1
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
2
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Al-Redouan A, Salaj M, Kubova H, Druga R. Compartmental neuronal degeneration in the ventral striatum induced by status epilepticus in young rats' brain in comparison with adults. Int J Dev Neurosci 2024; 84:328-341. [PMID: 38631684 DOI: 10.1002/jdn.10331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.
Collapse
Affiliation(s)
- Azzat Al-Redouan
- Department of Anatomy, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Salaj
- Department of Anatomy, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Kubova
- Department of developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Rastislav Druga
- Department of Anatomy, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Phillips RA, Tuscher JJ, Fitzgerald ND, Wan E, Zipperly ME, Duke CG, Ianov L, Day JJ. Distinct subpopulations of D1 medium spiny neurons exhibit unique transcriptional responsiveness to cocaine. Mol Cell Neurosci 2023; 125:103849. [PMID: 36965548 PMCID: PMC10898607 DOI: 10.1016/j.mcn.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023] Open
Abstract
Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.
Collapse
Affiliation(s)
- Robert A Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N Dalton Fitzgerald
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey G Duke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Phillips RA, Tuscher JJ, Fitzgerald ND, Wan E, Zipperly ME, Duke CG, Ianov L, Day JJ. Distinct subpopulations of D1 medium spiny neurons exhibit unique transcriptional responsiveness to cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523845. [PMID: 36711527 PMCID: PMC9882178 DOI: 10.1101/2023.01.12.523845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.
Collapse
Affiliation(s)
- Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N. Dalton Fitzgerald
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E. Zipperly
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey G. Duke
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Babiczky Á, Matyas F. Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system. eLife 2022; 11:78813. [PMID: 36063145 PMCID: PMC9444245 DOI: 10.7554/elife.78813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical influence over the mesolimbic system - including the nucleus accumbens (NAc) and the ventral tegmental area (VTA) - is implicated in various cognitive processes and behavioral malfunctions. The functional versatility of this system could be explained by an underlying anatomical complexity; however, the detailed characterization of the medial prefrontal cortical (mPFC) innervation of the NAc and VTA is still lacking. Therefore, combining classical retrograde and conditional viral tracing techniques with multiple fluorescent immunohistochemistry, we sought to deliver a precise, cell- and layer-specific anatomical description of the cortico-mesolimbic pathways in mice. We demonstrated that NAc- (mPFCNAc) and VTA-projecting mPFC (mPFCVTA) populations show different laminar distribution (layers 2/3-5a and 5b-6, respectively) and express different molecular markers. Specifically, calbindin and Ntsr1 are specific to mPFCNAc neurons, while mPFCVTA neurons express high levels of Ctip2 and FoxP2, indicating that these populations are mostly separated at the cellular level. We directly tested this with double retrograde tracing and Canine adenovirus type 2-mediated viral labeling and found that there is indeed minimal overlap between the two populations. Furthermore, whole-brain analysis revealed that the projection pattern of these populations is also different throughout the brain. Taken together, we demonstrated that the NAc and the VTA are innervated by two, mostly nonoverlapping mPFC populations with different laminar distribution and molecular profile. These results can contribute to the advancement in our understanding of mesocorticolimbic functions and its disorders in future studies.
Collapse
Affiliation(s)
- Ákos Babiczky
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Doctoral School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Matyas
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Differential distribution of inhibitory neuron types in subregions of claustrum and dorsal endopiriform nucleus of the short-tailed fruit bat. Brain Struct Funct 2022; 227:1615-1640. [PMID: 35188589 DOI: 10.1007/s00429-022-02459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Few brain regions have such wide-ranging inputs and outputs as the claustrum does, and fewer have posed equivalent challenges in defining their structural boundaries. We studied the distributions of three calcium-binding proteins-calretinin, parvalbumin, and calbindin-in the claustrum and dorsal endopiriform nucleus of the fruit bat, Carollia perspicillata. The proportionately large sizes of claustrum and dorsal endopiriform nucleus in Carollia brain afford unique access to these structures' intrinsic anatomy. Latexin immunoreactivity permits a separation of claustrum into core and shell subregions and an equivalent separation of dorsal endopiriform nucleus. Using latexin labeling, we found that the claustral shell in Carollia brain can be further subdivided into at least four distinct subregions. Calretinin and parvalbumin immunoreactivity reinforced the boundaries of the claustral core and its shell subregions with diametrically opposite distribution patterns. Calretinin, parvalbumin, and calbindin all colocalized with GAD67, indicating that these proteins label inhibitory neurons in both claustrum and dorsal endopiriform nucleus. Calretinin, however, also colocalized with latexin in a subset of neurons. Confocal microscopy revealed appositions that suggest synaptic contacts between cells labeled for each of the three calcium-binding proteins and latexin-immunoreactive somata in claustrum and dorsal endopiriform nucleus. Our results indicate significant subregional differences in the intrinsic inhibitory connectivity within and between claustrum and dorsal endopiriform nucleus. We conclude that the claustrum is structurally more complex than previously appreciated and that claustral and dorsal endopiriform nucleus subregions are differentially modulated by multiple inhibitory systems. These findings can also account for the excitability differences between claustrum and dorsal endopiriform nucleus described previously.
Collapse
|
8
|
Shin JK, Kim WY, Rim H, Kim JH. Decrease of glycogen synthase kinase 3β phosphorylation in the rat nucleus accumbens shell is necessary for amphetamineinduced conditioned locomotor activity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:59-65. [PMID: 34965996 PMCID: PMC8723983 DOI: 10.4196/kjpp.2022.26.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022]
Abstract
Phosphorylation levels of glycogen synthase kinase 3β (GSK3β) negatively correlated with psychomotor stimulant-induced locomotor activity. Locomotor sensitization induced by psychomotor stimulants was previously shown to selectively accompany the decrease of GSK3β phosphorylation in the nucleus accumbens (NAcc) core, suggesting that intact GSK3β activity in this region is necessary for psychomotor stimulants to produce locomotor sensitization. Similarly, GSK3β in the NAcc was also implicated in mediating the conditioned effects formed by the associations of psychomotor stimulants. However, it remains undetermined whether GSK3β plays a differential role in the two sub-regions (core and shell) of the NAcc in the expression of drug-conditioned behaviors. In the present study, we found that GSK3β phosphorylation was significantly lower in the NAcc shell obtained from rats expressing amphetamine (AMPH)-induced conditioned locomotor activity. Further, we demonstrated that these effects were normalized by treatment with lithium chloride, a GSK3β inhibitor. These results suggest that the behavior produced by AMPH itself and a conditioned behavior formed by associations with AMPH are differentially mediated by the two sub-regions of the NAcc.
