modern Neuroscience. Front Neurosci 2018; 11:726. [PMID: 29317856 PMCID: PMC5748083 DOI: 10.3389/fnins.2017.00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
George Marinesco is the founder of Romanian School of Neurology and one of the most remarkable neuroscientists of the last century. He was the pupil of Jean-Martin Charcot in Salpêtrière Hospital in Paris, France, but visited many other neurological centers where he met the entire constellation of neurologists of his time, including Camillo Golgi and Santiago Ramón y Cajal. The last made the preface of Nervous Cell, written in French by Marinesco. The original title was “La Cellule Nerveuse” and is considered even now a basic reference book for specialists in the field. He was a refined clinical observer with an integrative approach, as could be seen from the multitude of his discoveries. The descriptions of the succulent hand in syringomyelia, senile plaque in old subjects, palmar jaw reflex known as Marinesco-Radovici sign, or the application of cinematography in medicine are some of his important contributions. He was the first who described changes of locus niger in a patient affected by tuberculosis, as a possible cause in Parkinson disease. Before modern genetics, Marinesco and Sjögren described a rare and complex syndrome bearing their names. He was a hardworking man, focused on his scientific research, did not accepted flattering of others and was a great fighter against the injustice of the time.
Collapse
Affiliation(s)
- Ioan Opris
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | | | - Adrian Nestianu
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Liviu Bilteanu
- University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Jean Ciurea
- Bagdasar Arseni Hospital, Bucharest, Romania
| |
Collapse
|
12
|
Mori F, Tanji K, Miki Y, Toyoshima Y, Sasaki H, Yoshida M, Kakita A, Takahashi H, Wakabayashi K. Immunohistochemical localization of exoribonucleases (DIS3L2 and XRN1) in intranuclear inclusion body disease. Neurosci Lett 2018; 662:389-394. [DOI: 10.1016/j.neulet.2017.10.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
|
13
|
Abbott RD, Nelson JS, Ross GW, Uyehara-Lock JH, Tanner CM, Masaki KH, Launer LJ, White LR, Petrovitch H. Marinesco bodies and substantia nigra neuron density in Parkinson's disease. Neuropathol Appl Neurobiol 2017. [PMID: 28626918 DOI: 10.1111/nan.12419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIM Marinesco bodies (MB) are intranuclear inclusions in pigmented neurons of the substantia nigra (SN). While rare in children, frequency increases with normal ageing and is high in Alzheimer's disease, dementia with Lewy bodies and other neurodegenerative disorders. Coinciding with the age-related rise in MB frequency is initiation of cell death among SN neurons. Whether MB have a role in this process is unknown. Our aim is to examine the association of MB with SN neuron density in Parkinson's disease (PD) in the Honolulu-Asia Aging Study. METHODS Data on MB and neuron density were measured in SN transverse sections in 131 autopsied men aged 73-99 years at the time of death from 1992 to 2007. RESULTS Marinesco body frequency was low in the presence vs. absence of PD (2.3% vs. 6.6%, P < 0.001). After PD onset, MB frequency declined as duration of PD increased (P = 0.006). Similar patterns were observed for SN neuron density. When MB frequency was low, neuron density was noticeably reduced in the SN ventrolateral quadrant, the region most vulnerable to PD neurodegeneration. Low MB frequency was unique to PD as its high frequency in non-PD cases was unrelated to parkinsonian signs and incidental Lewy bodies. Frequency was high in the presence of Alzheimer's disease and apolipoprotein ε4 alleles. CONCLUSIONS While findings confirm that MB frequency is low in PD, declines in MB frequency continue with PD duration. The extent to which MB have a distinct relationship with PD warrants clarification. Further studies of MB could be important in understanding PD processes.
Collapse
Affiliation(s)
- R D Abbott
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan.,Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - J S Nelson
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - G W Ross
- Pacific Health Research and Education Institute, Honolulu, HI, USA.,Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.,Department of Geriatric Medicine and the John A. Hartford Foundation Center of Excellence in Geriatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.,Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA
| | - J H Uyehara-Lock
- Department of Pathology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - C M Tanner
- San Francisco Veterans Affairs Medical Center, University of California-San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | - K H Masaki
- Department of Geriatric Medicine and the John A. Hartford Foundation Center of Excellence in Geriatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.,Kuakini Medical Center, Honolulu, HI, USA
| | - L J Launer
- National Institute on Aging, Bethesda, MD, USA
| | - L R White
- Pacific Health Research and Education Institute, Honolulu, HI, USA.,Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA
| | - H Petrovitch
- Pacific Health Research and Education Institute, Honolulu, HI, USA.,Department of Geriatric Medicine and the John A. Hartford Foundation Center of Excellence in Geriatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.,Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA
| |
Collapse
|
14
|
Sone J, Mori K, Inagaki T, Katsumata R, Takagi S, Yokoi S, Araki K, Kato T, Nakamura T, Koike H, Takashima H, Hashiguchi A, Kohno Y, Kurashige T, Kuriyama M, Takiyama Y, Tsuchiya M, Kitagawa N, Kawamoto M, Yoshimura H, Suto Y, Nakayasu H, Uehara N, Sugiyama H, Takahashi M, Kokubun N, Konno T, Katsuno M, Tanaka F, Iwasaki Y, Yoshida M, Sobue G. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 2016; 139:3170-3186. [PMID: 27797808 PMCID: PMC5382941 DOI: 10.1093/brain/aww249] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/30/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous system, and also in the visceral organs. NIID has been considered to be a heterogeneous disease because of the highly variable clinical manifestations, and ante-mortem diagnosis has been difficult. However, since we reported the usefulness of skin biopsy for the diagnosis of NIID, the number of NIID diagnoses has increased, in particular adult-onset NIID. In this study, we studied 57 cases of adult-onset NIID and described their clinical and pathological features. We analysed both NIID cases diagnosed by post-mortem dissection and by ante-mortem skin biopsy based on the presence of characteristic eosinophilic, hyaline and ubiquitin-positive intanuclear inclusion: 38 sporadic cases and 19 familial cases, from six families. In the sporadic NIID cases with onset age from 51 to 76, dementia was the most prominent initial symptom (94.7%) as designated 'dementia dominant group', followed by miosis, ataxia and unconsciousness. Muscle weakness and sensory disturbance were also observed. It was observed that, in familial NIID cases with onset age less than 40 years, muscle weakness was seen most frequently (100%), as designated 'limb weakness group', followed by sensory disturbance, miosis, bladder dysfunction, and dementia. In familial cases with more than 40 years of onset age, dementia was most prominent (100%). Elevated cerebrospinal fluid protein and abnormal nerve conduction were frequently observed in both sporadic and familial NIID cases. Head magnetic resonance imaging showed high intensity signal in corticomedullary junction in diffusion-weighted image in both sporadic and familial NIID cases, a strong clue to the diagnosis. All of the dementia dominant cases presented with this type of leukoencephalopathy on head magnetic resonance imaging. Both sporadic and familial NIID cases presented with a decline in Mini-Mental State Examination and Frontal Assessment Battery scores. Based on these clinicopathological features, we proposed a diagnosis flow chart of adult-onset NIID. Our study suggested that the prevalence rate of adult-onset NIID may be higher than previously thought, and that NIID may be underdiagnosed. We should take NIID into account for differential diagnosis of leukoencephalopathy and neuropathy.