Collapse
Affiliation(s)
- Joong-Keun Shin
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Haeun Rim
- Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong-Hoon Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
10
|
Nasrollahi S, Karimi S, Hamidi G, Naderitehrani M, Abed A. Blockade of the orexin 1 receptors in the nucleus accumbens' shell reversed the reduction effect of olanzapine on motivation for positive reinforcers. Neurosci Lett 2021; 762:136137. [PMID: 34311049 DOI: 10.1016/j.neulet.2021.136137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Effort-based choice of high reward requires one to decide how much effort to expend for a certain amount of reward. Orexin is a crucial neuropeptide in the physiological aspect especially a variety of affective and cognitive processes. The nucleus accumbens (NAc) is a region of the neural system that serves effort-related high reward choices andthe Orexin 1 receptor (OX1R) is distributed extensively throughout the nucleus accumbens shell (AcbS). Olanzapine (OLZ), a typical antipsychotic drug, has a high affinity to D2 as an antagonist, and also partial agonistic-like action at D2 receptors has been reported. We examined the interaction of OLZ with the orexinergic receptor 1 in AcbS on effort- related high reward choice when two goal arms were different in the amount of accessible reward. The animals had to pass the barrier for receiving a high reward in one arm (HRA) or obtain a low reward in the other arm without any cost. Before surgery, all animals were selecting the HRA on almost every trial.During test days, the rats received local injections of either DMSO 20% /0.5 µl, as vehicle or SB334867 (30, 100, 300 nM/0.5 µl), as selective OX1R antagonist, within the AcbS. Other group received OLZ (32 µM/0.5 µl DMSO20%) / vehicle alone or 5 min after administration of SB334867 (300 nM/0.5 µl). The results showed that administration of OLZ in the AcbS alters rat's preference for high reward. On the other hand, blocked of the OX1R (300 nM/0.5 µl) in this region could reverse the effect of OLZ, however, administration of the OX1R antagonists alone in the AcbS led to decreasing rat's preference for high reward. This result indicates that the orexin-1 antagonist might affect some effects of antipsychotic drugs.
Collapse
Affiliation(s)
- Saeedeh Nasrollahi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Karimi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamali Hamidi
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Monireh Naderitehrani
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abed
- Institute for Basic Sciences, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Constructing the rodent stereotaxic brain atlas: a survey. SCIENCE CHINA-LIFE SCIENCES 2021; 65:93-106. [PMID: 33860452 DOI: 10.1007/s11427-020-1911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
The stereotaxic brain atlas is a fundamental reference tool commonly used in the field of neuroscience. Here we provide a brief history of brain atlas development and clarify three key conceptual elements of stereotaxic brain atlasing: brain image, atlas, and stereotaxis. We also refine four technical indices for evaluating the construction of atlases: the quality of staining and labeling, the granularity of delineation, spatial resolution, and the precision of spatial location and orientation. Additionally, we discuss state-of-the-art technologies and their trends in the fields of image acquisition, stereotaxic coordinate construction, image processing, anatomical structure recognition, and publishing: the procedures of brain atlas illustration. We believe that the use of single-cell resolution and micron-level location precision will become a future trend in the study of the stereotaxic brain atlas, which will greatly benefit the development of neuroscience.
Collapse
|
12
|
Baik JH. Stress and the dopaminergic reward system. Exp Mol Med 2020; 52:1879-1890. [PMID: 33257725 PMCID: PMC8080624 DOI: 10.1038/s12276-020-00532-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Dopamine regulates reward-related behavior through the mesolimbic dopaminergic pathway. Stress affects dopamine levels and dopaminergic neuronal activity in the mesolimbic dopamine system. Changes in mesolimbic dopaminergic neurotransmission are important for coping with stress, as they allow adaption to behavioral responses to various environmental stimuli. Upon stress exposure, modulation of the dopaminergic reward system is necessary for monitoring and selecting the optimal process for coping with stressful situations. Aversive stressful events may negatively regulate the dopaminergic reward system, perturbing reward sensitivity, which is closely associated with chronic stress-induced depression. The mesolimbic dopamine system is excited not only by reward but also by aversive stressful stimuli, which adds further intriguing complexity to the relationship between stress and the reward system. This review focuses on lines of evidence related to how stress, especially chronic stress, affects the mesolimbic dopamine system, and discusses the role of the dopaminergic reward system in chronic stress-induced depression.
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
Sackett DA, Moschak TM, Carelli RM. Nucleus accumbens shell dopamine mediates outcome value, but not predicted value, in a magnitude decision-making task. Eur J Neurosci 2020; 51:1526-1538. [PMID: 31863510 DOI: 10.1111/ejn.14655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Effective decision-making depends on an animal's ability to predict and select the outcome of greatest value, and the nucleus accumbens (NAc) and its dopaminergic input play a key role in this process. We previously reported that rapid dopamine release in the NAc shell preferentially tracks the "preferred" (i.e., large reward) option during cues that predict the ability to respond for rewards of different sizes, as well as during reward delivery itself. The present study assessed whether shell dopamine release at these discrete times selectively mediated choice behavior for rewards of different magnitudes using optogenetics. Here, using Long Evans TH:Cre± rats we employed selective optogenetic stimulation of dopamine terminals in the NAc shell during either reward-predictive cues (experiment 1) or reward delivery (experiment 2) in a magnitude-based decision-making task. We found that in TH:Cre± rats, but not littermate controls, optical stimulation during low-magnitude reward delivery during forced choice trials was sufficient to bias preference for this option when given a choice. In contrast, optical stimulation of shell dopamine terminals during low-magnitude reward-predictive cues in forced choice trials did not shift free choice behavior in TH:Cre± rats or controls. The findings indicate that preferential dopamine signaling in the NAc shell during reward outcome (delivery), but not reward-predictive cues are sufficient to influence choice behavior in our task supporting a causal role of dopamine in the NAc shell in reward outcome value, but not value-based predictive strategies.
Collapse
Affiliation(s)
- Deirdre A Sackett
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| | - Travis M Moschak
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| | - Regina M Carelli
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Role of orexin-1 and -2 receptors within the nucleus accumbens in the acquisition of sensitization to morphine in rats. Behav Brain Res 2019; 373:112090. [PMID: 31325517 DOI: 10.1016/j.bbr.2019.112090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
It has been reported that orexins A and B are involved in the mediation of drug reward. In addition, the nucleus accumbens (NAc) has an important role in the development of morphine-conditioned place preference (CPP) and morphine sensitization. In the present study, we aimed to evaluate the role of orexin receptors within the NAc in morphine sensitization using CPP paradigm. Adult male Wistar rats were used and were bilaterally implanted by two cannulae in the NAc. The animals received intra-accumbal administration of OX1 or OX2 receptor antagonists, SB-334867 (0.1, 1, and 10 nM/side) or TCS OX2 29 (2, 10, and 20 nM/side), 10 min before morphine injection during the sensitization period, during which the animals received repeated administration of morphine (5 mg/kg; s.c.) once daily for three days followed by 5 morphine injection-free days. Then the CPP paradigm was conducted for the evaluation of morphine rewarding properties by injecting a sub-threshold dose of morphine (0.5 mg/kg; s.c.). The results showed that bilateral administration of OX1 receptor antagonist into the NAc reduced acquisition of morphine sensitization in a dose-dependent manner, but OX2 receptor antagonist produced similar effect only at its highest dose, indicating that OX1 and OX2 receptors within the NAc are involved in the acquisition of morphine sensitization.
Collapse
|
15
|
Xia X, Fan L, Hou B, Zhang B, Zhang D, Cheng C, Deng H, Dong Y, Zhao X, Li H, Jiang T. Fine-Grained Parcellation of the Macaque Nucleus Accumbens by High-Resolution Diffusion Tensor Tractography. Front Neurosci 2019; 13:709. [PMID: 31354418 PMCID: PMC6635473 DOI: 10.3389/fnins.2019.00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Limited in part by the spatial resolution of typical in vivo magnetic resonance imaging (MRI) data, recent neuroimaging studies have only identified a connectivity-based shell-core-like partitioning of the nucleus accumbens (Acb) in humans. This has hindered the process of making a more refined description of the Acb using non-invasive neuroimaging technologies and approaches. In this study, high-resolution ex vivo macaque brain diffusion MRI data were acquired to investigate the tractography-based parcellation of the Acb. Our results identified a shell-core-like partitioning in macaques that is similar to that in humans as well as an alternative solution that subdivided the Acb into four parcels, the medial shell, the lateral shell, the ventral core, and the dorsal core. Furthermore, we characterized the specific anatomical and functional connectivity profiles of these Acb subregions and generalized their specialized functions to establish a fine-grained macaque Acb brainnetome atlas. This atlas should be helpful in neuroimaging, stereotactic surgery, and comparative neuroimaging studies to reveal the neurophysiological substrates of various diseases and cognitive functions associated with the Acb.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Core Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, China
| | - Chen Cheng
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongxia Deng
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Yunyun Dong
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Xudong Zhao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haifang Li
- College of Information and Computer, Taiyuan University of Technology, Jinzhong, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Xia X, Fan L, Cheng C, Yao R, Deng H, Zhao D, Li H, Jiang T. Interspecies Differences in the Connectivity of Ventral Striatal Components Between Humans and Macaques. Front Neurosci 2019; 13:623. [PMID: 31258468 PMCID: PMC6587664 DOI: 10.3389/fnins.2019.00623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although the evolutionarily conserved functions of the ventral striatal components have been used as a priori knowledge for further study, whether these functions are conserved between species remains unclear. In particular, whether macroscopic connectivity supports this given the disproportionate volumetric differences between species in the brain regions that project to the ventral striatum, including the prefrontal and limbic areas, has not been established In this study, the human and macaque striatum was first tractographically parcellated to define the ventral striatum and its two subregions, the nucleus accumbens (Acb)-like and the neurochemically unique domains of the Acb and putamen (NUDAPs)-like divisions. Our results revealed a similar topographical distribution of the connectivity-based ventral striatal components in the two primate brains. Successively, a set of targets was extracted to construct a connectivity fingerprint to characterize these parcellation results, enabling cross-species comparisons. Our results indicated that the connectivity fingerprints of the ventral striatum-like divisions were dissimilar in the two species. We localized this difference to specific targets to analyze possible interspecies functional modifications. Our results also revealed interspecies-convergent connectivity ratio fingerprints of the target group to these two ventral striatum-like subregions. This convergence may suggest synchronous connectional changes of these ventral striatal components during primate evolution.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Cheng
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Rong Yao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - HongXia Deng
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Dongqin Zhao
- Experimental Teaching Center, Shanxi University of Finance and Economics, Taiyuan, China
| | - Haifang Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Lee JW, Kim WY, Cho BR, Vezina P, Kim JH. Leptin in the nucleus accumbens core disrupts acute cocaine effects: Implications for GSK3β connections. Behav Brain Res 2018; 337:46-52. [PMID: 28964909 DOI: 10.1016/j.bbr.2017.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 01/02/2023]
|
19
|
Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward. eNeuro 2017; 4:eN-NWR-0058-17. [PMID: 28593190 PMCID: PMC5461554 DOI: 10.1523/eneuro.0058-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 11/23/2022] Open
Abstract
Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.
Collapse
|
20
|
Ranjbaran M, Aghaei H, Hajihoseinlou V, Sahraei H, Ranjbaran K. Transient Inactivation of Shell Part of Nucleus Accumbens Inhibits and Exacerbates Stress-Induced Metabolic Alterations in Wistar Rats. Basic Clin Neurosci 2017; 8:121-128. [PMID: 28539996 PMCID: PMC5440921 DOI: 10.18869/nirp.bcn.8.2.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: The role of different parts of the extended amygdala in metabolic signs of stress is not well understood. In the present study, we decided to evaluate the impact of the shell part of nucleus accumbens (NAc) on metabolic disturbance induced by electro foot shock stress using transient inactivation method in the rat. Methods: Male Wistar rats (W: 230–250 g) were canuulated unilaterally in the shell part of nucleus accumbens and left one week for recovery. Five minutes before each stress session, the animals either received sterile saline (0.25 μl/side) (control) or lidocaine 2% (0.25 μl/side) (experiment). Blood samples were taken from rats’ retro-orbital sinus for plasma corticosterone measurements. In addition, animals’ weight gain, food and water intake, locomotor activity, and rearing were recorded. Results: Stress reduced weight gain and food intake, increased water intake and plasma corticosterone level, and reduces locomotor activity and rearing. Transient inactivation of the right side of the NAc inhibits the stress effect on weight gain, water intake and plasma corticosterone level, but not food intake. However, when the left side of the NAc was inactivated, only weight gain was affected and other parameters were not differing from stress group. Even thought, the plasma corticosterone level was elevated. Conclusion: In conclusion, our data indicated that right side of shell part of NAc transient inactivation leads to reduction in metabolic signs of stress but left side of shell part of the NAc inactivation even exacerbates stress signs.