Collapse
Affiliation(s)
- Jun Sone
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,2 Department of Therapeutics for Intractable Neurological Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Mori
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,3 Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, Japan
| | - Tomonori Inagaki
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryu Katsumata
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinnosuke Takagi
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Yokoi
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kunihiko Araki
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyasu Kato
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohiko Nakamura
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruki Koike
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Takashima
- 4 Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- 4 Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Kohno
- 5 Department of Neurology, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan
| | - Takashi Kurashige
- 6 Department of Neurology, National Hospital Organization Kure Medical Centre, Kure, Hiroshima, Japan
| | - Masaru Kuriyama
- 7 Department of Neurology, Ota Memorial Hospital, Fukuyama, Hiroshima, Japan
| | - Yoshihisa Takiyama
- 8 Department of Neurology, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Mai Tsuchiya
- 8 Department of Neurology, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Naoyuki Kitagawa
- 9 Department of Neurology, Kosei Chuo General Hospital, Tokyo, Japan
| | - Michi Kawamoto
- 10 Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hajime Yoshimura
- 10 Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yutaka Suto
- 11 Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Hiroyuki Nakayasu
- 11 Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Naoko Uehara
- 12 Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Hiroshi Sugiyama
- 12 Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Makoto Takahashi
- 13 Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| | - Norito Kokubun
- 14 Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Takuya Konno
- 15 Department of Neurology, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | - Masahisa Katsuno
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumiaki Tanaka
- 16 Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yasushi Iwasaki
- 17 Department of Neuropathology, Institute for Medical Sciences of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mari Yoshida
- 17 Department of Neuropathology, Institute for Medical Sciences of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Gen Sobue
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan .,18 Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
15
|
Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 2015; 130:537-55. [PMID: 26085200 PMCID: PMC4575390 DOI: 10.1007/s00401-015-1450-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/25/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes.
Collapse
|
16
|
Nakamura K, Mori F, Tanji K, Miki Y, Yamada M, Kakita A, Takahashi H, Utsumi J, Sasaki H, Wakabayashi K. Isopentenyl diphosphate isomerase, a cholesterol synthesizing enzyme, is localized in Lewy bodies. Neuropathology 2015; 35:432-40. [PMID: 25950736 DOI: 10.1111/neup.12204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
Isopentenyl diphosphate isomerase (IDI) is a cytoplasmic enzyme involved in the biosynthesis of isoprenoids including cholesterols. IDI has two isoforms in humans: IDI1 and IDI2. Since lipids are known to be a component of Lewy bodies (LBs), we investigated the immunohistochemical localization of IDI1 and IDI2 in the brain of patients with LB disease and multiple system atrophy (MSA) and normal control subjects. In normal controls, the cytoplasm of neurons was weakly immunostained with anti-IDI1 and anti-IDI2 antibodies throughout the nervous system. In LB disease, brainstem-type LBs were strongly positive for IDI1 and IDI2, and cortical LBs were unstained or barely immunolabeled. Double immunofluorescence staining revealed co-localization of phosphorylated α-synuclein with IDI1 or IDI2. Glial cytoplasmic inclusions in MSA were unstained. Previous studies have shown that levels of cholesterol metabolites are increased in the cerebral cortex of patients with LB disease, and that these metabolites accelerate α-synuclein aggregation. The present findings suggest that IDI1 and IDI2 may be associated with the production of cholesterol metabolites in neurons, leading to α-synuclein aggregation during the process of LB formation.
Collapse
Affiliation(s)
- Keiko Nakamura
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki.,Department of Neurology and Neurobiology of Ageing, Kanazawa University Graduate School of Medical Science, Kanazawa
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Ageing, Kanazawa University Graduate School of Medical Science, Kanazawa
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience, Center for Bioresource-based Researches
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata
| | - Jun Utsumi
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki
| |
Collapse
|
17
|
Abstract
NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights.