Collapse
Affiliation(s)
- Mina Ranjbaran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Aghaei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahdat Hajihoseinlou
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Katayoon Ranjbaran
- Department of Biology, Faculty of Science, Campus of Shahid Bahonar, Farhangiaan University, Hamadan, Iran
| |
Collapse
|
21
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
Kai N, Nishizawa K, Tsutsui Y, Ueda S, Kobayashi K. Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. J Neurochem 2015; 135:1232-41. [PMID: 26442961 DOI: 10.1111/jnc.13380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
The nucleus accumbens (Nac) mediates the reinforcing and motor stimulating properties of psychostimulants. It receives dopaminergic afferents from the ventral midbrain and is divided into two distinct subregions: shell and core. Each of these contains two subtypes of medium spiny neurons, which express either dopamine D1 (D1R) or D2 (D2R) receptors. However, functional dissociation between the two subtypes in psychostimulant response remains to be elucidated. We performed selective ablation of each subtype in the Nac shell in mice, using immunotoxin-mediated cell targeting, and examined the behavioral sensitization evoked by repeated administration of methamphetamine. The D1R cell-ablated mice exhibited delayed induction of sensitized locomotion compared to control mice, whereas the D2R cell-ablated mice showed a mildly enhanced rate of induction of sensitization. In vivo microdialysis revealed a marked blockade of the increase in extracellular dopamine in the Nac of the D1R cell-ablated animals in response to methamphetamine, indicating that the observed delay in behavioral sensitization in these mice involves an impairment in accumbal dopamine release. Our results reveal differential roles of D1R- and D2R-containing accumbal shell neurons in the development of behavioral sensitization to psychostimulants. Behavioral sensitization, enhanced motility by repetitive psychostimulant administration, is a model of drug addiction. Here, we show that the nucleus accumbens (Nac) shell neurons containing dopamine D1 receptor (D1R) or D2 receptor (D2R) play distinct roles in behavioral sensitization triggered by methamphetamine, and that D1R-containing neurons enhance the induction of behavioral sensitization at the early phase, whereas D2R-containing neurons act to suppress the rate of development of the behavior.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Histology & Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuji Tsutsui
- Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Shuichi Ueda
- Department of Histology & Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
23
|
Baharlouei N, Sarihi A, Komaki A, Shahidi S, Haghparast A. Blockage of acquisition and expression of morphine-induced conditioned place preference in rats due to activation of glutamate receptors type II/III in nucleus accumbens. Pharmacol Biochem Behav 2015; 135:192-8. [PMID: 26071679 DOI: 10.1016/j.pbb.2015.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 01/26/2023]
Abstract
Numerous studies have shown that glutamate in the nucleus accumbens (NAc) is an essential neurotransmitter for the extension of morphine-induced place preference. mGlu2/3 glutamate receptors in the NAc have important roles in the reward pathway. However, less is known about the role of this glutamate receptor subtype in morphine-induced conditioned place preference (CPP). In this study, we examined the effects of bilateral intra-accumbal administration of LY379268, an mGlu2/3 receptor agonist on the acquisition and expression of morphine-induced CPP in rats. Adult male Wistar rats (n=136; 220-250g) were evaluated in a CPP paradigm. Doses of LY379268 (0.3, 1 and 3μg/0.5μL saline per side) were administered into the NAc on both sides during the 3days of the conditioning (acquisition) or post-conditioning (expression) phase. The results show that bilateral intra-accumbal administration of LY379268 (0.3, 1 and 3μg) markedly decreased the acquisition of morphine-induced CPP in a dose-dependent manner. In a second series of experiments, we determined that injection of LY379268 into the NAc considerably attenuated the expression of morphine CPP only at the highest dose (3μg). Our findings suggest that activation of mGlu2/3 receptors in the NAc dose-dependently blocked both the establishment and the maintenance of morphine-induced CPP and confirmed the role of this system as a potential therapeutic target for addiction.
Collapse
Affiliation(s)
- Negar Baharlouei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, P. O. Box 65178, 38678 Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615, 1178 Tehran, Iran
| |
Collapse
|
24
|
Lucas-Neto L, Reimão S, Oliveira E, Rainha-Campos A, Sousa J, Nunes RG, Gonçalves-Ferreira A, Campos JG. Advanced MR Imaging of the Human Nucleus Accumbens-Additional Guiding Tool for Deep Brain Stimulation. Neuromodulation 2015; 18:341-8. [DOI: 10.1111/ner.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lia Lucas-Neto
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Sofia Reimão
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| | - Edson Oliveira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Alexandre Rainha-Campos
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - João Sousa
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - Rita G. Nunes
- Instituto de Biofísica e Engenharia Biomédica; Faculdade de Ciências; University of Lisbon; Lisboa Portugal
| | - António Gonçalves-Ferreira
- Anatomy Department; Lisbon Medical School; Lisboa Portugal
- Neurosurgery Department; North Lisbon Medical Center; Lisboa Portugal
| | - Jorge G. Campos
- Neuroradiology Department; North Lisbon Medical Center; Lisboa Portugal
| |
Collapse
|
25
|
Salgado S, Kaplitt MG. The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 2015; 93:75-93. [PMID: 25720819 DOI: 10.1159/000368279] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Salgado
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
26
|
Giorgi O, Corda MG, Sabariego M, Giugliano V, Piludu MA, Rosas M, Acquas E. Differential effects of cocaine on extracellular signal-regulated kinase phosphorylation in nuclei of the extended amygdala and prefrontal cortex of psychogenetically selected Roman high- and low-avoidance rats. J Neurosci Res 2014; 93:714-21. [PMID: 25502299 DOI: 10.1002/jnr.23526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 11/07/2014] [Indexed: 11/08/2022]
Abstract
Roman high (RHA)- and low (RLA)-avoidance rats are selectively bred for rapid vs. poor acquisition of active avoidance, respectively, and differ markedly in emotional reactivity, coping style, and behavioral and neurochemical responses to morphine and psychostimulants. Accordingly, acute cocaine induces more robust increments in locomotion and dopamine output in the nucleus accumbens shell (AcbSh) of RHA than of RLA rats. Cocaine induces short- and long-term neuronal plasticity via activation of the extracellular signal-regulated kinase (ERK) pathway. This study compares the effects of acute cocaine on ERK phosphorylation (pERK) in limbic brain areas of Roman rats. In RHA but not RLA rats, cocaine (5 mg/kg) increased pERK in the infralimbic prefrontal cortex and AcbSh, two areas involved in its acute effects, but did not modify pERK in the prelimbic prefrontal cortex and Acb core, which mediate the chronic effects of cocaine. Moreover, cocaine failed to affect pERK immunolabeling in the bed nucleus of stria terminalis pars lateralis and central amygdala of either line but increased it in the basolateral amygdala of RLA rats. These results extend to pERK expression previous findings on the greater sensitivity to acute cocaine of RHA vs. RLA rats and confirm the notion that genetic factors influence the differential responses of the Roman lines to addictive drugs. Moreover, they support the view that the Roman lines are a useful tool to investigate the molecular underpinnings of individual vulnerability to drug addiction.
Collapse
Affiliation(s)
- Osvaldo Giorgi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Lucas-Neto L, Mourato B, Neto D, Oliveira E, Martins H, Correia F, Gonçalves-Ferreira A. The nucleus accumbens beyond the anterior commissure: implications for psychosurgery. Stereotact Funct Neurosurg 2014; 92:291-9. [PMID: 25247282 DOI: 10.1159/000365115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/09/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The nucleus accumbens (Acc) is a basal forebrain structure integrated in the dopaminergic cerebral rewarding circuits and implicated in some neuropsychiatric disorders. It has become a target for deep brain stimulation for some of these disorders when refractory to medical treatment. However, it is controversial as to which target is the best and similar results have been achieved with the stimulation of neighboring structures such as the bed nucleus of the stria terminalis (BNST). Previous studies have established the stereotactic anatomy of the human Acc, but some difficulties remain concerning its precise posterior limit, which is assumed to be at the level of the anterior commissure (AC). It is our purpose to clarify the anatomy of this zone, given the importance of its exact identification in psychosurgery. METHODS A total of 16 Acc were collected by autopsy, fixed, dissected, embedded and cut in coronal 5-µm slices. The slices were stained with hematoxylin and eosin, marked with anti-D1 and anti-D2 antibodies and analyzed under a microscope. RESULTS The human Acc has the same cellular structure as the dorsal striatum, except in its posterior subcommissural part where voluminous neurons prevail, similar to and contiguous with the BNST. CONCLUSIONS The Acc is longer than previously described, with a sub- and postcommissural extension behind the AC, continuous with the BNST.
Collapse
Affiliation(s)
- Lia Lucas-Neto
- Department of Anatomy, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
28
|
Reisi Z, Bani-Ardalan M, Zarepour L, Haghparast A. Involvement of D1/D2 dopamine receptors within the nucleus accumbens and ventral tegmental area in the development of sensitization to antinociceptive effect of morphine. Pharmacol Biochem Behav 2014; 118:16-21. [PMID: 24418216 DOI: 10.1016/j.pbb.2013.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
Abstract
The nucleus accumbens (NAc) and the ventral tegmental area (VTA) are two major areas for the mesolimbic dopaminergic system which are strongly involved in the development of behavioral sensitization. In the present study, we investigated the role of D1/D2 dopaminergic receptors within the NAc or VTA in response to sensitization to morphine by the tail-flick test as a model of acute pain. Sensitization was induced by subcutaneous (SC) injection of morphine (5 mg/kg), once daily for three days followed by 5 days free of drug. After the sensitization period, antinociceptive responses induced by an ineffective dose of morphine (1 mg/kg; SC) were obtained by the tail-flick test, and represented as maximal possible effect (%MPE). In experimental groups, D1 and D2 receptor antagonists, SCH-23390 and sulpiride (0.25, 1 and 4 μg/rat), were separately microinjected into the NAc or VTA, 10 min before morphine administration during the sensitization period, respectively. Results showed that injection of morphine during the sensitization period (development of sensitization) increased %MPE of the ineffective dose of morphine from 2.43±1.4% in naive to 47.75±4.01% in sensitized animals (P<0.001). Unilateral microinjections of different doses of the D1/D2 receptor antagonists, SCH-23390 and sulpiride, into the NAc dose-dependently decreased %MPEs in morphine-sensitized animals. Nonetheless, %MPEs were only affected by intra-VTA administration of SCH-23390 in morphine-sensitized animals (P<0.05). Our findings suggest that both the D1/D2 dopamine receptors in the NAc and the D1 receptors in the VTA may be of more important in the development of sensitization to morphine in rats.
Collapse
Affiliation(s)
- Zahra Reisi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Mahtash Bani-Ardalan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Leila Zarepour
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
29
|
Zhang JP, Xu Q, Yuan XS, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Qu WM, Urade Y, Lazarus M, Huang ZL, Li RX. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation. Front Neuroanat 2013; 7:43. [PMID: 24409122 PMCID: PMC3857888 DOI: 10.3389/fnana.2013.00043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/21/2013] [Indexed: 11/13/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) in the nucleus accumbens (Acb) have been demonstrated to play an important role in the arousal effect of adenosine receptor antagonist caffeine, and may be involved in physiological sleep. To better understand the functions of these receptors in sleep, projections of A2AR neurons were mapped utilizing adeno-associated virus (AAV) encoding humanized Renilla green fluorescent protein (hrGFP) as a tracer for long axonal pathways. The Cre-dependent AAV was injected into the core (AcbC) and shell (AcbSh) of the Acb in A2AR-Cre mice. Immunohistochemistry was then used to visualize hrGFP, highlighting the perikarya of the A2AR neurons in the injection sites, and their axons in projection regions. The data revealed that A2AR neurons exhibit medium-sized and either round or elliptic perikarya with their processes within the Acb. Moreover, the projections from the Acb distributed to nuclei in the forebrain, diencephalon, and brainstem. In the forebrain, A2AR neurons from all Acb sub-regions jointly projected to the ventral pallidum, the nucleus of the diagonal band, and the substantia innominata. Heavy projections from the AcbC and the ventral AcbSh, and weaker projections from the medial AcbSh, were observed in the lateral hypothalamus and lateral preoptic area. In the brainstem, the Acb projections were found in the ventral tegmental area, while AcbC and ventral AcbSh also projected to the median raphe nucleus, the dorsal raphe nucleus, and the ventrolateral periaqueductal gray. The results supply a solid base for understanding the roles of the A2AR and A2AR neurons in the Acb, especially in the regulation of sleep.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University Shanghai, China
| | - Qi Xu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Shanghai Medical College, Fudan University Shanghai, China ; Department of Molecular Behavioral Biology, Osaka Bioscience Institute Suita, Osaka, Japan
| | - Xiang-Shan Yuan
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University Shanghai, China
| | - Yoan Cherasse
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute Suita, Osaka, Japan ; International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Ibaraki, Japan
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, Université Libre de Bruxelles, ULB Neuroscience Institute Brussels, Belgium
| | | | - Wei-Min Qu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Shanghai Medical College, Fudan University Shanghai, China
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute Suita, Osaka, Japan ; International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Ibaraki, Japan
| | - Michael Lazarus
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute Suita, Osaka, Japan ; International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Ibaraki, Japan
| | - Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Shanghai Medical College, Fudan University Shanghai, China
| | - Rui-Xi Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University Shanghai, China
| |
Collapse
|
30
|
Kim WY, Jang JK, Shin JK, Kim JH. Amphetamine dephosphorylates ERM proteins in the nucleus accumbens core and lithium attenuates its effects. Neurosci Lett 2013; 552:103-7. [PMID: 23932889 DOI: 10.1016/j.neulet.2013.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 11/16/2022]
Abstract
The ezrin-radixin-moesin (ERM) proteins have been implicated not only in cell-shape determination but also in cellular signaling pathway. We have previously shown that cocaine decreases phosphorylation levels of these proteins in the nucleus accumbens (NAcc), an important brain area mediating addictive behaviors. Here we further revealed that the phosphorylation levels of ERM were decreased in the NAcc core, but not in the shell, by a single injection of amphetamine (AMPH) (2 mg/kg, i.p.). When lithium (100 mg/kg, i.p.) was co-administered with AMPH, the decreases of phosphorylation levels for ERM by AMPH were recovered back to basal levels in the NAcc core. Together, these results suggest that psychomotor stimulants like AMPH regulate phosphorylation levels of ERM in the NAcc core and lithium-involved signaling pathway has a regulatory role in the opposite direction in this site.