Collapse
|
18
|
Shin HY, Park JH, Carp RI, Choi EK, Kim YS. Deficiency of prion protein induces impaired autophagic flux in neurons. Front Aging Neurosci 2014; 6:207. [PMID: 25202268 PMCID: PMC4142790 DOI: 10.3389/fnagi.2014.00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/22/2022] Open
Abstract
Normal cellular prion protein (PrPC) is highly expressed in the central nervous system. The Zürich I Prnp-deficient mouse strain did not show an abnormal phenotype in initial studies, however, in later studies, deficits in exploratory behavior and short- and long-term memory have been revealed. In the present study, numerous autophagic vacuoles were found in neurons from Zürich I Prnp-deficient mice. The autophagic accumulation in the soma of cortical neurons in Zürich I Prnp-deficient mice was observed as early as 3 months of age, and in the hippocampal neurons at 6 months of age. Specifically, there is accumulation of electron dense pigments associated with autophagy in the neurons of Zürich I Prnp-deficient mice. Furthermore, autophagic accumulations were observed as early as 3 months of age in the CA3 region of hippocampal and cerebral cortical neuropils. The autophagic vacuoles increased with age in the hippocampus of Zürich I Prnp-deficient mice at a faster rate and to a greater extent than in normal C57BL/6J mice, whereas the cortex exhibited high levels that were maintained from 3 months old in Zürich I Prnp-deficient mice. The pigmented autophagic accumulation is due to the incompletely digested material from autophagic vacuoles. Furthermore, a deficiency in PrPC may disrupt the autophagic flux by inhibiting autophagosome-lysosomal fusion. Overall, our results provide insight into the protective role of PrPC in neurons, which may play a role in normal behavior and other brain functions.
Collapse
Affiliation(s)
- Hae-Young Shin
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea
| | - Richard I Carp
- New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea ; Department of Biomedical Gerontology, Graduate School of Hallym University Chuncheon, Gangwon-do, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea ; Department of Microbiology, College of Medicine, Hallym University Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
19
|
Liu S, Yang H, Zhao J, Zhang YH, Song AX, Hu HY. NEDD8 ultimate buster-1 long (NUB1L) protein promotes transfer of NEDD8 to proteasome for degradation through the P97UFD1/NPL4 complex. J Biol Chem 2013; 288:31339-49. [PMID: 24019527 DOI: 10.1074/jbc.m113.484816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NEDD8 protein and neddylation levels in cells are modulated by NUB1L or NUB1 through proteasomal degradation, but the underlying molecular mechanism is not well understood. Here, we report that NUB1L down-regulated the protein levels of NEDD8 and neddylation through specifically recognizing NEDD8 and P97/VCP. NUB1L directly interacted with NEDD8, but not with ubiquitin, on the key residue Asn-51 of NEDD8 and with P97/VCP on its positively charged VCP binding motif. In coordination with the P97-UFD1-NPL4 complex (P97(UFD1/NPL4)), NUB1L promotes transfer of NEDD8 to proteasome for degradation. This mechanism is also exemplified by the canonical neddylation of cullin 1 for SCF (SKP1-cullin1-F-box) ubiquitin E3 ligases that is exquisitely regulated by the turnover of NEDD8.
Collapse
Affiliation(s)
- Shuai Liu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
20
|
Kon T, Mori F, Tanji K, Miki Y, Toyoshima Y, Yoshida M, Sasaki H, Kakita A, Takahashi H, Wakabayashi K. ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neuropathology 2013; 34:19-26. [DOI: 10.1111/neup.12056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Tomoya Kon
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki
| | - Fumiaki Mori
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki
| | - Kunikazu Tanji
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki
| | - Yasuo Miki
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki
| | | | - Mari Yoshida
- Department of Neuropathology; Aichi Medical University; Nagakute
| | - Hidenao Sasaki
- Department of Neurology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience; Center for Bioresource-based Researches; University of Niigata; Niigata
| | | | - Koichi Wakabayashi
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki
| |
Collapse
|
21
|
Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127:580-91. [PMID: 23786482 DOI: 10.1111/jnc.12347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.