Collapse
Affiliation(s)
- Wha Young Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
31
|
Ikeda H, Koshikawa N, Cools AR. Accumbal core: essential link in feed-forward spiraling striato-nigro-striatal in series connected loop. Neuroscience 2013; 252:60-7. [PMID: 23933312 DOI: 10.1016/j.neuroscience.2013.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023]
Abstract
The goal of the present study was to establish the behavioral role of the nucleus accumbens (Nacc) core in the feed-forward spiraling striato-nigro-striatal circuitry that transmits information from the Nacc shell toward the dorsal subregion of the neostriatum (DS) in freely moving rats. Unilateral injection of μ-opioid receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO; 1 and 2 μg), but not the δ 1-opioid receptor agonist [D-Pen(2,5)]-enkephalin (4 μg) or the δ2-opioid receptor agonist [D-Ala(2),Glu(4)]-deltorphin (2 μg), into the ventral tegmental area (VTA) produced contraversive circling in a dose-dependent manner. The effect of DAMGO was μ-opioid receptor-specific, because the μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 (0.1 and 1 μg), which alone did not elicit any turning behavior, dose-dependently inhibited the effect of DAMGO. Injection of the dopamine D1/D2 receptor antagonist cis-(Z)-flupentixol (1 and 10 μg) into the Nacc shell ipsilaterally to the VTA significantly inhibited DAMGO (2 μg)-induced circling. Similar injections of cis-(Z)-flupentixol into the Nacc core inhibited DAMGO-induced circling, but, in addition, replaced circling by pivoting, namely turning behavior during which the rat rotates around its disfunctioning hindlimb. The present findings show that unilateral stimulation of μ-, but not δ-, opioid receptors in the VTA elicits contraversive circling that requires a relatively hyperdopaminergic activity in both the shell and the core of the Nacc at the opioid-stimulated side of the brain. The Nacc core plays an essential role in the transmission of information directing the display of pivoting that is elicited by an increased dopaminergic activity in the Nacc shell. It is concluded that the Nacc core is an essential link in the feed-forward spiraling striato-nigro-striatal circuitry that transmits information from the Nacc shell toward the DS in freely moving rats.
Collapse
Affiliation(s)
- H Ikeda
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
32
|
Role of the major glutamate transporter GLT1 in nucleus accumbens core versus shell in cue-induced cocaine-seeking behavior. J Neurosci 2013; 33:9319-27. [PMID: 23719800 DOI: 10.1523/jneurosci.3278-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relapse to cocaine-seeking behavior requires an increase in nucleus accumbens (NAc) core glutamate transmission. Decreased expression of glutamate type I transporter (GLT1), which is responsible for >90% of glutamate clearance, occurs in the core of rats withdrawn from cocaine self-administration, while treatment with ceftriaxone, a β-lactam antibiotic previously shown to increase GLT1 expression and function in rodents, upregulates GLT1 and attenuates cue-induced cocaine reinstatement. Here, we tested the effects of increasing GLT1 expression on cue-induced cocaine seeking in rats exposed to either limited (2 h/d) or extended (6 h/d) cocaine access followed by short (2 d) or long (45 d) withdrawal periods. Treatment with ceftriaxone (200 mg/kg, i.p.) upregulated core GLT1 expression and attenuated cue-induced cocaine-seeking behavior only in rats exposed to long withdrawal periods, with a greater effect in the extended-access condition. Pearson's correlation revealed GLT1 expression in core to be inversely correlated with cue-induced cocaine-seeking behavior. To localize the effects of GLT1 upregulation within NAc, we tested the hypothesis that blockade of GLT1 in NAc core, but not shell, would reverse the ceftriaxone-mediated effect. Rats withdrawn from cocaine self-administration were treated with the same dose of ceftriaxone followed by intracore or intrashell infusions of one of two GLT1 blockers, dihydrokainic acid (500 μM) or DL-threo-β-benzyloxyaspartate (250 μM), or saline. Our results reveal that the ceftriaxone-mediated attenuation of cue-induced cocaine reinstatement is reversed by GLT1 blockade in core, but not shell, and further implicate core GLT1 as a potential therapeutic target for cocaine relapse.
Collapse
|
33
|
Karimi S, Azizi P, Shamsizadeh A, Haghparast A. Role of intra-accumbal cannabinoid CB1 receptors in the potentiation, acquisition and expression of morphine-induced conditioned place preference. Behav Brain Res 2013; 247:125-31. [DOI: 10.1016/j.bbr.2013.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/10/2013] [Accepted: 03/14/2013] [Indexed: 12/28/2022]
|
34
|
Kim WY, Jang JK, Lee JW, Jang H, Kim JH. Decrease of GSK3β phosphorylation in the rat nucleus accumbens core enhances cocaine-induced hyper-locomotor activity. J Neurochem 2013; 125:642-8. [DOI: 10.1111/jnc.12222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Wha Y. Kim
- Department of Physiology; Brain Korea 21 Project for Medical Science; Brain Research Institute; Yonsei University College of Medicine; Seoul South Korea
| | - Ju K. Jang
- Department of Physiology; Brain Korea 21 Project for Medical Science; Brain Research Institute; Yonsei University College of Medicine; Seoul South Korea
| | - Jung W. Lee
- Department of Physiology; Brain Korea 21 Project for Medical Science; Brain Research Institute; Yonsei University College of Medicine; Seoul South Korea
| | - Hyunduk Jang
- Department of Neurology; Neuroscience Research Institute; College of Medicine; Seoul National University; Seoul South Korea
| | - Jeong-Hoon Kim
- Department of Physiology; Brain Korea 21 Project for Medical Science; Brain Research Institute; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
35
|
Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neurosci Biobehav Rev 2013; 37:1985-98. [PMID: 23466532 DOI: 10.1016/j.neubiorev.2013.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 11/21/2022]
Abstract
Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding.
Collapse
|
36
|
Gangarossa G, Espallergues J, de Kerchove d'Exaerde A, El Mestikawy S, Gerfen CR, Hervé D, Girault JA, Valjent E. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens. Front Neural Circuits 2013; 7:22. [PMID: 23423476 PMCID: PMC3575607 DOI: 10.3389/fncir.2013.00022] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/02/2013] [Indexed: 11/21/2022] Open
Abstract
The nucleus accumbens (NAc) is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs) constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP) or the Cre-recombinase (Cre) under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific extracellular signal-regulated kinase (ERK) phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist), quinpirole (a D2 receptors (D2R)-like agonist), apomorphine (a non-selective DA receptor agonist), raclopride (a D2R-like antagonist), and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 & 2, UMR-5203 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Golden SA, Russo SJ. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011957. [PMID: 22935995 DOI: 10.1101/cshperspect.a011957] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Psychostimulants robustly induce alterations in neuronal structural plasticity throughout brain reward circuits. However, despite our extensive understanding of how these circuits modulate motivated behavior, it is still unclear whether structural plasticity within these regions drives pathological behavioral responses in addiction. Although these structural changes have been subjected to an exhaustive phenomenological characterization, we still have a limited understanding of the molecular mechanisms regulating their induction and the functional relevance of such changes in mediating addiction-like behavior. Here we have highlighted the known molecular pathways and intracellular signaling cascades that regulate psychostimulant-induced changes in neuronal morphology and synaptic restructuring, and we discuss them in the larger context of addiction behavior.
Collapse
Affiliation(s)
- Sam A Golden
- Department of Neuroscience and The Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
38
|
The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PLoS One 2012; 7:e45471. [PMID: 23029032 PMCID: PMC3446879 DOI: 10.1371/journal.pone.0045471] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Background We have previously shown that modafinil promotes wakefulness via dopamine receptor D1 and D2 receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc) that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal. Methodology/Principal Findings In the present study, we further explored the role of NAc in sleep-wake cycle and sleep homeostasis by ablating the NAc core and shell, respectively, and examined arousal response following modafinil administration. We found that discrete NAc core and shell lesions produced 26.5% and 17.4% increase in total wakefulness per day, respectively, with sleep fragmentation and a reduced sleep rebound after a 6-hr sleep deprivation compared to control. Finally, NAc core but not shell lesions eliminated arousal effects of modafinil. Conclusions/Significance These results indicate that the NAc regulates sleep-wake behavior and mediates arousal effects of the midbrain dopamine system and stimulant modafinil.
Collapse
|
39
|
Abstract
The identification and functional understanding of the neurocircuitry that mediates alcohol and drug effects that are relevant for the development of addictive behavior is a fundamental challenge in addiction research. Here we introduce an assumption-free construction of a neurocircuitry that mediates acute and chronic drug effects on neurotransmitter dynamics that is solely based on rodent neuroanatomy. Two types of data were considered for constructing the neurocircuitry: (1) information on the cytoarchitecture and neurochemical connectivity of each brain region of interest obtained from different neuroanatomical techniques; (2) information on the functional relevance of each region of interest with respect to alcohol and drug effects. We used mathematical data mining and hierarchical clustering methods to achieve the highest standards in the preprocessing of these data. Using this approach, a dynamical network of high molecular and spatial resolution containing 19 brain regions and seven neurotransmitter systems was obtained. Further graph theoretical analysis suggests that the neurocircuitry is connected and cannot be separated into further components. Our analysis also reveals the existence of a principal core subcircuit comprised of nine brain regions: the prefrontal cortex, insular cortex, nucleus accumbens, hypothalamus, amygdala, thalamus, substantia nigra, ventral tegmental area and raphe nuclei. Finally, by means of algebraic criteria for synchronizability of the neurocircuitry, the suitability for in silico modeling of acute and chronic drug effects is indicated. Indeed, we introduced as an example a dynamical system for modeling the effects of acute ethanol administration in rats and obtained an increase in dopamine release in the nucleus accumbens-a hallmark of drug reinforcement-to an extent similar to that seen in numerous microdialysis studies. We conclude that the present neurocircuitry provides a structural and dynamical framework for large-scale mathematical models and will help to predict chronic drug effects on brain function.
Collapse
Affiliation(s)
- Hamid R. Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| |
Collapse
|
40
|
Esmaeili MH, Sahraei H, Ali-Beig H, Ardehari-Ghaleh M, Mohammadian Z, Zardooz H, Salimi SH, Shams J, Noroozzadeh A. Transient inactivation of the nucleus accumbens reduces both the expression and acquisition of morphine-induced conditioned place preference in rats. Pharmacol Biochem Behav 2012; 102:249-56. [PMID: 22580069 DOI: 10.1016/j.pbb.2012.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 04/24/2012] [Accepted: 04/29/2012] [Indexed: 11/18/2022]
Abstract
In the present study, the effects of transient inhibition of the shell and core parts of the nucleus accumbens by lidocaine on the expression and acquisition of morphine-induced conditioned place preference in male Wistar rats were investigated. In addition, the number of bouts of sniffing, rearing, and compartment crossing was scored. Lidocaine hydrochloride was injected into different parts of the nucleus accumbens 5 min before each morphine session for the transient inhibition of particular anatomical regions. Subcutaneous (s.c.) injection of morphine (2.5 and 5mg/kg) induced place preference. Transient inhibition of the left and/or right side of the shell part of nucleus accumbens reduced morphine place conditioning. However, when both sides of the nucleus were inhibited, inhibition was weaker when compared to the results when only one side was inhibited. Also, the number of compartment crossings in these animals reduced significantly. Nevertheless, the number of rearing occurrences was reduced only when both sides of the shell part of the nucleus accumbens were inhibited. In contrast, the number of sniffing bouts increased in all three groups. The results for the core part of the nucleus accumbens also indicated that place preference was inhibited after transient inhibition of the left, right, and both sides. However, although the number of total compartment crossings was reduced in all experimental groups, the reduction was not statistically significant. The data obtained was similar to the number of rearings, yet the number of sniffing bouts increased in the experimental groups compared to the control. In conclusion, these results confirmed the involvement of the left and right sides and core and shell parts of the nucleus accumbens in morphine place conditioning.