Collapse
Affiliation(s)
- Vasco Silveirinha
- School of Pharmacy, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | | | | |
Collapse
|
22
|
Mori F, Tanji K, Toyoshima Y, Sasaki H, Yoshida M, Kakita A, Takahashi H, Wakabayashi K. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease. Neuropathology 2013; 33:637-44. [DOI: 10.1111/neup.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Kunikazu Tanji
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | | | - Hidenao Sasaki
- Department of Neurology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Mari Yoshida
- Department of Neuropathology; Aichi Medical University; Nagakute Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience; Center for Bioresource-Based Researches; Brain Research Institute; University of Niigata; Niigata Japan
| | | | - Koichi Wakabayashi
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| |
Collapse
|
23
|
Cajee UF, Hull R, Ntwasa M. Modification by ubiquitin-like proteins: significance in apoptosis and autophagy pathways. Int J Mol Sci 2012; 13:11804-11831. [PMID: 23109884 PMCID: PMC3472776 DOI: 10.3390/ijms130911804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 01/31/2023] Open
Abstract
Ubiquitin-like proteins (Ubls) confer diverse functions on their target proteins. The modified proteins are involved in various biological processes, including DNA replication, signal transduction, cell cycle control, embryogenesis, cytoskeletal regulation, metabolism, stress response, homeostasis and mRNA processing. Modifiers such as SUMO, ATG12, ISG15, FAT10, URM1, and UFM have been shown to modify proteins thus conferring functions related to programmed cell death, autophagy and regulation of the immune system. Putative modifiers such as Domain With No Name (DWNN) have been identified in recent times but not fully characterized. In this review, we focus on cellular processes involving human Ubls and their targets. We review current progress in targeting these modifiers for drug design strategies.
Collapse
Affiliation(s)
- Umar-Faruq Cajee
- School of Molecular & Cell Biology, Gatehouse 512, University of the Witwatersrand, Johannesburg, 2050, South Africa; E-Mails: (U.-F.C.); (R.H.)
| | - Rodney Hull
- School of Molecular & Cell Biology, Gatehouse 512, University of the Witwatersrand, Johannesburg, 2050, South Africa; E-Mails: (U.-F.C.); (R.H.)
| | - Monde Ntwasa
- School of Molecular & Cell Biology, Gatehouse 512, University of the Witwatersrand, Johannesburg, 2050, South Africa; E-Mails: (U.-F.C.); (R.H.)
| |
Collapse
|
24
|
Autophagy-related proteins (p62, NBR1 and LC3) in intranuclear inclusions in neurodegenerative diseases. Neurosci Lett 2012; 522:134-8. [DOI: 10.1016/j.neulet.2012.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 11/23/2022]
|
25
|
A simple and sensitive method for the demonstration of norepinephrine-storing adrenomedullary chromaffin cells. Histochem Cell Biol 2012; 138:155-65. [PMID: 22411183 DOI: 10.1007/s00418-012-0942-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
Abstract
The medulla of the adrenal gland is a neuroendocrine tissue in which catecholamine-storing chromaffin cells exist. The chromaffin cells are derived from neural crest cells and distinctly differentiated into two types of cells, epinephrine (E) (adrenaline)-storing and norepinephrine (NE) (noradrenaline)-storing cells. Using histochemical or immunostaining methods, the two types of chromaffin cells have been differentially distinguished. However, difficulties and/or drawbacks of the procedures have somewhat restricted the progress of research in differential functions of E-storing and NE-storing cells. Here, we show a new method for the differential demonstration of these two cell types. We found that mouse and rat adrenomedullary cells are heterogeneously stained with Harris hematoxylin after treatment with citrate buffer at pH 6. The cell clusters stained with hematoxylin were positive for tyrosine hydroxylase, which is an enzyme involved in catecholamine biosynthesis. Furthermore, the cell clusters were negative for phenylethanolamine-N-methyl transferase, which is an enzyme responsible for the conversion from NE to E and expresses in E-storing chromaffin cells. Moreover, we found that the cell clusters stained with hematoxylin can also be stained with nitroblue tetrazolium at pH 11, using Hopsu and Mäkinen's method by which NE-storing chromaffin cells are stained. These observations indicate that the cytoplasm of NE-storing chromaffin cells is specifically stained with hematoxylin after treatment with citrate buffer at pH 6. This method will allow us to facilitate cell-type specific research of chromaffin cells. Indeed, this method revealed that α-synuclein selectively expresses in E-storing chromaffin cells, but not in NE-storing chromaffin cells.
Collapse
|