Collapse
|
41
|
Wouterlood FG, Härtig W, Groenewegen HJ, Voorn P. Density gradients of vesicular glutamate- and GABA transporter-immunoreactive boutons in calbindin- and μ-opioid receptor-defined compartments in the rat striatum. J Comp Neurol 2012; 520:2123-42. [DOI: 10.1002/cne.23031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 718] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
43
|
Cacciapaglia F, Saddoris MP, Wightman RM, Carelli RM. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology 2012; 62:2050-6. [PMID: 22261383 DOI: 10.1016/j.neuropharm.2011.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/15/2011] [Accepted: 12/23/2011] [Indexed: 02/03/2023]
Abstract
Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.
Collapse
Affiliation(s)
- Fabio Cacciapaglia
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
44
|
Morales M, Pickel VM. Insights to drug addiction derived from ultrastructural views of the mesocorticolimbic system. Ann N Y Acad Sci 2011; 1248:71-88. [PMID: 22171551 DOI: 10.1111/j.1749-6632.2011.06299.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drugs of abuse increase the release of dopamine from mesocorticolimbic neurons in the ventral tegmental area. Thus, insights into the cytoarchitecture and the synaptic circuitry affecting the activity of dopaminergic neurons in this area are fundamental for understanding the commonalities produced by mechanistically distinct drugs of abuse. Electron microscopic immunolabeling has provided these insights and also shown the critical relationships between the dopaminergic axon terminals and their targeted neurons in the prefrontal cortex and in the both the dorsal and ventral striatum. These brain regions are among those where dopamine and associated neurotransmitters are most implicated in the transition from recreational to compulsive consumption of reinforcing drugs. Thus, the synaptic circuitry and drug-induced plasticity occurring in the ventral tegmental area and in dopamine-targeted regions are reviewed, as both are essential for understanding the long-lasting changes produced by addictive substances.
Collapse
Affiliation(s)
- Marisela Morales
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA.
| | | |
Collapse
|
45
|
Kohnomi S, Koshikawa N, Kobayashi M. D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. J Neurophysiol 2011; 107:692-703. [PMID: 22049335 DOI: 10.1152/jn.00281.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the nucleus accumbens (NAc), a medium spiny (MS) neuron receives GABAergic inputs from two major sources: fast-spiking (FS) neurons and other, adjacent MS neurons. These two types of inhibitory synapses are considered to play different roles in output activities, i.e., FS→MS connections suppress output from the NAc whereas MS→MS connections contribute to lateral inhibition. In the present study, we focused on the electrophysiological properties of unitary inhibitory postsynaptic currents (uIPSCs) obtained from MS→MS connections and FS→MS connections and examined the effects of quinpirole, a dopamine D(2)-like receptor agonist, on uIPSCs with multiple whole cell patch-clamp recording. Application of quinpirole (1 μM) reliably suppressed the amplitude of uIPSCs by 29.6% in MS→MS connections, with increases in paired-pulse ratio and failure rate. The suppressive effects of quinpirole on uIPSCs were mimicked by 1 μM PD128907, a D(2/3) receptor agonist, whereas quinpirole-induced suppression of uISPCs was blocked by preapplication of 1 μM sulpiride or 10 μM nafadotride, both D(2/3) receptor antagonists. On the other hand, quinpirole (1 μM) had divergent effects on FS→MS connections, i.e., quinpirole increased uIPSC amplitude in 38.1% of FS→MS connections and 23.8% of FS→MS connections were suppressed by quinpirole. Analysis of coefficient of variation in uIPSC amplitude implied the involvement of presynaptic mechanisms in quinpirole-induced effects on uIPSCs. These results suggest that activation of D(2)-like receptors facilitates outputs from MS neurons in the NAc by reducing lateral inhibition during a dormant period of FS neuron activities.
Collapse
Affiliation(s)
- Shuntaro Kohnomi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Guillem K, Peoples LL. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues. PLoS One 2011; 6:e24049. [PMID: 21961032 PMCID: PMC3178519 DOI: 10.1371/journal.pone.0024049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 08/04/2011] [Indexed: 12/05/2022] Open
Abstract
Nicotine self-administration (SA) is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc) is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg) paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively). Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1) excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2) a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
- * E-mail: (KG); (LLP)
| | - Laura L. Peoples
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KG); (LLP)
| |
Collapse
|
47
|
Penner MR, Mizumori SJY. Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 2011; 96:96-135. [PMID: 21964237 DOI: 10.1016/j.pneurobio.2011.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.
Collapse
Affiliation(s)
- Marsha R Penner
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, United States
| | | |
Collapse
|
48
|
Unal B, Ibáñez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci 2011; 5:41. [PMID: 21713112 PMCID: PMC3112318 DOI: 10.3389/fnsys.2011.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/24/2011] [Indexed: 11/23/2022] Open
Abstract
We have recently shown in vitro that striatal tyrosine hydroxylase-expressing interneurons identified in transgenic mice by expression of enhanced green fluorescent protein (TH-eGFP) display electrophysiological profiles that are distinct from those of other striatal interneurons. Furthermore, striatal TH-eGFP interneurons show marked diversity in their electrophysiological properties and have been divided into four distinct subtypes. One question that arises from these observations is whether striatal TH-eGFP interneurons are distributed randomly, or obey some sort of organizational plan as has been shown to be the case with other striatal interneurons. An understanding of the striatal TH-eGFP interneuronal patterning is a vital step in understanding the role of these neurons in striatal functioning. Therefore, in the present set of studies the location of electrophysiologically identified striatal TH-eGFP interneurons was mapped. In addition, the distribution of TH-eGFP interneurons with respect to the striatal striosome–matrix compartmental organization was determined using μ-opioid receptor (MOR) immunofluorescence or intrinsic TH-eGFP fluorescence to delineate striosome and matrix compartments. Overall, the distribution of the different TH-eGFP interneuronal subtypes did not differ in dorsal versus ventral striatum. However, striatal TH-eGFP interneurons were found to be mostly in the matrix in the dorsal striatum whereas a significantly higher proportion of these neurons was located in MOR-enriched domains of the ventral striatum. Further, the majority of striatal TH-eGFP interneurons was found to be located within 100 μm of a striosome–matrix boundary. Taken together, the current results suggest that TH-eGFP interneurons obey different organizational principles in dorsal versus ventral striatum, and may play a role in communication between striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Bengi Unal
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey Newark, NJ, USA
| | | | | | | | | |
Collapse
|
49
|
Glutamatergic input from specific sources influences the nucleus accumbens-ventral pallidum information flow. Brain Struct Funct 2011; 217:37-48. [DOI: 10.1007/s00429-011-0331-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/16/2011] [Indexed: 11/26/2022]
|
50
|
Xu CM, Wang J, Wu P, Xue YX, Zhu WL, Li QQ, Zhai HF, Shi J, Lu L. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J Neurochem 2011; 118:126-39. [DOI: 10.1111/j.1471-4159.2011.07281.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|